第二讲——信号完整性

合集下载

信号完整性介绍

信号完整性介绍

信号完整性基础知识术语、符号和缩略语术语1.信号完整性(Signal Integrity)信号完整性是指信号在信号线上的质量。

信号具有良好的信号完整性是指当在需要的时候具有所必需达到的电压电平数值。

2.传输线(Transmission Line)传输线是一个网络(导线),并且它的电流返回到地或电源。

3.特性阻抗(Characteristic Impedance)组成信号传输回路的两个导体之间存在分布电感和分布电容,当信号沿该导体传输时,信号的跃变电压(V)和跃变电流(I)的比值称为特性阻抗(Z0),即Z0=V/I。

4.反射(Reflection)反射就是在传输线上的回波。

信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。

如果源端与负载端具有相同的阻抗,反射就不会发生。

5.串扰(Crosstalk)串扰是两条信号线之间的耦合。

信号线之间的互感和互容引起线上的噪声。

容性耦合引发耦合电流,而感性耦合引发耦合电压。

6.过冲(Overshoot)过冲就是第一个峰值或谷值超过设定电压。

对于上升沿是指最高电压,而对于下降沿是指最低电压。

过分的过冲能够引起保护二极管工作,导致过早地失效。

7.下冲(Undershoot)下冲是指下一个谷值或峰值。

过分的下冲能够引起假的时钟或数据错误(误操作)。

8.电路延迟指信号在器件内传输所需的时间(T pd)。

例如,TTL的电路延迟在3 ~ 20nS 范围。

9.边沿时间器件输出状态从逻辑低电平跃变到高电平所需要的时间(信号波形的10~90%),通常表示为上升沿(T r)。

器件输出状态从逻辑高电平下降到低电平所需要的时间(信号波形的90~10%),通常表示为下降沿(T f)。

10.占空比偏斜信号传输过程中,从低电平到高电平的转换时间与从高电平到低电平的转换时间之间的差别,称为占空比偏斜。

TTL和CMOS信号的占空比偏斜问题较为突出,主要是因为其输出的上升沿和下降沿延迟不同。

信号完整性基础培训课件(PPT 54张)

信号完整性基础培训课件(PPT 54张)

B 0 . 8566 ( 0 . 0294 ) ln( W ) ( 0 . 00239 ) H ( 0 . 0101 ) r r
W=走线宽度(mil) H=走线和参考层之间的距离(mil) 由公式可知分子

永远不会比1.0大。信号在微带线中的传播速度永远不会比在带状线(周围是相同的材料) 中慢。公式是从上面是空气下面是电介质材料的简单微带线中得出的。如果是嵌入式微带线, 分子要相对大一些(传播速度要慢一些),但是不会超过1.0这个极限值。
频域:自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描 述了信号的频率结构及频率与该频率信号幅度的关系 。
Page3
1. 信号完整性基础知识
时域和频域的关系 频域
(不显示负向变换)
(不显示负向变换)
频域平面
时域平面
频域
时域
1.2 信号完整性的影响因素
第二章 案例分析
反射案例分析 串扰案例分析 电源完整性案例分析 电磁干扰案例分析 插入损耗案例分析

Page2
1. 信号完整性基础知识
1.1 基本概念
1.1.1 时域和频域
时域和频域的概念
时域:时域是描述数学函数或物理信号对时间的关系。例如一个信号的时域波形可以表达信号随 着时间的变化。时域是真实世界,是惟一实际存在的域。因为我们的经历都是在时域中发展和验 证的,已经习惯于事件按时间的先后顺序地发生。而评估数字产品的性能时,通常在时域中进行 分析,因为产品的性能最终就是在时域中测量的。
XY Plot 2
1000.00
MY2: 880.0000
Circuit1
Curve Info
ANSOFT

信号完整性

信号完整性

信号完整性信号完整性研究:什么是信号完整性如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。

早一天遇到,对你来说是好事。

在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。

器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。

但在今天的高速时代,随着IC 输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。

另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。

因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。

广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。

主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。

信号完整性问题的根源在于信号上升时间的减小。

即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。

下面谈谈几种常见的信号完整性问题。

反射:图1显示了信号反射引起的波形畸变。

看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。

如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。

很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。

或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。

其实这个小电阻的作用就是为了解决信号反射问题。

而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了。

信号完整性分析PPT课件

信号完整性分析PPT课件

Olica
4
SI简介
• 学习SI的目的 a.什么是典型的信号完整性问题? b.这些问题来自哪里? c.为什么有必要去理解SI问题? d.如何去分析和解决SI问题? e.如何去做SI测试?
30.11.2020
Olica
5
• SI的内容 SI简介
信号完整性它包含两方面的内容,一是 独立信号的质量,另一个是时序。我们 在电子设计的过程中不得不考虑两个问 题:信号有没有按时到达目的地?信号 达到目的地后它的质量如何?所以我们 做信号完整性分析的目的就是确认高频 数字传输的可靠性。
30.11.2020
Olica
10
SI简介
• 数据采样及时序例子
30.11.2020
Olica
11
SI简介
• 数据采样及时序例子 从这个图里面我们可以清楚地看到数据 必须准时到达逻辑门而且在接收端期间 开始锁存前必须确定它们的逻辑状态。 任何数据的延迟或者失真都会导致数据 传输的失败。失败有两种可能:一个是 因为接收端根本就无法识别数据;另一 个是接收端虽然识别了数据,但数据因 为失真而导致错误。
30.11.2020
Olica
3
SI简介
• SI的重要性
随着高频数字电路的不断发展,SI问题变得越来越引 人注目,数字电路的频率越高,出现SI问题的可能性 就越大,对设计工程师来说,他的挑战也就越大。很 多SI问题实际上都是自然界中的电磁现象,所以SI问 题跟EMI/EMC是息息相关的。
30.11.2020
30.11.2020
Olica
7
SI简介
• 理想逻辑电压波形
30.11.2020
Olica
8
SI简介

《信号完整性培训》课件

《信号完整性培训》课件

信号完整性仿真软件介绍
仿真软件的种类与功能
单击添加标题
信号完整性仿真软件:用于 模拟信号在电路中的传输和 干扰情况,评估信号完整性
单击添加标题
功能:提供信号完整性分析、 优化和验证功能,帮助设计 者优化电路设计,提高信号
传输质量
单击添加标题
仿真软件种类:包括 Cadence、Mentor、
Synopsys等
信号完整性的评估通常包括 信号的幅度、相位、抖动、
噪声等方面的测量。
信号完整性对于电子系统的 性能和可靠性至关重要。
信号完整性的重要性
确保信号传输的准确性和可靠性
降低电磁干扰和噪声
添加标题
添加标题
提高系统稳定性和性能
添加标题
添加标题
提高产品竞争力和品牌价值
信号完整性的影响因素
信号频率:频率 越高,信号完整 性越差
信号串扰的影响:信号串扰会导致信号 误码率增加、信号传输质量下降等问题
信号反射与串扰的解决方法:通过优化 信号传输路径、增加信号隔离度、使用 屏蔽材料等方式进行解决
信号的时序与抖动
时序:信号在时间上的顺序和规律 抖动:信号在传输过程中的不稳定性 抖动类型:随机抖动、确定性抖动、数据相关抖动 抖动影响:可能导致信号失真、传输错误、系统不稳定等
信号幅度:幅度 越大,信号完整 性越差
信号传输路径: 路径越长,信号 完整性越差
信号传输介质:介 质的阻抗、容抗、 感抗等参数会影响 信号完整性
信号完整性的基础理论
信号的传输方式
串行传输:数据按 顺序传输,速度快, 但容易受到干扰
并行传输:数据同 时传输,速度快, 但需要更多的硬件 资源
模拟传输:数据以 模拟信号的形式传 输,抗干扰能力强 ,但传输距离有限

《信号完整性培训》课件

《信号完整性培训》课件

解决方法
通过在传输线的末端添加 终端电阻来匹配阻抗,消 除反射。
信号串扰
信号串扰定义
当信号在传输线中传播时 ,会受到相邻信号线的干 扰,产生串扰。
串扰产生的影响
串扰会导致信号质量下降 、误码率增加,严重时会 导致通信失败。
解决方法
通过合理布线、增加线间 距、使用屏蔽线等措施来 减小串扰。
信号时序
加强信号完整性测试和测量技 术的研究,提高测试精度和效
率。
探索新的信号完整性设计方法 和优化技术,提高设计效率和
可靠性。
加强信号完整性与其他领域的 交叉研究,如通信、控制、人 工智能等,开拓新的应用领域

THANKS
感谢观看
02
它涉及到信号在电路中传输时所 受到的各种影响,如噪声、干扰 、衰减、延迟等。
信号完整性的重要性
保证电路的正常工作
信号完整性的好坏直接影响到电路的 正常工作,如果信号在传输过程中出 现失真或畸变,可能会导致电路工作 异常或出现故障。
提高系统性能
降低系统成本
避免因信号问题导致的系统故障和维 修成本,从而降低整个系统的成本。
合理选择传输线
根据信号类型和传输速率,选择合适的传输 线类型和规格。
使用适当的端接方式
根据传输线的类型和长度,选择合适的端接 方式,如串联端接、并联端接等。
优化布线策略
通过合理的布线,减少信号延迟和反射,提 高信号质量。
抑制电磁干扰
通过增加屏蔽、使用滤波器等手段,降低电 磁干扰对信号的影响。
设计实例分享
示波器和逻辑分析仪
用于捕获和观察信号波形,分析信号的时序和幅度。
网络分析仪和频谱分析仪
用于测量信号的频率响应和传输特性。

信号完整性问题

信号完整性问题

二信号的完整性问题及解决办法两个方面(时序和电平)信号完整性(Signal Integrity)是指信号未受到损伤的一种状态,它表示信号质量和信号传输后仍保持正确的功能特性。

良好的信号完整性是指在需要时信号仍能以正确的时序和电压电平值作出响应。

随着高速器件的使用和高速数字系统设计越来越多,系统数据速率、时钟速率和电路密集度都在不断增加。

在这种设计中,系统快斜率瞬变和工作频率很高,电缆、互连、印制板(PCB)和硅片将表现出与低速设计截然不同的行为,即出现信号完整性问题。

信号完整性问题能导致或者直接带来信号失真,定时错误,不正确数据、地址和控制线以及系统误工作甚至系统崩溃,解决不好会严重影响产品性能并带来不可估量的损失,已成为高速产品设计中非常值得注意的问题。

信号完整性问题的真正起因是不断缩减的信号上升与下降时间。

一般来说,当信号跳变比较慢即信号的上升和下降时间比较长时,PCB中的布线可以建模成具有一定数量延时的理想导线而确保有相当高的精度。

此时,对于功能分析来说,所有连线延时都可以集总在驱动器的输出端,于是,通过不同连线连接到该驱动器输出端的所有接收器的输入端在同一时刻观察都可得到相同波形。

然而,随着信号变化的加快,信号上升时间和下降时间缩短,电路板上的每一个布线段由理想的导线转变为复杂的传输线。

此时信号连线的延时不能再以集总参数模型的方式建模在驱动器的输出端,同一个驱动器信号驱动一个复杂的PCB连线时,电学上连接在一起的每一个接收器上接收到的信号就不再相同。

从实践经验中得知,一旦传输线的长度大于驱动器上升时间或者下降时间对应的有效长度的1/6,传输线效应就会出来,即出现信号完整性问题,包括反射、上冲和下冲、振荡和环绕振荡、地电平面反弹和回流噪声、串扰和延迟等。

表1列出了高速电路设计中常见的信号完整性问题,以及可能引起该信号完整性的原因,并给出了相应的解决方法。

目前,解决信号完整性问题的方法主要有电路设计、合理布局和建模仿真。

信号完整性ppt课件

信号完整性ppt课件

导电平面就像一个镜子,镜像电路与原电
路电流方向相反,并以平面对称。这样由
于互感影响,该涡流 会较大的减小原电路
的回路自感。
23
电感的物理基础

悬空平面越靠近回路,回路的电感就
越小,如下图:
24
传输线的物理基础
• 一、信号 信号总是指信号路径和返回路径之间相
邻两点的电压差,该原则适用于所有传输 线,无论是单端还是差分传输线。
信号完整性分析
通常设计过程是极富直觉和创造性的,要想尽快 完成合格设计,激发关于信号完整性的设计 直觉至关 重要。设计产品的设计师应了解信号完整性如何影响整 个产品的性能。该文档主要介绍 理解和解决信号完整 性问题所需的基本原理,直观定量地给出信号完整性问 题的工程背景知识。
主要参考: 信号完整性分析
• 四、传输线的瞬态阻抗及特征阻抗 传输线的瞬态阻抗并不是PCB上导线的电阻。如
果我们在一根导线上加一个电压,该电压信号从一 端传输到另一端的过程中所受到的阻抗即为瞬态阻 抗,当一定时间后,整根导线上的电源稳定后,导 线表现出的阻抗与瞬态阻抗肯定不一样,稳定后的 电阻才是我们平时所指的电阻。瞬态阻抗仅由传输 线 的两个固定参数决定,即传输线的横截面积和材 料特性共同决定,与传输线的长度无关。计算公式 为(只考虑电容效应的近似计算):
3
概论
c、返回路径平面上的间隙; d、接插件; e、分支线、T型线或桩线; f、网络末端。 B、网络间的串扰; C、轨道塌陷噪声;
当通过电源和地路径的电流发生变化时,在电 源路径和地路径间的阻抗上将产生一个压降。设计 电源和地分配的目标是使电源分配系统(PDS)的 阻抗 最小 D、来自整个系统的电磁干扰和辐射。
11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T element,以及有损传输线(Lossy transmission line) 传输的损耗一般分为两种:铜损(copper loss)和介质损耗 (dielectric loss)。 PCB上的传输线分为以下几种:微带线(Microstrip)、埋入式微带 线(Embeded microstrip)、带状线(Stripline)。 2. 趋肤效应 高频时电流只在表层流动。 3. 介质损耗 介质中的dipole随电磁场转动,产生损耗。 4. 负载效应 传输线上的分布式负载能改变传输线的阻抗。
高速数字电路的特征(续4)
图中表示用傅立叶展开式来拟合方波的情况。当用5阶波形叠加时,其 信号与原方波还有明显的差别;若用10阶波形叠加时,则与原方波相பைடு நூலகம்差无几;若再用20阶的波形叠加的话,其改善程度已经不明显。所以 对方波信号的分析一般到10倍 f。(f。为方波的基频)即可。
信号分类
单端信号 差分信号 一次开关(Incident switching) 反射开关(Reflected switching)
一般IC对于过冲的高度和宽度的容忍度都有指标。因为过冲会使IC内部的ESD防护 二极管导通,通常电流有100mA左右。信号长期的过冲会使IC器件降质,并是电 源噪声和EMI的来源之一。
2. 振铃(Ringing/Ring Back) 振铃会使信号的threshold域值模糊,而且容易引起EMI。
3. 非单调性(Non-monotonic) 电平上升过程中的平台会产生非单调性,这有可能对电路有危害,特别是针对异步 信号如:Reset、Clock等会有影响。
2. 上升/下降沿时间 信号是否被看作为高速信号,和信号的周期关系不大。只要信号的 上升沿或下降沿很陡,它都有可能是高速信号。当然如果信号的周 期较短,其上升下降沿必然很陡,当然也就是高速信号了。
3. 电长度和关键长度 关键长度Lcritical=Tr×v/2, Tr指信号的上升时间,v指信号的传播速度, 通常为6inch/ns。若Lline<Lcritical/3,则可以将该信号看作是等势体。 电长度=Lphysical/v,单位为ns。 Lphysical为传输线物理长度,v为信号在 介质中的传播速度。通常1ns约相当于6inch。
高速数字电路的特征
非等势体 上升、下降时间 电长度、关键长度 数字方波的频谱
何谓高速信号呢?高速信号又具有哪些特征? 1. 非等势体
高速信号之所以产生信号完整性的问题,主要是由于对于高速信号, 通常传输线的两端(输出端、输入端)不再是等势体。因为当信号 在传输线上的传输延迟时间大于信号在输出端的上升时间时,表明 当输出端已经变为高电平时,输入端的信号幅度还没有改变,仍为 低电平。所以此时两者不再是等势体。
传输线理论(续1)
上图描述了PCB上的传输线。 下图描述了信号线及其回流,传输线电流一定有回路。
传输线理论(续2)
Z0 =≈
L C
1. 上图为传输线电磁场示意图,对于TEM波(电场、磁场、传输方向 互相垂直),可用图中右边的公式计算传输线的阻抗。
公式中各参数的含义为:
R:铜导线的电阻(copper resistance), 包括Rdc、Rac,Rac是变 化的。
4. 码间串扰(ISI) 主要是针对高速串行信号。其产生的本质是前一个波形还没有进入稳态,另外也有 可能是传输线对不同频率衰减不同所造成的。一般通过眼图来观察,方法是输入 一伪随机码,观察输出眼图。
5. 同步开关噪声(SSN) 同步开关噪声会使单根静止的信号线上出现毛刺? V,另外还会影响输入电平的判 断。 SSN的另一种现象是SSO(同步开关输出),这会使得传输线的特性如阻抗、延时 等特性发生改变。
6. 噪声裕量(Noise Margin) 控制噪声余量的目的是防止外界干扰,用于克服仿真没有分析到的一些次要因素。 一般对于TTL信号应留有200~300mV的余量。
7. 串扰(Crosstalk) 串扰主要有线间串扰、回路串扰、通过平面串扰(常见于数模混合电路)三种形 式。
信号完整性问题(续1)
主要有三种方式来描述封装信息: a. 简单的用RLC来表示(Lump Model)。 b. 使用‘.ebd”文件:将封装中的每根线的特性如线长、阻抗等描述 出来。 c. 使用分布式模型(Distributed Equivalent Circuit)。
2. 元件内部电容Ccomp,即MOS管上电容。 3. 钳位(Clamp)特性 ,即ESD特性:POWER clamp、GND clamp。 4. Pullup、Pulldown VI曲线,描述的是一种静态特性。 5. Ramp、V/T特性曲线,描述的是一种动态特性。 不是所有的IBIS模型都包含以上的内容,根据不同的信号类型,IBIS具
信号完整性问题(续5)
高速串行信号的传输质量主要是通过眼图中眼睛的张开度来衡量。
信号完整性问题(续6)
通过眼图测量信号高电平和低电平时的噪声余量,以及信号的建立和 保持时间。
信号完整性问题(续7)
左图演示的是同一根传输线对于不同频率信号产生的反射叠加不同, 会引起码间串扰。 右图演示的是由于码间串扰使得输入端信号判决点的延后,以及信号 由低变高的起始点变为负电平。
从公式中可以看出,如果在一定的频率范围内满足j? L»R和j? C»G, 那么Zo 可近似为sqr(L/C),为实数。一般来说低频和高频的Zo为复 数,中间频段的Zo为实数。
Zo在40欧姆~120欧姆之间, 如差分线阻抗一般为100欧姆, PCB阻 抗一般控制为60欧姆。
2. 下图小段传输线的模型。
信号分类(续7)
左图为单端信号的输入结构示意图,带反馈功能,如具有BusHold功能 的输入。 右图为差分信号的输入结构示意图,有些带有内部匹配电阻(未示 出),在设计的时候需要了解从而做出合理的匹配。
传输线理论
有损传输线 趋肤效应 介质损耗 负载效应
这里介绍一下传输线相关的基础理论。 1. 根据损耗传输线无损传输线(Lossless transmission line)如Spice中的
信号完整性问题(续8)
同步开关噪声使得电源VDD有跌落(Power Droop),地平面GND有反 弹(Ground Bounce),最终使得信号的上升下降沿产生了平台,影响 信号阈值的判断,从而会影响时序。
信号完整性问题(续9)
该图演示了一个完整的包括电源系统、芯片内部、封装和PCB走线的 模型,包括了IC芯片内部固有的封装电感、I/O管脚的电容等。
信号完整性问题(续3)
该图演示了存在码间干扰(ISI)时观察到的波形。图中很多地方前一 个高电平还未稳定下来时,后一个低电平又到了,反之亦然。
信号完整性问题(续4)
将每一个周期内所有由低到高(如Bit7)、全高(如Bit11) 、由高到 低(如Bit8) 、全低(如Bit14)四种波形重叠起来就形成了所谓的眼 图。
对传输线建模一般是将传输线分割为很多个长度较短的小段,每段 传输线采用集总参数来建模,图中右边公式表示在进行分割建模时
传输线理论(续3)
这里列出了常见传输线的阻抗计算公式。实际工作中往往使用专用软 件计算。
传输线理论(续4)
图中表示了传输线的趋肤效应。由于趋肤效应的存在,高频时电流在 导体横截面上的分布不均匀,主要集中在靠近表面的窄带里。图中显 示了趋肤深度d的定义和计算公式。 图中还显示由于趋肤效应,传输线的Rac随着频率的增加而增大, Rac的 计算如公式。 显然高频时增加线厚无法改善损耗情况,可以通过增加线宽来减小损 耗。 好的仿真软件可以很好的仿真趋肤效应,一般用HSPICE进行仿真分析。
传输线理论(续4)
图示为参考平面上电流的分布密度,可以看到距离导线中心3H后平面 上的电流就很小了。所以布线有3H规则。 H小,电流分布集中,布线密度大
传输线理论(续5)
1. 上图为材料的介电常数和频率的关系,介电常数是随频率变化的, 常用材料FR4的介电常数为4.1~4.7,设计频率高时,介电常数可以 估计得低些。右边为介电常数的表达式和G的计算公式。注意G有 拐点,频率高到一定值Fgd时,就保持不变了。
高速数字电路的特征(续3)
这是数字方波信号的频谱图。 从图中可以看到频谱去曲线上有两个拐点。第一个拐点在2.78/ TW 处, 其后信号频谱以每10倍频20dB的速度衰减,第二个拐点在2.78/t 处,其 后信号频谱以每10倍频40dB的速度衰减直至为零。由此可以看出在不 改变信号周期的情况下,为了减小方波的高频分量,可以增加信号的 上升/下降时间t ,使得第二个拐点往左移。
4. 数字方波的频谱 数字方波信号的分析最起码要达到5倍f0(f0为方波的基频)。
高速数字电路的特征(续1)
图中演示的是信号的上升时间以及信号沿传输线由输出端到输入端的 传输延迟距离。
高速数字电路的特征(续2)
图中的公式为方波的傅立叶展开,其中T为方波信号的周期,t 为方波 信号的上升/下降时间,TW为方波信号的脉宽。 一般来说如果分析到10 f0,那么傅立叶拟合就比较接近真实情况。
通常示波器所观察到的数字信号。
信号完整性问题(续2)
图中为各相关的信号完整性参数: • Overshoot、Undershoot指信号的过冲。 • Ringback 指信号的振铃。 • Plateau指信号在上升过程中的平台。 • NMH指逻辑为高信号的噪声余量。 • NML指逻辑为低信号的噪声余量。
信号完整性基础
信号完整性问题
过冲(overshoot/undershoot) 振铃 (ringing/ring back) 非单调性(non-monotonic) 码间串扰(ISI) 同步开关噪声(SSN) 噪声余量(noise margin) 串扰(crosstalk)
信号完整性(Signal Integrity)主要包括以下几方面问题: 1. 过冲(Overshoot/Undershoot)
相关文档
最新文档