层次分析法模型

合集下载

层次分析法及模糊综合评价建模方法

层次分析法及模糊综合评价建模方法

否则,k:=k+1, 转2
5) 计算 max
1 n
n i 1
w(k 1) i w(k ) i
关于如何确定成对比较矩阵 A (aij )nn 中元素 aij 的值,
Saaty等建议试用1~9尺度,即 aij 的取值范围是1,2,…,9 以及倒数是1,1\2,…,1\9, 判断矩阵的元素一般采用1~9及 其倒数的标度方法。
科研C2
w1(3)=(w11(3),w12(3),w13(3),0)T P1
P2
P3
P4
w2(3)=(0,0,w23(3),w24(3)T已得 讨论由w(2),W(3)=(w1(3), w2(3)) 计算第3层对第1层权向量
P1,P2只作教学, P4只作科研, P3兼作教学、科研。
w(3)的方法
C1,C2支配元素的数目不等

业 业 业 靠 通 C8
C1
C3 C4 C5 C6 C7
舒进 美
适出 化
C9
方 便
C11
C1
0
桥梁 D1
隧道 D2
渡船 D3
(1)过河效益层次结构
例3 横渡 江河、海峡 方案的抉择
经济代价 B1
过河的代价 A
社会代价 B2
环境代价 B3
投 操 冲冲 交 居 汽 对 对
入 作 击击 通 民 车 水 生
一致性指标
CI max n
n 1
随机一致性指标
判断 矩阵 1 2 3 4 5 6 7 8 9 10 阶数n
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
一致性比率
CR
CI RI

层次分析法

层次分析法

(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。

”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次.其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。

准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。

层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年标,C层次为方案层元素,也可称为二级指标。

(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2—3所示。

假设有n个元素C1、C2,。

,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。

专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A 中的各元素a ij 表示行指标A i 对列指标A j 相对重要性的比例标度,则判断矩阵A 中指标两两比较的特点有a ij >0,a ij =1,a ij =1/a ji (i ,j=1,2,。

..。

..n )。

如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要.根据判断矩阵A 在选择上的一致性要求,理想情况下,a ik*a jk =a ij (代表相对重要性所具有的传递性原理,满足该性质的矩阵A 称为一致矩阵),虽然在构造判断矩阵A 时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。

层次分析法AHP法建模

层次分析法AHP法建模
随机一致性指标 RI=1.12 (查表)
通过一致
一致性比率CR=0.018/1.12=0.016<0.1
性检验
正互反阵最大特征根和特征向量的简化计算
• 精确计算的复杂和不必要
• 简化计算的思路——一致阵的任一列向量都是特征向量,
一致性尚好的正互反阵的列向量都应近似特征向量,可取
其某种意义下的平均。
二、层次分析法的基本原理
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的 组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同 层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归 结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重 要权值的确定或相对优劣次序的排定。
对总目标Z的排序为
A1
A2
Am
a1, a2,, am
B层n个因素对上层A中因素为Aj
B1
B2
Bn
的层次单排序为
b1 j ,b2 j ,,bnj ( j 1,2,, m)
B 层的层次总排序为:
即 B 层第 i 个因素对总目标
的权值为: m
a jbij
(影响加和)j 1
B1 : a1b11 a2b12 amb1m B2 : a1b21 a2b22 amb2m
是对难于完全定量的复杂系统作出决策的模型和方 法。
决策是指在面临多种方案时需要依据一定的标准选 择某一种方案。日常生活中有许多决策问题。举例
1. 在海尔、新飞、容声和雪花四个牌号的电冰箱 中选购一种。要考虑品牌的信誉、冰箱的功能、价 格和耗电量。
2. 在泰山、杭州和承德三处选择一个旅游点。要 考虑景点的景色、居住的环境、饮食的特色、交通 便利和旅游的费用。

层次分析法数学建模

层次分析法数学建模
权重分配不合理
在某些情况下,层次分析法可能无法合理地分配权重,导致决策结果 与实际情况存在较大偏差。
无法处理动态变化
层次分析法主要用于静态决策问题,对于动态变化的决策问题处理能 力较弱。
05 结论与展望
结论
层次分析法是一种有效的决策分析方法,能够将复杂问题 分解为多个层次和因素,通过比较和判断各因素之间的相 对重要性,为决策提供依据。
实例三:风险评估问题
总结词
层次分析法在风险评估问题中,能够综合考虑风险的多种来源和影响因素,确定各因素之间的权重关 系,为风险的有效控制提供科学的依据。
详细描述
风险评估问题涉及到如何识别、评估和控制各种潜在的风险。层次分析法可以将风险的多种来源和影 响因素进行比较和判断,确定各因素之间的权重关系,为风险的有效控制提供科学的依据。同时,层 次分析法还可以用于制定风险应对策略和预案,提高组织的抗风险能力。
层次单排序与一致性检验
层次单排序
根据判断矩阵的性质和计算方法,计 算出各组成元素的权重值,并按照权 重值的大小进行排序。
一致性检验
对判断矩阵的一致性进行检验,以确 保各组成元素之间的相对重要性关系 符合逻辑和实际情况。
层次总排序与一致性检验
层次总排序
根据各层次的权重值和组成元素的权重值,计算出整个层次结构模型的权重值, 并进行总排序。
确定层次
根据问题的复杂程度和组 成元素的性质,将层次结 构划分为不同的层次,以 便于分析和计算。
判断矩阵的建立
确定判断标准
根据问题的特点和要求,确定判 断各组成元素之间相对重要性的 标准和方法。
构造判断矩阵
根据判断标准,构造出一个判断 矩阵,用于表示各组成元素之间 的相对重要性关系。

层次分析法模型

层次分析法模型

二、模型的假设1、假设我们所统计和分析的数据,都是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性和普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略.三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻.为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析和评价毕业生就业的若干主要因素,并将它们从主到次依秩排序.针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略.2、方法模型的建立 (1)层次分析法层次分析法介绍:层次分析法是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题.特别是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法.通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重.这些权重在人的思维过程中通常是定性的,而在层次分析法中则要给出得到权重的定量方法.我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T.L.Saaty 教授提出的AHP 法. (2)具体计算权重的AHP 法AHP 法是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据计算成对比较矩阵的特征值获得权重向量k W .Step1. 构造成对比较矩阵 假设比较某一层k 个因素12,,,k C C C 对上一层因素ο的影响,每次两个因素i C 和j C ,用ij C 表示i C 和j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵.*()k k ij C C =, 0ij C >,1ij jiC C=, 1ii C =.若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵.标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29i C 与j C 影响之比为上面ij a 的互反数Step2. 计算该矩阵的权重通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就是i C 对ο的相对权重.由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ和相应的特征向量.Step3. 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max 1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高.2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得到的平均随机一致性指标:3)当0.1CR RI=<时,(CR 称为一致性比率,RI 是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断是满意的,此时的正互反矩阵称之为一致性矩阵.进入Step4. 否则说明矛盾,应重新修正该正互反矩阵.转入Step2. Step4. 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量.计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了.(3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也是矩阵数学模型的重要应用价值. 因素往往是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的.一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面.这就是决策分析的数学模型的真正的意义之所在.定理1:对于三决策问题,假设第一层只有一个因素,即这是总的目标,决策总是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较.又假设第二层和第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =, 而第3层对第2层的全向量分别是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =,这表示第3层的权重大小,具体表示的是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标.那么显然,第三层的因素相对于第一层的因素而言,其权重应当是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=,这个矩阵的第一行是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就是三层(一般是方案层)中每一个因素相对总目标的量化指标.定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的是第1k -层中每个因素关于第一层总目标的权重向量.于是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWW w-=,实际上这是一个从左向右的递推形式的向量运算.逐个得出每一层的各个因素关于第一层总目标因素的权重向量. (4)灰色关联度综合评价法灰色系统的关联分析主要是对系统动态发展过程的量化分析,它是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大.关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优.因此,可利用关联序对所要评价的对象进行排序比较.利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标.2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理.3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值.4)计算指标关联系数.其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=0()()ik k x x -,1,2,i n =,1,2,k m =.式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差.ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0.5.5)确立层次分析模型.6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重.7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好. (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x 的关系是线性的,为研究他们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y y它们是在因素(1,2,,)i i p x =数值已经发生的条件下随机发生的.把第j 次观测的因素数值记为:12,,,jjpj x xx (1,2,j n =)那么可以假设有如下的结构表达式:1111011212201213011p pp pn nppy x x y x x y x xβββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩其中,01,,,pβββ是1p +个待估计参数,12,,,n εεε是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量.这就是多元线性回归的数学模型.若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,111212122212111p p n n np x xx x x x x xxx ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,012p βββββ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为011p p y b b x b x =+++式中,012,,,,p b b b b 分别为01,,,pβββ的估计值.(6)主成分分析法 1)主成分的定义 设有p 个随机变量12,,,p x x x ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z z,称为初始向量的主成分.设12(,,,)Tp αααα=为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1T R ααα==,且记X =12(,,,)Tp X X X .2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =.*X=***12(,,)Tp X X X ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭为*X 的协方程.类似地,我们可对R 进行相应的分析.3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r rr rr X X r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭. 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥.将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==确定m 的方法是使前m 个主成分的累计贡献率达到85%左右. 第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小和符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释.利用主成分可以进行以下分析:a)对原指标进行分类;b)对原指标进行选择;c)对样品进行分类;d)对样品进行排序;e)预测分析.。

层次分析法模型

层次分析法模型

二、模型的假设1、假设我们所统计与分析的数据,都就是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、2、方法模型的建立(1)层次分析法层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、(2)具体计算权重的AHP 法AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据W、计算成对比较矩阵的特征值获得权重向量kStep1、 构造成对比较矩阵假设比较某一层k 个因素12,,,k C C C L 对上一层因素ο的影响,每次两个因素i C 与j C ,用ij C 表示i C 与j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵、*()k k ij C C =,0ij C >,1ij jiC C=, 1ii C =、若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵、标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29Li C 与j C 影响之比为上面ij a 的互反数 Step2、 计算该矩阵的权重通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就就是i C 对ο的相对权重、由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ与相应的特征向量、Step3、 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高、2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得到3)当0.1CR RI=<时,(CR 称为一致性比率,RI 就是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断就是满意的,此时的正互反矩阵称之为一致性矩阵、进入Step4、 否则说明矛盾,应重新修正该正互反矩阵、转入Step2、 Step4、 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量、计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了、 (3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也就是矩阵数学模型的重要应用价值、 因素往往就是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的、一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面、这就就是决策分析的数学模型的真正的意义之所在、定理1:对于三决策问题,假设第一层只有一个因素,即这就是总的目标,决策总就是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较、又假设第二层与第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =L , 而第3层对第2层的全向量分别就是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =L ,这表示第3层的权重大小,具体表示的就是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标、那么显然,第三层的因素相对于第一层的因素而言,其权重应当就是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=L,这个矩阵的第一行就是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就就是三层(一般就是方案层)中每一个因素相对总目标的量化指标、定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==L ,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的就是第1k -层中每个因素关于第一层总目标的权重向量、于就是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWWw-=L ,实际上这就是一个从左向右的递推形式的向量运算、逐个得出每一层的各个因素关于第一层总目标因素的权重向量、 (4)灰色关联度综合评价法灰色系统的关联分析主要就是对系统动态发展过程的量化分析,它就是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大、关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优、因此,可利用关联序对所要评价的对象进行排序比较、利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标、2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理、3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值、4)计算指标关联系数、其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=()()ik k x x -,1,2,i n =L ,1,2,k m =L 、式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =L 找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =L 找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差、ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0、5、5)确立层次分析模型、6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重、7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好、 (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x L 的关系就是线性的,为研究她们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y yL它们就是在因素(1,2,,)i i p x =L 数值已经发生的条件下随机发生的、把第j 次观测的因素数值记为:12,,,jjpj x xx L (1,2,j n =L )那么可以假设有如下的结构表达式:1111011212201213011p p p p n np p y x x y x x y x x βββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩L L L L L L L L L L L L L L L L L L 其中,01,,,pβββL 就是1p +个待估计参数,12,,,n εεεL 就是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量、这就就是多元线性回归的数学模型、若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ,111212122212111p p n n np x xx x xx x xxx ⎛⎫ ⎪ ⎪=⎪ ⎪⎪⎝⎭L L L LLL L L,012p βββββ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭M ,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的就是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为%011p p y b b x b x =+++L式中,012,,,,p b b b b L 分别为01,,,p βββL 的估计值、 (6)主成分分析法1)主成分的定义设有p 个随机变量12,,,p x x x L ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z zL ,称为初始向量的主成分、设12(,,,)Tp αααα=L为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1TR ααα==,且记X =12(,,,)Tp X X X L 、2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =L 、*X=***12(,,)Tp X X X L ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L LL L LLL 为*X 的协方程、类似地,我们可对R 进行相应的分析、3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r r r rr XX r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭L LL L LLL %%、 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥L 、将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==L确定m的方法就是使前m个主成分的累计贡献率达到85%左右、第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小与符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释、利用主成分可以进行以下分析:a)对原指标进行分类;b)对原指标进行选择;c)对样品进行分类;d)对样品进行排序;e)预测分析、。

层次分析法的原理

层次分析法的原理

层次分析法的原理层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多准则决策的数学模型。

它由美国数学家Thomas L. Saaty于20世纪70年代提出,被广泛应用于各个领域的决策分析中。

层次分析法基于人们在决策过程中常常需要考虑多个因素及其相对重要性的观点,通过对这些因素进行定量化和比较,帮助决策者做出理性决策。

层次分析法的原理主要包括层次结构、成对比较和权重计算三个部分。

一、层次结构:在层次分析法中,我们首先需要构建一个层次结构,将决策问题划分为不同的层次。

层次结构由目标层、准则层、子准则层和方案层组成。

目标层:决策问题的最终目标,通常只有一个。

准则层:实现目标所需的准则或评价指标,可以有多个。

子准则层:对每个准则进行细分或进一步评价的子指标,根据实际情况确定是否需要。

方案层:候选方案或决策选项,可以有多个。

二、成对比较:通过成对比较来确定各个层次之间的重要性或优先级。

成对比较是指将两个层次中的元素逐一配对,并根据它们之间的重要性进行比较。

在成对比较中,使用1-9的数值尺度,其中1表示相等重要,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。

通过比较各个元素对的重要性,可以建立一个判断矩阵。

例如,在准则层中,假设有三个准则A、B、C,那么我们需要进行三次成对比较,得到一个3x3的判断矩阵。

同样,在子准则层或方案层中,也需要进行成对比较,得到相应的判断矩阵。

三、权重计算:通过计算判断矩阵的特征向量,可以得到各个层次的权重,用于确定决策的最终结果。

特征向量是指矩阵的一个列向量,使得该矩阵与特征向量的乘积等于特征值乘特征向量。

通过对判断矩阵的特征向量进行归一化处理,可以得到各个层次的权重,用于计算总体权重或方案的优先级。

最后,根据权重计算的结果,可以得到最优的决策选择。

层次分析法的原理基于多个准则、多个层次的权重计算,旨在帮助决策者以合理的方式处理决策问题,并提供一种定量化的决策分析方法。

第九章 层次分析法模型

第九章 层次分析法模型
第九讲
层次分析法模型
层次分析模型
y
离散模型
• 离散模型:差分方程(第7章)、
整数规划(第4章)、图论、对策 论、网络流、… … • 分析社会经济系统的有力工具
• 只用到代数、集合及图论(少许)
的知识
层次分析模型
背 景
• 日常工作、生活中的决策问题
• 涉及经济、社会等方面的因素 • 作比较判断时人的主观选择起相当 大的作用,各因素的重要性难以量化
1/ 2 1 1/ 7 1/ 5 1/ 5 4 7 1 2 3 3
3 5 5 A~成对比较阵 1 / 2 1 / 3 A是正互反阵 1 1 1 1
要由A确定C1,… , Cn对O的权向量
成对比较阵和权向量 成对比较的不一致情况
1 A 2
1/ 2 1
准则层对目标的成对比较阵
1 2 A 1/ 4 1/ 3 1/ 3 1/ 2 1 1/ 7 1/ 5 1/ 5 4 7 1 2 3 3 5 5 1 / 2 1 / 3 1 1 1 1 3
权向量(特征向量)w =(0.263,0.475,0.055,0.090,0.110)T
…Cn
…Bn … n
最大特征根 1
2
w2(3)
权向量
w1(3)
… wn(3)
组合权向量
k 1
第3层对第2层的计算结果 2 3 4 5
w
( 3) k
0.595 0.277 0.129
3.005 0.003
0.082 0.236 0.682
3.002 0.001
0.429 0.429 0.142
4)计算组合权向量(作组合一致性检验*)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、模型的假设1、假设我们所统计和分析的数据,都是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性和普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略.三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻.为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析和评价毕业生就业的若干主要因素,并将它们从主到次依秩排序.针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略.2、方法模型的建立(1)层次分析法层次分析法介绍:层次分析法是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题.特别是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法.通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重.这些权重在人的思维过程中通常是定性的,而在层次分析法中则要给出得到权重的定量方法.我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T.L.Saaty 教授提出的AHP 法. (2)具体计算权重的AHP 法AHP 法是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据计算成对比较矩阵的特征值获得权重向量k W .Step1. 构造成对比较矩阵 假设比较某一层k 个因素12,,,k C C C 对上一层因素ο的影响,每次两个因素i C 和j C ,用ij C 表示i C 和j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵.*()k k ij C C =,0ij C >,1ij jiC C=, 1ii C =.若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵.标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29i C 与j C 影响之比为上面ij a 的互反数Step2. 计算该矩阵的权重 通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就是i C 对ο的相对权重.由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ和相应的特征向量.Step3. 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max 1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高.2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得3)当0.1CR RI=<时,(CR 称为一致性比率,RI 是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断是满意的,此时的正互反矩阵称之为一致性矩阵.进入Step4. 否则说明矛盾,应重新修正该正互反矩阵.转入Step2.Step4. 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量. 计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了. (3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也是矩阵数学模型的重要应用价值. 因素往往是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的.一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面.这就是决策分析的数学模型的真正的意义之所在.定理1:对于三决策问题,假设第一层只有一个因素,即这是总的目标,决策总是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较.又假设第二层和第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =, 而第3层对第2层的全向量分别是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =,这表示第3层的权重大小,具体表示的是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标.那么显然,第三层的因素相对于第一层的因素而言,其权重应当是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=,这个矩阵的第一行是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就是三层(一般是方案层)中每一个因素相对总目标的量化指标.定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的是第1k -层中每个因素关于第一层总目标的权重向量.于是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWW w-=,实际上这是一个从左向右的递推形式的向量运算.逐个得出每一层的各个因素关于第一层总目标因素的权重向量. (4)灰色关联度综合评价法灰色系统的关联分析主要是对系统动态发展过程的量化分析,它是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大.关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优.因此,可利用关联序对所要评价的对象进行排序比较.利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标. 2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理.3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值.4)计算指标关联系数.其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=()()ik k x x -,1,2,i n =,1,2,k m =.式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差.ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0.5.5)确立层次分析模型.6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重.7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好. (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x 的关系是线性的,为研究他们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y y它们是在因素(1,2,,)i i p x =数值已经发生的条件下随机发生的.把第j 次观测的因素数值记为:12,,,jjpj x xx (1,2,j n =)那么可以假设有如下的结构表达式:1111011212201213011p pp pn nppy x x y x x y x xβββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩其中,01,,,pβββ是1p +个待估计参数,12,,,n εεε是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量.这就是多元线性回归的数学模型.若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,111212122212111p p n n np x xx x x x x xxx ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,012p βββββ⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为011p p y b b x b x =+++式中,012,,,,p b b b b 分别为01,,,pβββ的估计值.(6)主成分分析法 1)主成分的定义 设有p 个随机变量12,,,p x x x ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z z,称为初始向量的主成分.设12(,,,)Tp αααα=为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1TR ααα==,且记X =12(,,,)Tp X X X .2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =.*X=***12(,,)Tp X X X ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭为*X 的协方程.类似地,我们可对R 进行相应的分析.3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r r r rr X X r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭. 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥.将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==确定m 的方法是使前m 个主成分的累计贡献率达到85%左右.第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小和符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释.利用主成分可以进行以下分析:a) 对原指标进行分类; b) 对原指标进行选择; c) 对样品进行分类; d) 对样品进行排序; e) 预测分析.。

相关文档
最新文档