集合问题的类型与解法

合集下载

集合问题17则

集合问题17则

集合问题17则集合是数学中一个重要的概念,它是由一些确定的元素组成的整体。

在实际生活中,我们经常会遇到集合问题,如何正确地解决这些问题,是我们需要思考的问题。

本文将介绍17个常见的集合问题,并提供解答思路,有助于读者更好地理解和掌握集合问题的解法。

问题一:集合的定义集合是由一些确定的元素组成的整体,这些元素可以是数字、字母、图形等。

在数学中,我们用大括号{}表示一个集合,集合中的元素用逗号隔开。

例如,集合A={1,2,3,4}表示由1、2、3、4这四个元素组成的集合A。

问题二:集合的元素个数一个集合中元素的个数称为该集合的基数或元素个数。

用符号|A|表示集合A的元素个数。

例如,集合A={1,2,3,4}的元素个数为4,即|A|=4。

问题三:集合的子集如果一个集合A中的所有元素都是另一个集合B中的元素,则称集合A是集合B的子集。

用符号AB表示集合A是集合B的子集。

例如,集合A={1,2}是集合B={1,2,3,4}的子集。

问题四:集合的补集集合A对于它所在的全集U而言,未包含在集合A中的所有元素所组成的集合称为集合A的补集。

用符号A'表示集合A的补集。

例如,如果全集U={1,2,3,4},集合A={1,2},则集合A'={3,4}。

问题五:集合的交集两个集合A和B中共同存在的元素所组成的集合称为集合A和集合B的交集。

用符号A∩B表示集合A和集合B的交集。

例如,集合A={1,2,3},集合B={2,3,4},则集合A和集合B的交集为{2,3},即A∩B={2,3}。

问题六:集合的并集两个集合A和B中所有元素的集合称为集合A和集合B的并集。

用符号A∪B表示集合A和集合B的并集。

例如,集合A={1,2,3},集合B={2,3,4},则集合A和集合B的并集为{1,2,3,4},即A∪B={1,2,3,4}。

问题七:集合的差集集合A中除去与集合B的交集中的元素所组成的集合称为集合A 和集合B的差集。

集合含参问题的归纳及解法

集合含参问题的归纳及解法

集合含参问题的归纳及解法1. 什么是集合含参问题?好嘞,咱们今天聊聊集合含参问题,别担心,听起来复杂,其实就是个“调皮的小问题”。

首先,集合含参问题,顾名思义,就是在某个集合里,咱们要处理带参数的元素。

这就像是你在买衣服时,不仅要考虑款式,还得看看尺寸,颜色,这些都是参数,对吧?在数学里也是如此,咱们得考虑元素的各种属性。

就拿学校的班级来说,班级里的每一个小朋友都是集合里的元素,而他们的年龄、性别、爱好等等,就是那些让他们各具特色的参数。

想象一下,你去参加一个聚会,聚会里有各种各样的人。

有的爱唱歌,有的爱跳舞,还有的喜欢讲笑话。

这些“爱好”就是他们的参数,决定了他们在聚会中的角色。

集合含参问题就是要找到这些角色,了解它们是怎么工作的。

简而言之,就是把“人”放到“集合”里,然后分析他们的参数,看看能碰撞出怎样的火花。

2. 集合含参问题的特点2.1 多样性说到集合含参问题,首先映入脑海的就是多样性。

就像春天的花园,五颜六色的花朵争奇斗艳。

不同的集合有不同的特点,参数也是各式各样,真是让人眼花缭乱!比如说,你有一个水果集合:苹果、香蕉、橙子。

它们的颜色、味道、营养价值都不一样,这些都是参数。

处理这些问题时,咱们得考虑到各种因素,才能找到最合适的解决方案。

2.2 复杂性其次,复杂性也是个重要的特点。

说实话,集合含参问题就像做大菜一样,越复杂的菜,步骤越多,调料越杂。

想要把所有参数都考虑进去,简直是难上加难!有时候,咱们可能需要借助一些数学工具,比如集合论、概率论,甚至是图论,来帮助我们理清头绪。

可别怕,慢慢来,总能找到头绪的。

3. 如何解决集合含参问题3.1 确定目标那么,解决这些问题的第一步是什么呢?那就是确定目标!就像你去旅行前,得先决定去哪里,不然到时候就成了“东跑西颠”,毫无头绪。

明确你要解决的问题,或者说,想要找出哪些参数之间的关系,这样才能有的放矢,事半功倍。

3.2 选择工具接下来,咱们得选择合适的工具。

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。

集合的基本运算例题讲解

集合的基本运算例题讲解

1集合的基本运算例题讲解题型一 并集运算一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作B A ,读作“A 并B ”.即{}B x A x x B A ∈∈=或, .求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.例1. 已知集合{}31≤≤∈=x N x A ,{}5,4,3,2=B ,则=B A 【 】 (A ){}2 (B ){}3,2(C ){}5,4,3,2 (D ){}5,4,3,2,1 分析:将一个用描述法表示的集合转化为用列举法表示时,一定要弄清代表元素的含义或特征.求两个集合的并集运算时,可以按照并集的定义进行,也可以用Venn 图求解或借助于数轴求解.解:∵{}{}3,2,131=≤≤∈=x N x A∴=B A {}{}{}5,4,3,2,15,4,3,23,2,1= . 选择【 D 】.例2. 已知集合{}1≥=x x A ,{}0322<--=x x x B ,则=B A ____________. 分析:先解一元二次不等式0322<--x x ,求出集合B ,然后把集合A 、B 在数轴上画出来,它们对应图形所覆盖的全部范围即为B A . 解:∵{}{}310322<<-=<--=x x x x x B ∴=B A {}{}{}1311->=<<-≥x x x x x x .例3. 已知集合{}m A ,3,1=,{}m B ,1=,若A B A = ,则m 等于【 】 (A )0或3 (B )0或3 (C )1或3 (D )1或3分析:{}m B ,1=,由集合元素的互异性,得1≠m ,排除C 、D 选项. 因为A B A = ,根据并集的性质,所以A B ⊆,这样就将两个集合的并集运算转化为了这两个集合之间的关系,从而可以确定参数的值或取值范围. 解:∵A B A = ,∴3=m 或m m =当m m =时,解之得:0=m (1=m 不符合题意,舍去) 综上,3=m 或0=m .例 4. 已知集合{}012≤-=x x P ,{}a M =,若P M P = ,则实数a 的取值范围是__________.分析:∵P M P = ,∴P M ⊆. 解:{}{}11012≤≤-=≤-=x x x x P ∵P M P = ,∴P M ⊆,∴P a ∈ ∴实数a 的取值范围是{}11≤≤-a a .例5. 已知集合{}x A ,3,2,1=,{}2,3x B =,且{}x B A ,3,2,1= ,求x 的值. 分析:由题意可知:A B A = ,所以A B ⊆,从而A x ∈2,且32≠x . 解:分为三种情况:①当12=x 时,解之得:1-=x (1=x 不符合题意,舍去); ②当22=x 时,解之得:2±=x ; ③当x x =2时,解之得:0=x . 综上所述,x 的值为0或2±或1-.注意:在求参数的值时,参数的值要满足集合元素的互异性.例6. 已知集合{}32>-=x x A ,{}a x x x B ->-=332,求B A . 分析:对于含参集合参与的集合运算,要注意分类讨论.解:{}{}532>=>-=x x x x A ,{}{}3332-<=->-=a x x a x x x B . 当3-a ≤5,即a ≤8时,{}53>-<=x a x x B A 或 ; 当53>-a 时,即8>a 时,=B A R .a例7.(易错题)已知集合{}1,1-=A ,{}1==mx x B ,且A B A = ,求由m 的取值构成的集合.分析:因为A B A = ,所以A B ⊆.由于集合B 是一个含参集合,所以要对集合B 分∅=B 和∅≠B 两种情况进行讨论. 解:∵A B A = ,∴A B ⊆. 当0=m 时,∅=B ,满足A B ⊆;当0≠m 时,{}11-=⎭⎬⎫⎩⎨⎧==m x x B 或{}1=B :①若{}1-=B ,则11-=m,解之得:1-=m ; ②若{}1=B ,则11=m,解之得:1=m . 综上所述,m 的取值构成的集合为{}1,0,1-.例8. 设集合{}52<<-=x x M ,{}122+<<-=t x t x N ,若M N M = ,则实数t 的取值范围是__________.分析:先将并集运算的结果M N M = 转化为两个集合M , N 之间的关系M N ⊆,从而列出关于参数t 的不等式(组)求解.注意含参集合的分类讨论. 解:∵M N M = ,∴M N ⊆. 分为两种情况:①当∅=N 时,有t -2≥12+t ,解之得:t ≤31;②当∅≠N 时,则有:⎪⎩⎪⎨⎧≤+-≥-+<-51222122t t t t ,解之得:t <31≤2. 综上所述,实数t 的取值范围是{}2≤t t .警示:在解决本题时,任意忽略∅=N 的情况,另外要注意端点值能否取到.例9. 已知集合{}2,1-=A ,{}01>+=mx x B ,若B B A = ,求实数m 的取值范围. 分析:注意本题与例7的区别. 解:∵B B A = ,∴B A ⊆. 分为三种情况:①当0=m 时,01>恒成立,∴{}=>+=01mx x B R ,满足B A ⊆;②当0>m 时,{}⎭⎬⎫⎩⎨⎧->=>+=m x x mx x B 101,有11-<-m ,解之得:1<m∴10<<m ;③当0<m 时,{}⎭⎬⎫⎩⎨⎧-<=>+=m x x mx x B 101,有21>-m ,解之得:21->m∴021<<-m . 综上所述,实数m 的取值范围是⎭⎬⎫⎩⎨⎧<<-121m m .题型二 交集运算一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A 与集合B 的交集,记作B A ,读作“A 交B ”.{}B x A x x B A ∈∈=且, .求交集的方法(1)求两个有限集的交集 按照交集的定义进行计算,但要特别注意一定要找出两个集合中的所有公共元素.(或可借助于Venn 图)(2)求两个无限集的交集 借助于数轴进行计算.两个集合的解集等于这两个集合在数轴上对应的图形所覆盖的公共范围.例10. 设集合{}01>+∈=x Z x A ,集合{}02≤-=x x B ,则=B A 【 】 (A ){}21<<-x x (B ){}21≤<-x x (C ){}2,1- (D ){}2,1,0分析:在进行集合的运算之前,要先弄清楚各个集合的本质.本题中集合A 的代表元素x 为整数,所以集合A 为1->x 范围内的整数集.解:∵{}{}101->∈=>+∈=x Z x x Z x A ,{}{}202≤=≤-=x x x x B ∴=B A {}{}2,1,021=≤<-∈x Z x . 选择【 D 】.例11. 设集合{}21<≤-=x x A ,{}a x x B <=,若∅≠B A ,则实数a 的取值范围是__________.分析:∅≠B A 说明集合A 、B 有公共元素,在数轴上集合A 、B 所对应的图形覆盖的区域有公共部分. 解:{}1->a a .1例12. 设集合{}52<<-=x x M ,{}122+<<-=t x t x N ,若N N M = ,求实数t 的取值范围.分析:若N N M = ,则由交集的性质知M N ⊆,在得到这两个集合之间的关系后借助于数轴就可以列出不等式(组)进行求解了. 解:∵N N M = ,∴M N ⊆. 分为两种情况:①当∅=N 时,满足M N ⊆,有t -2≥12+t ,解之得:t ≤31;②当∅≠N 时,则有:⎪⎩⎪⎨⎧≤+-≥-+<-51222122t t t t ,解之得:t <31≤2.综上所述,实数t 的取值范围是{}2≤t t .★例13.(易错题)设集合{}R x x y y A ∈+==,12,{}R x x y y B ∈+==,1,则B A 等于【 】(A ){}1≥y y (B ){}2,1 (C )()(){}2,1,1,0 (D )∅错解:解方程组⎩⎨⎧+=+=112x y x y 得:⎩⎨⎧==10y x 或⎩⎨⎧==21y x ,故选【 C 】.错因分析:这里好多学生认为是求抛物线12+=x y 和直线1+=x y 的交点坐标所构成的集合,根源在于没有搞清楚集合A , B 的本质,没有弄清楚集合的代表元素的特征.分析:本题中的两个集合都是由函数值构成的,它们的代表元素是函数值y .B A 表示函数12+=x y 和函数1+=x y 的函数值的交集. 解:∵{}{}1,12≥=∈+==y y R x x y y A ,{}=∈+==R x x y y B ,1R . ∴{} 1≥=y y B A R {}1≥=y y . 选择【 A 】.变式: 设集合(){}1,2+==x y y x A ,(){}1,+==x y y x B ,则B A 等于【 】 (A ){}1≥y y (B ){}2,1 (C )()(){}2,1,1,0 (D )∅例14. 已知集合(){}1,22=+=y x y x A ,集合(){}x y y x B ==,,则B A 中元素的个数为【 】(A )3 (B )2 (C )1 (D )0解:解方程组⎩⎨⎧==+xy y x 122得:⎪⎪⎩⎪⎪⎨⎧==2222y x 或⎪⎪⎩⎪⎪⎨⎧-=-=2222y x ∴B A ⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=22,22,22,22,共有2个元素.选择【 B 】. 方法二:由后面的学习可以知道,方程122=+y x 是单位圆的方程(以原点为圆心,以1为半径的圆).集合A 是由圆122=+y x 上的所有点构成的,集合B 是由直线x y =上的所有点构成的,所以B A 就是由单位圆与直线的交点构成的,如图所示,交点有两个,故B A 中元素的个数为2.例15.(2018沈阳重点高中)设集合{}52≤≤-=x x A ,{}121-≤≤+=m x m x B . (1)若{}52≤≤-∈=x Z x A ,求A 的非空真子集的个数; (2)若B B A = ,求实数m 的取值范围. 分析:(1)子集、真子集个数的确定 若集合A 含有n 个元素,则集合A : (1)含有n 2个子集; (2)含有12-n 个非空子集; (3)含有12-n 个真子集; (4)含有22-n 个非空真子集.(2)若B B A = ,则A B ⊆,注意分类讨论. 解:(1){}{}5,4,3,2,1,0,1,2-52-=≤≤-∈=x Z x A∵集合A 中含有8个元素∴集合A 的非空真子集的个数为2542-28=; (2)∵B B A = ,∴A B ⊆. 分为两种情况:①当∅=B 时,满足A B ⊆,有121->+m m ,解之得:2<m ; ②当∅≠B 时,则有:⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解之得:2≤m ≤3. 综上所述,实数m 的取值范围是{}3≤m m .例16. 设{}042=+=x x x A ,(){}011222=-+++=a x a x x B ,其中∈x R ,如果B B A = ,求实数a 的取值范围. 解:{}{}4,0042-==+=x x x A ∵B B A = ,∴A B ⊆ 分为两种情况:①当∅=B 时,满足B B A =∴()[]()0141222<--+=∆a a ,解之得:1-<a ;②当∅≠B 时,{}0=B 或{}4-=B 或{}4,0-=B .若{}0=B 或{}4-=B ,则有()[]()0141222=--+=∆a a ,解之得:1-=a经检验,此时{}0=B ;若{}4,0-=B ,则由根与系数的关系定理可得:()⎩⎨⎧=--=+-014122a a ,解之得:1=a . 综上所述,实数a 的取值范围是{}11-≤=a a a 或.例17. 设集合{}3+≤≤=a x a x A ,{}51>-<=x x x B 或,若∅=B A ,求实数a 的取值范围.分析:对于任意实数a ,都有3+<a a ,所以本题中集合A 不会是空集. 解:∵3+<a a ,∴∅≠A . ∵∅=B A∴⎩⎨⎧≤+-≥531a a ,解之得:1-≤a ≤2. ∴实数a 的取值范围是{}21≤≤-a a .★★例18.(综合性强)已知集合()(){}011222>++++-=a a y a a y y A ,集合⎭⎬⎫⎩⎨⎧≤≤+-==30,25212x x x y y B ,若∅=B A :(1)求实数a 的取值范围;(2)当ax x ≥+12恒成立时,求a 的最小值.分析:(1)求集合A 时要解含参一元二次不等式,可借助于因式分解:()()()()()()()()()[]11111122222222+--=-+--=++-+-=++++-a y a y a y a a y y a a ay a y y a a y a a y对于集合B ,代表元素是y ,所以集合B 是函数值的集合,通过配方得:()2121252122+-=+-=x x x y ∵0≤x ≤3,∴2≤y ≤4,∴{}42≤≤=y y B ;(2)这是与二次函数有关的恒成立问题,使用数形结合方法.解:(1)()(){}()()[]{}010112222>+--=>++++-=a y a y y a a y a a y y A∵04321122>+⎪⎭⎫ ⎝⎛-=-+a a a (这里作差比较12+a 与a 的大小)∴a a >+12∴{}12+><=a y a y y A 或.{}4230,25212≤≤=⎭⎬⎫⎩⎨⎧≤≤+-==y y x x x y y B∵∅=B A∴⎩⎨⎧≥+≤4122a a ,解之得:a ≤3-或3≤a ≤2. ∴实数a 的取值范围是{}233≤≤-≤a a a 或; (2)∵ax x ≥+12恒成立,即12+-ax x ≥0恒成立. ∴()42--=∆a ≤0,解之得:2-≤a ≤2.∴a 的最小值为2-.(雅慧,通过这道题你勇敢地挑战一下自己)题型三 补集运算全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U .补集 对于一个集合A ,由全集U 中不属于A 的所有元素组成的集合称为集合A相对于全集U 的补集,简称集合A 的补集,记作C U A ,即C U A {}A x U x x ∉∈=且,.补集的性质①(C U A )U A = ; ②(C U A )∅=A ; ③ C U (C U A )A =; ④ C U U ∅=; ⑤ C U U =∅.例19. 已知全集{}60<<=x x U ,集合{}a x x A <<=1,若C U A U ≠,则实数a 的取值范围是__________.分析: C U A U ≠说明∅≠A ,且U A ⊆. 解:∵C U A U ≠,∴∅≠A ,且U A ⊆. ∴实数a 的取值范围是{}61≤<a a .例20. 已知全集{}5,4,3,2,1=U ,集合{}042=++=px x x A ,求C U A . 分析:集合A 是由方程042=++px x 的解构成的,而方程042=++px x 可能无解、有两个不相等的实数根或有两个相等的实数根,需要分类讨论. 解:由题意可知:U A ⊆.分为两种情况:①当∅=A 时,方程无实数根,∴0162<-=∆p ,解之得:44<<-p ∴C U A =C U ∅{}5,4,3,2,1==U ;②当∅≠A 时,则有162-=∆p ≥0,解之得:p ≤4-或p ≥4. 设方程042=++px x 的两个实数根分别为21,x x 由根与系数的关系定理可得:421=x x :若4,121==x x ,则5-=p ,符合题意,此时{}4,1=A ,C U A {}5,3,2=; 若221==x x ,则4-=p ,符合题意,此时{}2=A ,C U A {}5,4,3,1=. 综上所述,当44<<-p 时,C U A ={}5,4,3,2,1;当5-=p 时,C U A {}5,3,2=;当4-=p 时,C U A {}5,4,3,1=.例21. 已知{}31≤<-=x x A ,{}m x m x B 31+<≤=. (1)当1=m 时,求B A ;(2)若⊆B C R A ,求实数m 的取值范围.分析:(1)求两个连续型实数集合的并集时,借助于数轴进行求解能将抽象的问题直观化,但要特别注意端点的实心和空心以及端点值的取舍;(2)求连续型实数集合的补集也是借助于数轴进行.解:(1)当1=m 时,{}{}4131<≤=+<≤=x x m x m x B ∴{}{}{}414131<<-=<≤≤<-=x x x x x x B A ; (2)∵{}31≤<-=x x A ,∴C R A {}31>-≤=x x x 或 ∵⊆B C R A ,∴分为两种情况:①当∅=B 时,有m ≥m 31+,解之得:m ≤21-; ②当∅≠B 时,则有:⎩⎨⎧-≤++<13131m m m 或⎩⎨⎧>+<331m mm解之得:无解或3>m .综上,实数m 的取值范围是⎭⎬⎫⎩⎨⎧>-≤321m m m 或.★例22. 设全集(){}R y R x y x I ∈∈=,,,()⎭⎬⎫⎩⎨⎧=--=123,x y y x A ,(){}1,+==x y y x B ,求C I A B .解:()(){}2,1,123,≠+==⎭⎬⎫⎩⎨⎧=--=x x y y x x y y x A ∴集合A 是由直线1+=x y 上除点()3,2外的所有点构成的集合 ∴C I A =(){}3,2 ∵(){}1,+==x y y x B∴集合B 是由直线1+=x y 上所有的点构成的集合 ∴C I A =B (){}3,2. 附:函数123=--x y ,即1+=x y ()2≠x 的图象如图所示.例23. 设全集{}32,3,22-+=a a U ,{}2,12-=a A ,C U A {}5=,求实数a 的值. 分析:∵C U A U ⊆,∴U ∈5,∴5322=-+a a .还要注意U A ⊆. 解:∵{}32,3,22-+=a a U ,C U A {}5= ∴5322=-+a a整理得:0822=-+a a ,解之得:4,221-==a a .U4321B A 852917643B AU当2=a 时,{}3,2=A ,满足题意; 当4-=a 时,{}9,2=A ,不满足题意. 综上,实数a 的值为2.例24. 设全集{}*,10N x x x U ∈<=,U B U A ⊆⊆,,( C U B ){}9,1=A ,{}3=B A , ( C U A ) ( C U B ){}7,6,4=,求集合A , B . 分析:本题条件较多,考查集合的综合运算.重要结论如图所示,集合A , B 将全集U 分成了四部分,这四部分用集合表示如下: (1)①表示B A ; (2)②表示 A (C U B ); (3)③表示 B (C U A ); (4)④表示(C U A ) (C U B ).德·摩根定律(1)C U ()=B A (C U A ) (C U B ); (2)C U ()=B A (C U A ) (C U B ).解法一:{}{}9,8,7,6,5,4,3,2,1*,10=∈<=N x x x U ∵( C U A ) ( C U B ){}7,6,4=,∴C U ()=B A {}7,6,4∴{}9,8,5,3,2,1=B A ∵( C U B ){}9,1=A ∴=B {}8,5,3,2∵{}3=B A ,∴{}9,3,1=A . 解法二:由题意作出Venn 图如图所示:由图可知:{}9,3,1=A ,{}8,5,3,2=B .例25. 已知全集=U R ,集合{}0,,32≠∈-==x R x x y y A 且,集合⎭⎬⎫⎩⎨⎧-+-==x x y x B 522,集合{}a x a x C <<-=5.(1)求集合 A ( C U B );(2)若()B A C ⊆,求实数a 的取值范围.分析:先来确定集合A , B 的本质:集合A 是函数()032≠-=x x y 的函数值构成的集合,即函数()032≠-=x x y 的值域;集合B 是使函数xx y -+-=522有意义的自变量的值构成的集合.解:{}{}{}330,,32<=<=≠∈-==x x y y x R x x y y A 且.{}52522<≤=⎭⎬⎫⎩⎨⎧-+-==x x x x y x B .∴C U B {}52≥<=x x x 或 ∴ A ( C U B ){}53≥<=x x x 或; (2)由(1)可知:{}32<≤=x x B A ∵()B A C ⊆,∴分为两种情况:①当∅=C 时,满足()B A C ⊆,有a -5≥a ,解之得:a ≤25; ②当∅≠C 时,则有:⎪⎩⎪⎨⎧≤≥-<-3255a a aa ,解之得:a <25 ≤3.综上所述,实数a 的取值范围是{}3≤a a .例26. 若{}0232=+-=x x x A ,{}012=-+-=a ax x x B ,{}022=+-=mx x x C ,且C C A A B A == ,,求a 的值和m 的取值范围.分析:设置本题的目的是帮助雅慧复习由集合间的基本关系确定参数的值或取值范围.本题要先将三个集合之间的运算及其结果转化为集合之间的关系:因为C C A A B A == ,,∴A C A B ⊆⊆,.本来由A B ⊆需要对集合B 分两种情况进行讨论,但考虑到集合B 中的方程结构比较复杂,所以先判断一下方程012=-+-a ax x 的根的情况: ∵()()()22224414-=+-=---=∆a a a a a ≥0∴方程012=-+-a ax x 总有两个实数根.也因此,在处理关系A B ⊆时,一定有∅≠B ,不再对集合B 进行分类讨论. 解:{}{}2,10232==+-=x x x A{}()()[]{}011012=---==-+-=a x x x a ax x x B ∴集合B 中必含有元素1,∴∅≠B . ∵A B A = ,∴A B ⊆.①当11=-a ,即2=a 时,{}1=B ,符合题意;②当21=-a ,即3=a 时,{}2,1=B ,符合题意. 综上,a 的值为2或3.∵C C A = ,∴A C ⊆,分为两种情况:①当∅=C 时,满足A C ⊆,有()082<--=∆m ,解之得:2222<<-m ;②当∅≠C 时,则{}1=C 或{}2=C 或{}2,1=C :若{}1=C 或{}2=C ,则()082=--=∆m ,解之得:22±=m .经检验,当22±=m 时,{}2=C 或{}2-=C ,不符合题意,舍去;若{}2,1=C ,则由根与系数的关系定理可得:⎭⎬⎫⎩⎨⎧⨯=+=21221m ,解之得:3=m ,符合题意.综上所述,m 的取值范围是2222<<-m 或3=m .题型四 补集思想的应用(正难则反)对于某些问题,如果从正面求解比较困难,则可考虑先求解问题的反面,采用“正难则反”的解题策略.具体地说,就是将研究对象的全体实为全集,求出使问题反面成立的集合A ,则A 的补集即为所求.补集思想的原理或依据是:C U (C U A )A =.例27. 已知集合{}R x m mx x x A ∈=++-=,06242,{}0<=x x B ,若∅≠B A ,求实数m 的取值范围.分析:集合A 是方程06242=++-m mx x 的实数根构成的集合,∅≠B A 意味着方程有负根,则方程的根有以下三种情况:①两负根;②一负根,一零根;③一负根,一正根.分别求解相当麻烦.如果考虑∅≠B A 的反面∅=B A ,先求方程无实数根或两根均非负时m 的取值范围,然后再用补集思想求解∅≠B A 时m 的取值范围解:若∅=B A ,则分为两种情况:①当∅=A 时,()()062442<+--=∆m m ,解之得:231<<-m ; ②当∅≠A 时,方程06242=++-m mx x 的两个实数根均为非负数,则有:()()⎪⎩⎪⎨⎧≥+≥≥+--=∆06204062442m m m m ,解之得:m ≥23. 综上所述,当1->m 时,∅=B A .∴当∅≠B A 时,实数m 的取值范围是{}1-≤m m .结论:一元二次方程()002≠=++a c bx ax 有两个非负实数根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥=⋅≥-=+≥∆0002121ac x x a b x x .例28. 已知集合{}a y a y y A <+>=或12,{}42≤≤=y y B ,若∅≠B A ,求实数a 的取值范围.解:当∅=B A 时,则有:⎩⎨⎧≥+≤4122a a ,解之得:a ≤3-或3≤a ≤2. ∴当∅=B A 时,实数a 的取值范围是{}233≤≤-≤a a a 或. ∴当∅≠B A 时,实数a 的取值范围是{}332<<->a a a 或.例29. 若集合{}0232=++=x ax x A 中至多有1个元素,则实数a 的取值范围是__________.分析:题目要求“至多有1个元素”,若采取分类讨论的方法,求解比较麻烦,可考虑用补集思想解决问题.本题中集合A 至多有1个元素的反面是集合A 有两个元素,即方程0232=++x ax 有两个不相等的实数根.解:当集合A 中有两个元素时,方程0232=++x ax 有两个不相等的实数根,则有:⎩⎨⎧>-=∆≠0890a a ,解之得:89<a 且0≠a ∴集合A 中有两个元素时实数a 的取值范围是⎭⎬⎫⎩⎨⎧≠<089a a a 且.∴集合A 中至多有1个元素时实数a 的取值范围是⎭⎬⎫⎩⎨⎧=≥089a a a 或.总结:求集合运算中参数的思路(1)将集合中的运算关系转化为两个集合之间的关系;(2)将集合之间的关系转化为方程(组)或不等式(组)是否有解、或解集为怎样的范围; (3)解方程(组)或不等式(组)来确定参数的值或取值范围. 题型五 集合中元素的个数若集合A 为有限集,则用card(A )表示集合A 中元素的个数. 如果集合A 中含有m 个元素,那么有card(A )m =. (1)一般地,对于任意两个有限集合A , B ,有 card ()=B A card(A )+card(B )-card ()B A . (2)一般地,对于任意三个有限集合A , B , C ,有card ()=C B A card(A )+card(B )-card ()B A -card ()C A -card ()C B + card ()C B A .。

三集合容斥原理问题

三集合容斥原理问题

行测数学运算技巧:三集合容斥原理问题的解决方法容斥原理类型是目前国家、各地区公务员考试数学运算的“常客”题型,对于大部分应试者来说,还是比较头痛的一种类型。

这里我们介绍一下三集合容斥原理问题的解决方法。

1、三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C2、三个集合的容斥关系(三元)例题:假设有100人参加了三个兴趣小组。

其中参加数学兴趣小组的有55人,参加语文兴趣小组的有65人,参加英语兴趣小组的有70人,同时参加语文和数学兴趣小组的人数是31人,同时参加数学和英语兴趣小组的人数是40人,同时参加语文和英语兴趣小组的有25人,则三个兴趣小组都参加的人数是多少人?(1) A+B+T=至少参与一项的总人数(无重叠)(2) A+2B+3T=至少参与一项的总人数(含重叠部分)(3) B+3T=至少参与两项的总人数(含重叠)(4) T三项都参与的人数。

这里介绍一下A、B、T分别是什么A=x+y+z;表示只参加一个兴趣小组的人数,在图中反应的区域就是每个圆圈互不重叠的部分。

B=a+b+c;表示仅参加了两个兴趣兴趣小组的人数,是图中两两相交的部分总和(不含中间的T区域)T=全部都参加的人数。

也就是图形当中最中间的部分T。

例题通过公式有如下解法:(1) A+B+T=100;(2) A+2B+3T=55+65+70=190(3) B+3T=31+40+25=96实际上我们要求的是T, (1)+(3)-(2)=T。

即得到答案T=100+96-190=63、三元容斥公式应用实例三元容斥涉及的对象比较多。

我们通常建议考生根据不同提问情况区别对待。

本小节先对一般情况的题目做一些分析。

例:如图所示,X、Y、Z分别是面积为64、180、160的三个不同形状的纸片,覆盖住桌面的总面积是290,其中X与Y、Y与Z、Z与X重叠部分的面积依次是24、70、36,那么阴影部分的面积是:【09国考】A.15B.16C.14D.18【解析】参考答案为B。

七、集合问题

七、集合问题

七、集合问题同学们,在我们以前遇到的求和问题时,只要直接相加就可以得出答案。

但是有的求和问题却不能直接相加,这样的问题有什么特点?应如何解决呢?下面带着这些问题开始今天的研究。

例1 有长8厘米,宽6厘米的长方形与边长4厘米的正方形,如右图放在桌面上(阴影是两图形重叠部分)你能求出这两个图形盖住桌面的面积吗?请你们分组讨论一下小红和小力的方法谁的对呢?从中不难看出,图中阴影部分是两个图形的重叠部分。

如果直接用8×6+4×4=64(平方厘米),那么阴影部分就多算了一次,所以要将这块面积减掉。

所以这两个图形盖住桌面的面积应该是:8×6+4×4-2×2=60(平方厘米)通过上面这个例子,不难看出这类问题特点是两部分有重复(交叉),这时在计算总数时可以把两部分求和,然后再减去重叠部分。

练一练:1.用两块圆形磁片镶嵌成一个图案(如下图)。

请你计算出这个图案的面积?(单位:平方厘米)2.四(1)班的全体同学参加音乐和美术小组。

参加音乐小组的18人,美术小组24人,两个小组都参加的有12人,四(1)班共有学生多少人?例2 四(1)班有35人参加了音乐和美术小组,参加音乐小组的20人,美术小组的26人,两个小组都参加的有多少人?我们可以用图来表示(如下图)。

同学们,你们知道中间阴影部分表示什么呢?两圆相交的部分(即阴影部分)表示两个小组都参加的人数。

如果把20和26相加,那么阴影部分所包含的人数就被加了两次,结果比35人多出来的人数正好是两个小组都参加的人数,即:两个小组都参加的人数=(参加音乐小组人数+参加美术小组人数)-参加两个小组总人数:(26+20)-35=11(人)答:两个小组都参加的有11人。

练一练:1.在秋游中,有28人玩了过山车、海盗船两种游戏,其中玩过山车的有14人,玩海盗船的20人,两种游戏都玩的有多少人?2.有100位游客,其中10人既不懂英语,又不懂俄语,有75人懂英语,85人懂俄语,既懂英语又懂俄语的有几人?例3四年级一班有学生40人,期末语文成绩评优的有17人,数学成绩评优的有13人,两科都评优的有8人,两科都没评优的有多少人?在全班40人中,有语文一科评优的;有数学一科评优的;有语文、数学两科都评优的;有两科都没评优的。

高中数学必备技巧解集合问题

高中数学必备技巧解集合问题

高中数学必备技巧解集合问题在高中数学中,集合是一个非常重要的概念,涉及到很多问题的解答。

本文将介绍一些高中数学中解集合问题的必备技巧和方法。

一、集合的基本概念在解集合问题之前,我们首先来回顾一下集合的基本概念。

集合是由一些确定的元素组成的整体,元素的概念可以是数字、字母、图形、事物等等。

集合的表示通常用大写字母表示,而具体的元素则用小写字母表示。

例如,集合A={1,2,3,4},表示A是由1、2、3和4这几个元素组成的集合。

集合间的关系有三种:相等、包含和交集。

当两个集合的元素完全相同时,它们是相等的;当一个集合中的所有元素都属于另一个集合时,前者包含于后者;当两个集合中都有的元素构成的集合称为它们的交集。

这些关系是解集合问题时非常重要的基础。

二、求解集合问题的技巧1. 列举法当我们给出一个集合问题时,一种常见的解法是使用列举法。

其基本思路就是将集合中的元素逐个罗列出来,根据问题的要求进行归类、交集运算等等。

列举法在解决一些简单的集合问题时非常有效。

例如,如果有两个集合A={1,2,3}和B={3,4,5},要求求出它们的交集和并集,我们可以先将两个集合的元素列举出来,然后进行比较:交集:{3},即A和B中共有的元素;并集:{1,2,3,4,5},即A和B中所有的元素。

2. Venn图法Venn图是一种常用的解决集合问题的图形表示方法。

它采用圆形或椭圆形表示集合,通过在图中标注对应的元素来表示集合的关系。

Venn图非常直观,能够清晰地展示出集合的交集、并集等关系。

假设有两个集合A和B,我们可以画出两个圆表示它们,并在对应的区域内标注各自的元素。

如果要求求出两个集合的交集,即A和B共有的元素,我们可以标注在两个圆的交集区域内。

同样地,如果要求求出并集,即A和B所有的元素,我们可以将两个圆都标注上。

3. 区间法在解决一些涉及到数值大小的集合问题时,可以使用区间法。

区间法将数轴划分为几个不同的部分,每个部分都代表一个集合。

集合的概念与运算例题及答案

集合的概念与运算例题及答案

集合的概念与运算例题及答案1 集合的概念与运算(一)目标:1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点:1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__ 3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数,∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法何时用描述法},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗 }1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈,⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合问题的类型与解法我们知道,集合问题是近几年高考的热点问题之一,基本上是每卷必有集合问题的一个五分小题;从题型上看为选择题或填空题,难度系数较低。

纵观近几年的高考试题,集合问题归结起来主要包括:①集合元素的问题;②集合与集合的关系问题;③集合的运算问题;④集合的新概念问题等几种类型。

各种类型结构上具有各自的特征,解答方法也各不相同,那么在解答集合问题时,到底应该如何抓住问题的结构特征,快捷,准确地解答问题呢?下面通过典型例题的详细解析来回答这个问题。

【典例1】解答下列问题:1、(1)已知集合A={(x,y)|2x+2y=1},B={(x,y)|y=x},则A∩B中元素的个数为()A 3B 2C 1D 0(2)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A 1B 2C 3D 4【解析】【知识点】①集合表示的基本方法;②交集的定义,性质与运算方法;③集合元素的定义与性质。

【解题思路】(1)运用交集的运算方法,结合集合的表示方法,通运算求出A∩B,利用元素的性质就可得出选项;(2)运用交集的运算方法,结合集合的表示方法,通运算求出A∩B,利用元素的性质就可得出选项。

【详细解答】(1)如图,Q由2x+2y=1,得x=2,y=x,y=2,或,∴A∩B={),(,)}y=-2,⇒B正确,∴选B;(2)Q A∩B={2,4},⇒B正确,∴选B。

2、已知集合A={1,2},B={a,2a+3},若A∩B={1},则实数a的值为;【解析】【知识点】①集合表示的基本方法;②交集的定义,性质与运算方法;③集合相等的定义与性质;④方程的定义与解法。

【解题思路】运用交集的运算方法和集合的表示方法,结合问题条件可知1∈B,由2a+3 ≥3,从而得到a=1。

【详细解答】Q A∩B={1},∴1∈B,Q2a+3 ≥3,∴a=1。

3、设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A 6B 5C 4D 3【解析】【知识点】①集合表示的基本方法;②交集的定义,性质与运算方法;③集合元素的定义与性质。

【解题思路】运用交集的运算方法和集合的表示方法,结合问题条件通过运算求出A∩Z,利用元素的性质就可得出选项。

【详细解答】Q A={x|1≤x≤5},Z为整数集,∴A∩Z={1,2,3,4,5},⇒B正确,∴选B。

4、设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A 3B 4C 5D 6【解析】【知识点】①集合表示的基本方法;②集合元素的定义与性质。

【解题思路】运用集合的表示方法,结合问题条件,求出集合M,利用元素的性质就可得出选项。

【详细解答】Q1+4=5,1+5=6,2+4=6,2+5=7,3+4=7,3+5=8,∴ M={x|x=a+b,a∈A,b ∈B}={5,6,7,8},⇒B正确,∴选B。

5、(1)已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A -2iB 2iC -4iD 4i(2)若集合A={x∈R|a2x+ax+1=0}中只有一个元素,则a=()A 4B 2C 0D 0或4【解析】【知识点】①集合表示的基本方法;②交集的定义,性质与运算方法;③复数的定义与运算;④一元二次方程的定义与解法;⑤参数分类的原则与方法。

【解题思路】(1)设Z=a+bi,运用交集的运算方法和集合的表示方法,结合问题条件可得zi=4,利用复数的运算方法,结合问题条件求出a,b的值就可得出选项;(2)运用集合的表示方法,结合问题条件可知方程a2x+ax+1=0只有一个根,利用参数分类的原则和方法,分情况求出a的值就可得出选项。

【详细解答】(1)Z=a+bi,Q集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},∴ zi=(a+bi)i=ai+b2i=-b+ai=4,⇒-b=4,a=0,⇒b=-4,a=0,∴Z=-4i,⇒C正确,∴选C;(2)Q集合A={x∈R|a2x+ax+1=0}中只有一个元素,∴方程a2x+ax+1=0只有一个根,①当a=0时,a2x+ax+1=0⇔1=0,显然等式不成立,此时无解;②当a≠0时,Q方程a2x+ax+1=0只有一个根,∴∆=2a-4a=0,⇒ a=0或a=4,Q a≠0,∴ a=4,∴综上所述,当集合A={x∈R|a2x+ax+1=0}中只有一个元素时,a=4,⇒A正确,∴选A。

6、设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x |x≥a-1},若A∪B=R,则a的取值范围为()A (-∞,2)B (-∞,2〕C (2,+∞)D 〔2,+∞)【解析】【知识点】①集合表示的基本方法;②并集的定义,性质与运算方法;③不等式的定义与解法;④参数分类的原则与基本方法。

【解题思路】运用集合的表示方法和并集的运算方法,结合问题条件,得到关于参数a的不【详细解答】①当a>1时,如图,Q A={x|(x-1)(x-a)≥={x|x≤1或x≥a}, B={x |x≥a-1}, A∪B=R,∴a-1≤1,⇒1<a≤2;②当a=1时,Q A={x|(x-1)(x-a)≥0}= R, B={x |x≥a-1}, A∪B=R显然成立;③当时,如图Q A={x|(x-1)(x-a)≥0}= A={x|x≤a或x≥1}, B={x |x≥a-1}, A∪B=R 显然成立,∴综上所述,当A∪B=R时,实数a的取值范围是 a≤2,⇒B正确,∴选B。

7、已知集合A={1,3},B={1,m},A∪B=A,则m=()A 0B 0或3C 1D 1或3【解析】【知识点】①集合表示的基本方法;②并集的定义,性质与运算方法;③集合与集合的关系。

【解题思路】运用集合的表示方法和并集的运算方法,结合问题条件,得到集合B是集合A的子集,利用子集的性质可得m=3或【详细解答】Q A={1,3},B={1,m},A∪B=A,∴B⊆A,⇒m∈A,⇒ m=3或∴ m=3或m=0,⇒B正确,∴选B。

8、(1)已知集合A={x∈R||x+2|<3},B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m= ,n= ;(2)集合A={x∈R||x-2|≤5}中的最小整数为;【解析】【知识点】①集合表示的基本方法;②交集的定义,性质与运算方法;③不等式的定义与解法;④参数分类的原则与方法。

【解题思路】(1)运用交集的运算方法和集合的表示方法,结合问题条件可得到关于参数m,n的方程,利用参数分类的原则与方法分别求解方程就可得出m,n的值;(2)运用集合的表示方法和不等式的解法,结合问题条件求出集合A【详细解答】(1)①当m<2时,如图,Q A={x||x+2|<3={x|-5<x<1}, B={x |(x-m)(x-2)<0}={x|m<x<2}A∩B=(-1,n), ∴m=-1,n=1;②当m=2时,Q A={x||x+2|<3}={x|-5<x<1}, B={x |(x-m)(x-2)<0}=∅,∴A∩B=∅, 与题意不符合;③当m>2时,如图,Q A={|x+2|<3}= A={x|-5<x<1}, B={x |(x-m)(x-2)<0}={x|2<x<m},∴ A∩B=∅, 与题意不符合,∴综上所述,当A∩B=(-1,n)时,m=-1,n=1;(2)Q A={x∈R||x-2|≤5}={x∈R|-3≤x≤7},∴集合A中的最小整数是-3。

『思考问题1』(1)集合中的每一个个体,称为集合的元素;元素与集合的关系有两种:①元素是集合中的元素称为元素属于集合,用∈表示;②元素不是集合中的元素称为元素不属于集合,用∉表示;(2)要确定集合的元素或集合元素的个数都必须确定集合,这是由集合元素的特性决定的,集合的元素具有确定性,互异性和无序性。

〔练习1(理)〕解答下列问题:1、已知集合A={1,2,3},B={2,4,5},则集合A ∪B 中元素的个数为 ;2、已知互异的复数a ,b 满足ab ≠0,集合{a ,b } = {2a ,2b },则a+b= ;3、若集合{a ,b ,c ,d }={1,2,3,4} ,且下列四个关系:①a=1 ;②b ≠1;③c=2; ④d ≠4有且只有一个是正确的,则符合条件的有序数组{a ,b ,c ,d }的个数是 ;4、含有三个元素的集合可以表示为{a,b a ,1},也可以表示为{2a ,a+b,0}. 求:20092010a b +的值;5、设集合P={0,2,5},Q={1,2,6}定义集合P+Q={a+b|a ∈P,b ∈Q },则集合P+Q 中元素的个数是( )A 9B 8C 7D 66、已知集合P={x|2x ≤1}, M={a },若 P ∪M=P, 则实数a 的取值范围是( )A (-∞,-1〕B 〔1,+∞〕C 〔-1,1〕 (-∞,-1〕∪〔1,+∞)7、某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别是26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的也4人,则同时参加数学和化学小组的有 人;8、已知集合A={-1,1,3}, B={a+2,2a +4}, A ∩B={3},则实数a= ;9、设全集U={0,1,2,3},集合A={x ∈U|2x +mx=0}, 若U C A={1,2} 则 实数m= ;10、设集合A={x||x-a|<1,x ∈R },B={x||x-b|>2},若A ⊆ B, 则实数a 、b 必满足( )A |a+b|≤3B |a+b|≥3C |a-b|≤3 D|a-b|≥311、设A={4,5,7,9},B={3,4,7,8,9},全集U= A ∪B ,则 集合U C (A ∩B )中的元素共有( )(2009全国高考I 卷)A 3个B 4个C 5个D 6个12、已知集合A={x|x ≤1},B={x|x ≥a },且A ∪B =R,则实数a 的取值范围是 ;13、某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓运动的人数为 ;14、已知全集U=R,集合M={x|-2≤x-1≤2}和 N={x|x=2k-1,k ∈N*的关系的韦恩氏图如图所示,则阴影部分所示的集合的元素共有( A 2个 B 3个 C 1个 D 无穷多个15、集合A={0,2,a },B={1, 2a },若A ∪B={0,1,2,4,16},则实数a 的值为( )A 0B 1C 2D 416、已知全集U={1,2,3,4,5},集合A={x|2x -3x+2=0}, B={x|x=2a,a ∈A },则 U C (A ∪ B )中元素的个数为( )A 1B 2C 3D 4〔练习1(文)〕解答下列问题:1、已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为;2、设M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A 2B 3C 5D 73、已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A 5B 4C 3D 24、若集合A={x∈R|a2x+ax+1=0},其中只有一个元素,则a=()A 4B 2C 0D 0或45、已知集合A={(x,y)|x、y∈R,且2x+2y=1}, B={(x,y)|x、y∈R,且x+y=1},则 A∩B的元素个数为()A 4B 3C 2D 16、已知集合A={1,3,m}, B={3,4}, A∪B={1,2,3,4},则a= ;7、已知集合A={-1,1,3}, B={a+2,2a+4}, A∩B={3},则实数a= ;8、设集合A={x||x-a|<1,x∈R},B={x|1<x<5},若A∩B=∅ , 则实数a的取值范围是()A {a|0≤a≤6 }B {a|a≤2或a≥4}C {a|a≤0或a≥6} D{a|2≤a≤4}9、已知集合A={-1,1,3}, B={a+2,2a+4}, A∩B={3},则实数a= ;C(A∩B)中的元10、设集合A={4,5,7,9}, B={3,4,7,8,9}全集U=A∪B,则集合U素共有()A 3个B 4个C 5个D 6个11、集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则实数a的值为()A 0B 1C 2D 412、已知集合A={x|x≤1},B={x|x≥a},且A∪B =R,则实数a的取值范围是;13、某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别是26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的也4人,则同时参加物理和化学小组的有人;14、某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓运动的人数为。

相关文档
最新文档