高中数学必修一1.1集合 PPT课件

合集下载

高中数学必修第一册《1.1集合的概念》教学课件

高中数学必修第一册《1.1集合的概念》教学课件

数学中一些常用的数集及其记法
全体非负整数组成的集合称为非负整数集(或自然数集),记作N;
全体正整数组成的集合称为正整数集,记作N *或N +;
全体整数组成的集合称为整数集,记作Z;
全体有理数组成的集合称为有理数集,记作Q;
全体实数组成的集合称为实数集,记作R。
从上面的例子看到,我们可以用自然语言描述一个集合除此之外,还
B={∈Z|10<<20}.
大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法
表示为B={11,12,13,14,15,16,17,18,19}.
我们约定,如果从上下文的关系看,∈R,∈Z是明确的,那么
∈R,∈Z可以省略,只写其元素.例如,集合D=(∈R|<10}也可表
3
3.用适当的方法表示下列集合:
(1)由方程 2 -9=0的所有实数根组成的集合;
(2)一次函数y=+3与y=-2+6图象的交点组成的集合;
(3)不等式4-5<3的解集.
习题1.1-复习巩固
1.用符号“∈”或“∉”填空:
(1)设A为所有亚洲国家组成的集合,则
中国______A,美国______A,印度______A,英国______A;
(2)由大于10且小于20的所有整数组成的集合B.
解:(1)设∈A,则是一个实数,且 2 -2=0.因此,用描述法表示为
A={∈R| 2 -2=0}.
方程 2 -2=0有两个实数 2,- 2,因此,用列举法表示为
A={ 2,- 2}.
(2)设∈B,则是一个整数,即∈Z,且1<<20.因此,用描述法表示为
2

高中数学必修一必修1全章节ppt课件幻灯片

高中数学必修一必修1全章节ppt课件幻灯片
22
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;

高中必修一数学第一章集合间的基本关系ppt课件-人教版

高中必修一数学第一章集合间的基本关系ppt课件-人教版
高中数学
[导入新知] 子集的概念
任意一个
包含
A⊆B B⊇A
高中数学
⊆ ⊆
高中数学
[化解疑难] 对子集概念的理解
(1)集合 A 是集合 B 的子集的含义是:集合 A 中的 个元素都是集合 B 中的元素,即由 x∈A 能推出 x∈B.例 ⊆{-1,0,1},则 0∈{0,1},0∈{-1,0,1}.
(2)若两集合相等,则两集合所含元素完全相同,与 列顺序无关.
高中数学
真子集 [提出问题] 给出下列集合: A={a,b,c},B={a,b,c,d,e}. 问题1:集合A与集合B有什么关系? 提示:A⊆B. 问题2:集合B中的元素与集合A有什么关系? 提示:集合B中的元素a,b,c都在A中,但元素d,e不
高中数学
[导入新知] 集合相等的概念
如果集合 A 是集合 B 的 子集 (A⊆B),且集合 B A 的 子集 (B⊆A),此时,集合 A 与集合 B 中的元素 的,因此,集合 A 与集合 B 相等,记作 A=B .
高中数学
[化解疑难] 对两集合相等的认识
(1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A= ⊆B,且 B⊆A.这就给出了证明两个集合相等的方法,即 =B,只需证 A⊆B 与 B⊆A 同时成立即可.
(2)若 A 不是 B 的子集,则 A 一定不是 B 的真子集
高中数学
空集 [提出问题] 一个月有32天的月份组成集合T. 问题1:含有32天的月份存在吗? 提示:不存在. 问题2:集合T存在吗?是什么集合? 提示:存在,是空集.
高中数学
[导入新知]
空集的概念
定义 我们把 不含任何元素 的集合,叫做空
1 理解教 材新知
1.1.2

人教版高中数学必修1《集合的概念》PPT课件

人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.

高中数学人教A版必修1课件:1、1、1集合的含义与表示

高中数学人教A版必修1课件:1、1、1集合的含义与表示
重点:集合的含义及表示方法。 难点:1.对新概念、新符号的理解与区分;
2.集合表示方法的恰当选择。
3
自主学习:
根据自学提纲(知识点),自学P2~3页。 1、元素、集合的概念? 2、集合中元素的三大特征? 3、集合与元素间的关系,符号表示? 4、一些常用的数集及其记法?
4
学生展示:
1、集合、元素的概念 元素 ——我们把研究的对象统称为元素;
平面内两直线的 位置关系有几种?
交集的性质:
A
A B
B
1.A∩A= A ; 2.A∩∅=∅∩A= ∅ ; 3. A∩B ⊆ A,A∩B ⊆B; 4. 如果A⊆B,则A∩B= A反之,
如果 A∩B=A,则 A⊆B .
P11 练习1~3
4.A={(x,y)|4x+y=6}, B={(x,y)|3x+2y=7},求A∩B。
即 A∪B= {x | x∈A,或x∈B}
AB
A
A
BB
例4 设A={4,5,6,8}, B={3,5,7,8},求A∪B. 提示:利用韦恩图
A
46
58 37
B
解: A∪B={4,5,6,8}∪{3,5,7,8} ={3,4,5,6,7,8}
例5 设集合A={x|-1<x<2},集合B={x|1<x<3},
思考2:集合{1,2}与集合{(1,2)}相同吗?
集合{y | y x2, x R} 与集合 {y x2} 相同吗? 思考3: 集合{(x, y) | y x2, x R} 的几何意义如何?
y y x2
x o
课堂小结
1.元素与集合的概念:一般地,我们把研究对象统称为 元素,把一些元素组成的总体叫做集合(简称为集); 2.集合元素的三大特征:确定性、互异性、无序性; 3.元素与集合之间的关系:属于(∈)或 不属于(∉) ; 4.数集及有关符号:N、N﹡、N₊、Z、Q、R; 5. 集合的分类:有限集、无限集、空集; 6. 集合的表示方法:列举法、描述法、 Venn图。

人教版高中数学必修1《集合间的基本关系》高一上册PPT课件(第1.1.1课时)

人教版高中数学必修1《集合间的基本关系》高一上册PPT课件(第1.1.1课时)
高中数学必修一必修一精品课件
高中数学必修一精品系列课 件
3. 空 集
(1)定 义 : 不 含 任 任何 何 元 素 的 集 合 叫 做 空 集 , 记 为 ∅. ∅
(2)规 定 : 空 空 集 集 是 任 何 集 合 的 子 集 .
思 考2: {0}与 ∅相 同 吗 ? [提 示 ]不 同 . {0}表 示 一 个 集 合 , 且 集 合 中 有 且 仅 有 一 个 元 素0; 而 ∅表 示 空 集 , 其 不 含 有 任 何 元 素 , 故 {0}≠ ∅.
学习目标:
1.理解集合之间的包含与相等的含义.(重点) 2.能识别给定集合的子集、真子集,会判断集合间的关系.(难点、易混点) 3.在具体情境中,了解空集的含义.(难点)
高中数学必修一必修一精品课件
PART 02
自主预习·探新知
S E L F S T U D YA N D E X P L O R I G N E W K N O W L E D G E
高中数学必修一必修一精品课件
高中数学必修一精品系列课 件
3.已知集合M={菱形},N={正方形},则有( )
A.M⊆N
B.M∈N
C.N⊆M
D.M=N
C [正 方 形 是 特 殊 的 菱 形 , 故N⊆M.]
4. 集 合 {0,1}的 子 集 有 ________个 . 4 [集 合 {0,1}的 子 集 有 ∅, {0}, {1}, {0,1}, 共4个 . ]
高中数学必修一必修一精品课件
高中数学必ቤተ መጻሕፍቲ ባይዱ一精品系列课 件
思考 1:(1)任何两个集合之间是否有包含关系? (2)符号“∈”与“⊆”有何不同?
[提示] (1)不一定.如集合 A={0,1,2},B={-1,0,1},这两个集合就没有包含关系.

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为

4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;

ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c

湘教版高中数学必修第一册第1章1-1-1第1课时集合与元素课件

湘教版高中数学必修第一册第1章1-1-1第1课时集合与元素课件
以集合中元素的确定性和互异性为切入点,思考求解a值的方法.
[解] 由题意可知,a=1或a2=a, (1)若a=1,则a2=1,这与a2≠1相矛盾,故a≠1. (2)若a2=a,则a=0或a=1(舍去),又当a=0时,A中含有元素1和0, 满足集合中元素的互异性,符合题意. 综上可知,实数a的值为0.
三个元素.]
5
题号
1

2
3
D [由题意可知,a∈R且a∉Q,所以a是无理数.故选D.]
4
5
题号
4.若1∈A,且集合A与集合B相等,则1___∈_____B(填“∈”或 1
“∉”).
2
∈ [由集合相等的定义可知,1∈B.]
3
4
5
5.已知集合A由a2-a+1,|a+1|两个元素构成,若3∈A,则a的 值为___-__1_或__-__4___.
√A.一切很大的数
√B.好心人
题号
√C.漂亮的小女孩
D.不小于3的自然数
1 2
ABC [“很大”“好”“漂亮”等词没有严格的标准,故选项A,3
4
B,C中的元素均不能构成集合.故选ABC.]
5
2.用“book”中的字母构成的集合中元素个数为( )
题号
A.1
B.2
1
√C.3
D.4
2
3
C [由集合中元素的互异性可知,该集合中共有“b”“o”“k” 4
[母题探究] 本例若去掉条件“a∈A”,其他条件不变,求实数a的取值范围. [解] 由集合中元素的互异性可知a2≠1,即a≠±1.
反思领悟 根据集合中元素的基本属性求值的3个步骤
[跟进训练] 3.设集合A中含有三个元素3,x,x2-2x. (1)求实数x应满足的条件; (2)若-2∈A,求实数x的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记作: A B (或B A) 读作:A 含于 B(或 B 包含 A).
如果 A B,但存在 x∈B,且 xA,我们就说这两个集合有真包含关系,称集合 A 是集合
B 的真子集,记作 A B(或 B A). ②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.
问题3:与实数中的结论“若 a b, 且b a, 则a b
4.用适当的方法表示下列集合:
(1)方程组
2x 3x
- 3y 14, 2y 8 的解集;
(2)1000以内被3除余2的正整数所组成的集合;
(3)直角坐标平面上在第二象限内的点所组成的集合;
(4)所有正方形;
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.
解:
(1){(4,-2)}; (2){x|x=3k+2,k∈N且x<1000}; (3){(x,y)|x<0且y>0}; (4){正方形}; (5){(x,y)|x<-1或x>1}.
A={ 2 , 2 }.
(2)设大于 10 小于 20 的整数为 x,它满足条件 x∈Z,且 10<x<20,因此,用描述法表示为 B={x∈Z|10<x<20}.
大于 10 小于 20 的整数有 11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算 不叫集合的加法,而是叫做求集合的并集.集合 C 叫集合 A 与 B 的并集.记为 A∪B=C,读作 A 并 B.
(1)文字语言:所有属于集合 A 或属于集合 B 的元素所组成了集合 C. (2) 数学符号:C={x|x∈A,或 x∈B}. (3) Venn 图:
合,B 表示重量合格的产品的集合,C 表示长度合格的产品的集合.已知集合 A、B、C 均不是空集.
(1) 下列包含关系:A B;B A;A C;C A 中成立的是?
(2)试用 Venn 图表示集合 A、B、C 间的关系.
解:(1)包含关系成立的有:B A,C A.
(2)集合 A、B、C 间的关系用 Venn 图表示,如图所示.
(3)设 C {x | x是两条边相等的三角形}, D {x | x是等腰三角形}; (4) E {2, 4, 6}, F {6, 4, 2}
通过对比得到:两个集合之间的关系:包含关系与相等关系。
1、集合间的基本关系:
①一般地,对于两个集合 A,B,如果集合 A 中任意一个元素都是集合 B 中的元素,我 们就说这两个集合有包含关系,称集合 A 为 B 的子集.
例2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
解:集合{a,b}的所有子集为 ,{a},{b},{a,b}.真子集为 ,{a},{b}.
例 3.已知集合 A={-1,3,2m-1},集合 B={3,m2}.若 B A,则实数 m=_______.
解:∵B A,∴3∈A,m2∈A.∴m2=-1(舍去)或 m2=2m-1.解得 m=1.∴m=1.
方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方 形”组成的集合等等.
3.元素与集合的关系
“属于”和“不属于”分别用“∈”和“”表示.
4.集合元素的性质 (1)确定性:即任给一个元素和一个集合,那么这 个元素和这个集合的关系只有两种:这个元素要么属 于这个集合,要么不属于这个集合 (2)互异性:一个给定集合的元素是互不相同的, 即集合中的元素是不重复出现的
[变式演练,深化提高] 1.已知集合 M={x|2-x<0},集合 N={x|ax=1},若 N M,求实数 a 的取值范围.
解:由题意得 M={x|x>2}≠ ,则 N= 或 N≠ . 当 N= 时,关于 x 的方程 ax=1 中无解,则有 a=0; 当 N≠ 时,关于 x 的方程 ax=1 中有解,则 a≠0,此时 x= 1 ,又∵N
{a,b,c}有 8 个子集. (2)由(1)可得:当 n=0 时,有 1=20 个子集;
当 n=1 时,集合 M 有 2=21 个子集; 当 n=2 时,集合 M 有 4=22 个子集; 当 n=3 时,集合 M 有 8=23 个子集;
因此含有 n 个元素的集合 M 有 2n 个子集.
3 已知集合 A {2,3,7},且 A 中至多有一个奇数,则这样的集合 A ( )
请同学们想一想 (1)本节课我们学习过哪些知识内容? (2)你认为学习集合有什么意义? (3)选择集合的表示法时应注意些什么?
[作业精选,巩固提高] 1.课本P11习题1.1A组4. 2.元素、集合间有何种关系?如何用符号表示?
类似地集合与集合间的关系又如何? 如何表示?请同学们通过预习课本来解答.
集合也可以“相加”
问题:2:请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗? (1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
集合C是由集合A与集合B“相加”
1、集合的并集
a 1 >2. a ∴0<a< 1 .
2 综上所得,实数 a 的取值范围是 a=0 或 0<a< 1 ,
2
即实数 a 的取值范围是{a|0≤a< 1 }
2
M,∴ 1 ∈M.∴ a
2.(1)分别写出下列集合的子集及其个数: ,{a},{a,b},{a,b,c}.
(2)由(1)你发现集合 M 中含有 n 个元素,则集合 M 有多少个子集?
描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范 围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所 含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简 写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可 以表示为{x|x是直角三角形},也可以写成{直角三角形}.
问题2:集合应当如何表示呢?元素与集合是什么样 的关系?
2.集合的表示:
方法一(字母表示法):大写的英文字母表示集合, 集合常用大写字 母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示. 国际标准化组 织(ISO)制定了常用数集的记法: 自 然 数 集 ( 包 含 零 ):N, 正 整 数 集 :N*(N+), 整 数 集 :Z, 有 理 数 集 :Q, 实 数 集:R.
例1.下列各组对象不能组成集合的是( ) A.大于6的所有整数 B.高中数学的所有难题 C.被3除余2的所有整数 D.函数y= 1 图像上所有的点
x
答案:B
例2.用列举法表示下列集合: (1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
问题1:实数有相等、大小的关系,如5=5,5<7,5>3 等等,类比实数之间的关系,你会想到集合 之间有什么关系吗?
问题2:观察下面几个例子,你能发现两个集合
.
间有什么关系吗?
(1)A {1, 2,3}, B {1, 2,3, 4,5}
(2)设A为国兴中学高一(3)班男生的全体组
成的集合,B为这个班学生的全体组成的集合;
答案: (1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示 为{-3,-2,-1,0,1,2,3}. (2){x|x=3n,n∈Z}. (3)∵x=|x|,∴x≥0. ∵x∈Z且x<5, {x|x=|x|,x∈Z且x<5}还可以表示为 {0,1,2,3,4}. (4){-2}. (5){(1,5),(2,4),(3,3),(4,2),(5,1)}.
A.3 个
B.4 个
C.5 个
D.6 个
答案:D
4 已知集合 P={1,2},那么满足 Q P 的集合 Q 的个数是(
A.4
B.3
C.2
) D.1
答案:A
作业精选 课本习题1.1A组5.
问题1:实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集 合是否也可以“相加”呢?
(1)不能.因为方程 x2+1=0 没有实数解.
(2)一个集合没有任何元素,定义为空集。空集记为 ,并规定:空集是任何集合的子
集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
[运用规律,解决问题] 例 1.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用 A 表示合格产品的集
(3)无序性:集合中的元素是没有顺序的 (4)集合相等:如果两个集合中的元素完全相同 ,那么这两个集合是相等的.
问题4: (1)请列举出“小于5的所有自然数组成的集合A”. (2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等 式的解集?
列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合, 这种表示集合的方法叫做列举法;
变式1. 下列所给对象不能构成集合的是( ) A.一个平面内的所有点 B.所有大于零的正数 C.某校高一(4)班的高个子学生 D.某一天到商场买过货物的顾客
答案:C
2.用另一种形式表示下列集合: (1){绝对值不大于3的整数}; (2){所有被3整除的数}; (3){x|x=|x|,x∈Z且x<5}; (4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}; (5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.
3.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的 取值范围.
相关文档
最新文档