随机变量的数学期望与方差
【数学】离散型随机变量的期望与方差

离散型随机变量的期望与方差(一)一.原理1.数学期望: 一般地,若离散型随机变量ξ的概率 分布为则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望, 简称期望(平均数、均值).2. 数学期望是离散型随机变量的一个特征数,它反映 了离散型随机变量取值的平均水平3. 期望的一个性质:若b a +=ξη(a 、b 是常数), ξ是随机变量,则η也是随机变量, b aE b a E +=+ξξ)(4.方差: 对于离散型随机变量ξ,如果它所有可能取的 值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…, 那么,ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+…称为随机变量ξ的均方差,简称为方差,式中的ξE 是 随机变量ξ的期望.5. 标准差:ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.6.方差的性质:ξξD)(=+;aD2ab7.二项分布的期望和方差若ξ~B(n,p),则Eξ=np ,=ξD np(1-p)二.应用例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望和方差步骤(1)求分布列(2)求期望和方差例2.甲,乙两个盒子各放有5件产品,甲盒子中有2件次品,乙盒子中有1件次品,其它都是正品。
(1)若将两个盒子的产品放在一起,然后一件一件取出检查,直到所有次品都被检出为止。
求所有次品恰好在第4次检查时被检出的概率(2) 若将两个盒子的产品放在一起,然后一件一件 取出检查,求第1个次品恰好在第4次检查时被检出的概率(3) 若从甲,乙两个盒子中各取一件产品进行交换,求交换后乙盒子中正品件数的期望和方差例3. 一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分 学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是ηξ,,则ξ~ B (20, ),)25.0,20(~B η,525.020,189.020=⨯==⨯=∴ηξE E由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5ξ和5η 所以,他们在测验中的成绩的期望分别是:2555)(5)5(,90185)(5)5(=⨯===⨯==ηηξξE E E E例4. 有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数ξ的期望(结果保留三个有效数字)解:抽查次数ξ取0~10的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前1-k 次取出正品而第k 次(k =1,2,…,9)取出正品的概率:15.085.0)(1⨯==-k k P ξ(k =1,2, (9)需要抽查10次即前9次取出的都是正品的概率:85.0)10(==ξP 由此可得ξ的概率分布如下:根据以上的概率分布,可得ξ的期望35.52316.0101275.0215.01=⨯+⋅⋅⋅+⨯+⨯=ξE。
《数学期望与方差》课件

相关系数在统计学、金融等领域有广泛应用,如股票价格与市场指数的相关性分析、回归分析等。
相关系数的应用
数学期望的性质
数学期望具有线性性质、可加性质、可乘性质等,这些性质在概率论和统计学中有重要应用。
05
数学期望与方差的实例分析
总结词
数学期望和方差在投资组合的风险与回报分析中具有重要应用。
总结词
利用数学期望和方差可以对赌博游戏的概率进行分析。
详细描述
在赌博游戏中,玩家需要根据游戏规则和概率计算每种可能结果的数学期望和方差,以评估游戏的风险和潜在收益。通过比较不同赌博游戏的数学期望和方差,玩家可以做出更明智的决策。
数学期望
对于赌博游戏而言,数学期望计算的是长期玩家的平均收益。如果数学期望为正数,则表示长期玩家将获得正收益;如果数学期望为负数,则表示长期玩家将面临亏损。
方差
在赌博游戏中,方差反映了玩家实际收益与预期收益之间的波动范围。较小的方差表示实际收益相对稳定,而较大的方差则表示实际收益可能存在较大的波动。
01
02
03
04
总结词:数学期望和方差可用于预测市场的表现。
THANK YOU
数学期望和方差在某些情况下可以相互转化,如当随机变量服从正态分布时。
变量同时变动的情况,即一个变量增加或减少时,另一个变量也相应地增加或减少的概率。
协方差的概念
协方差 = E[(X-E[X])(Y-E[Y])],其中E[X]和E[Y]分别是X和Y的数学期望,X和Y是随机变量。
协方差的计算公式
协方差可以用于分析投资组合的风险,如果两个资产的收益率呈正相关,则它们的协方差为正;如果呈负相关,则协方差为负。
协方差的应用
1
随机变量与期望方差

0.1 b=
0.4 .
归纳求离散型随机变量期望的步骤: ①、确定离散型随机变量可能的取值。
②、写出分布列,并检查分布列的正确与否。
③、求出期望。
例1、随机抛掷一个骰子,设随机变量ξ 为所得骰子的点数,
(1)求随机变量ξ 的概率分布律; (2)求Eξ 。 解:(1)随机变量ξ的概率分布律为: x P(ξ =x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6
解:(1) X~B(3,0.7)
X P 0 1
3
2
2
3
0.3
C 0.7 0.3
1 3
C 0.7 0.3
2 3 2
0.7
3
1 2 (2) EX 0 0.33 1 C3 0.7 0.32 2 C3 0.72 0.3 3 0.73
EX 2.1 3 0.7
k
…
pqk-1 …
q D 2 p
例4 有一批数量很大的产品,其次品率是 15%,对这批产品进行抽查,每次抽出1件, 如果抽出次品,则抽查终止,否则继续抽查, 直到抽出次品,但抽查次数最多不超过10 次.求抽查次数ξ的期望(结果保留三个有 效数字).
分析: (1)P(ξ=k)=0.85 k-1×0.15,( k=1,2,…,9) k=10时,前9次取出的都是正品,第10次可能取出次品,也 可能取出正品, 所以P(ξ=10)=0.859×(0.15+0.85)=0.859 (2)写出ξ的分布列,由概率分布可得
x 6 7 8 9 10 上海队员: P ( x ) 0 0.3 0.4 0.2 0.1
x 6 7 8 9 10 辽宁队员: P( x) 0.04 0.24 0.44 0.22 0.06
数学期望与方差

第四章 随机变量Biblioteka 数字特征第一节 随机变量的 数学期望
一、数学期望的概念
二、随机变量函数的数学期望 三、数学期望的性质
四、应用实例
下 回
停
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫德.梅尔的贵族就“两个 赌徒约定赌若干局, 且谁先赢 c 局便算赢家, 若 在一赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便 终止赌博, 问应如何分赌本” 为题求教于帕斯 卡, 帕斯卡与费马通信讨论这一问题, 于1654 年 共同建立了概率论的第一个基本概念 — 数学 期望
0 . 3 0 .1 0 . 6
8 9 10
乙射手
0 .2 0 .5 0 .3
试问哪个射手技术较好?
解 运动员的水平是通过其平均水平来衡量的, 因而甲、乙两射手的平均水平分别为
甲 : 8 0.3 9 0.1 10 0.6 9.3(环) , 乙 : 8 0.2 9 0.5 10 0.3 9.1(环), 故甲射手的技术比较好.
若级数 xk pk 绝对收敛, 即 xk pk , 则称
级数 xk pk 的和为随机变量 X 的数学期望,
k 1 k 1
k 1
PX xk pk , k 1,2,.
记为EX, 即 E X
k 1
xk pk .
比如
X的分布律为
正态分布 指数分布
1 λ
λe λx , x 0 p x x0 0,
随机变量函数的数学期望

(二) 方差的性质
1、常数的方差等于0
证明: D(c) E(c Ec)2 E(c c)2 0
2、随机变量和常数之和的方差就等于这个随机变量的方差。 证明:
D( c) E[ c E( c)]2 E[ c E c]2 E( E )2 D
§4.1 数学期望与方差
一.数学期望
随机变量x及它所取的数和相应频率的乘积和,称为x的平 均数(属于加权平均)也称为随机变量的数学期望或均值.
(一)离散型随机变量的数学期望
定义1 离散型随机变量X 有概率函数 P(X=xk)=Pk (k=1,2,....)
若级数 xk pk 绝对收敛,则称这个级数为X 的数学期望 k 1
ba 2
2
可见均匀分布的数学期望为区间的中值.
2.随机变量函数的数学期望
定理1 设Y是随机变量X的函数,Y=g(X)(g是连续函数)
(若1)若 Xg是(x离k ) 散pk绝型对 随机收变敛量,则,它E的(Y分) 布E律[g为( XP{)X] =xk}=gp(kx. k
K=1,2,..
k x) 2
f
(x)dx
1
a (x3 kx)2 dx
2a a
a2 (15a4 42ka2 35k) E(C)=C.
(2) E( +C)=E +C
证明:对离散型随机变量
E( C) (xi C) p(xi ) xi p(xi ) Cp(xi ) E C
E1 0.2 (80 85 90 95 100) 90 E2 0.2 (85 87.5 90 92.5 95) 90 D1 (80 90)2 0.2 (85 90)2 0.2 (90 90)2 0.2
随机变量的数学期望与方差

随机变量的数学期望与方差随机变量是概率论和统计学中的重要概念,用来表示随机试验的结果。
在研究随机变量时,我们常常关注它们的数学特征,其中最常用的指标是数学期望和方差。
一、数学期望数学期望是描述随机变量平均取值的一个指标,记作E(X)。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X = x))其中,x 表示随机变量可能的取值,P(X = x)表示随机变量取值为 x 的概率。
通过这个公式,我们可以计算出随机变量的平均取值。
例如,假设我们抛一枚公平的硬币,正面为1,反面为0。
随机变量 X 表示硬币正面朝上的次数,那么 X 的所有可能取值及其概率为:X = 0,P(X = 0) = 1/2X = 1,P(X = 1) = 1/2根据数学期望的计算公式,我们可以计算得到该随机变量的数学期望为:E(X) = 0 * 1/2 + 1 * 1/2 = 1/2这意味着,在多次独立重复抛硬币的实验中,硬币正面朝上的平均次数大约为 1/2。
对于连续型随机变量,数学期望的计算公式稍有不同,可以使用积分的方法计算。
二、方差方差是描述随机变量取值分散程度的一个指标,记作Var(X)或σ²。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))² * P(X = x))其中,x 表示随机变量可能的取值,E(X)表示随机变量的数学期望,P(X = x)表示随机变量取值为 x 的概率。
通过这个公式,我们可以计算出随机变量的方差。
方差的计算公式可以拆解为方差等于随机变量与数学期望的偏差的平方乘以概率的和。
这意味着方差可以用来衡量随机变量的取值与其期望值之间的差异程度。
例如,我们继续以抛硬币的例子来说明方差的计算过程。
在之前的例子中,我们已经计算出随机变量 X 的数学期望为 1/2。
现在,我们可以使用方差的公式来计算方差:Var(X) = (0 - 1/2)² * 1/2 + (1 - 1/2)² * 1/2 = 1/4这意味着在多次独立重复抛硬币的实验中,硬币正面朝上的次数与其期望值的差异程度可以用方差 1/4 来描述。
连续型随机变量的数学期望与方差

(1)D( )
E[
E( )]2
[x
E( )]2
p( x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
例2 随机变量的概率密度函数
6x(1 x),当0 x 1
p(x)
0
当x 0或x 1时
求随机变量的方差。
12
4、方差的性质 设 k ,b,c均为常数,则有
E( ) xp(x)dx
15
2、数学期望的性质
(1)EaX b aEX b
(2)EaX aEX
(3)EX b EX b
(4)Eb b
(5)EX Y EX EY
(6)E( f ( )) f (x)p(x)dx
(6)E f ( ) f (xk )PK
k
16
(二)连续型随机变量ξ取值的方差
(1)D(c) 0
(2)D(k ) k 2D( ) (3)D( b) D( )
(4)D(k b) k 2D( )
13
下页
三、练习
• 课本第90页 第6题
14
四、小结 (一)连续型随机变量ξ取值的数学期望
1、连续型随机变量的数学期望的定义 p(x) 设连续型随机变量 的密度函数为
若积分 xp(x绝)d对x 收敛,则 的数学期望为:
x0 x1 x2 L xn
xi xi1 xi
b i
【xi
,
xi
)
+1
y p(x)
o
x0b0 x1 xi bi xi1
xn x
6
连续型随机变量ξ的概率分布
ξ 【x0 , x1)【x1, x2)
概率论中的期望与方差计算技巧

概率论中的期望与方差计算技巧概率论是数学中的一个重要分支,它研究的是随机事件的规律性。
在概率论中,期望和方差是两个重要的概念,它们能够帮助我们描述和分析随机变量的特征和变异程度。
本文将介绍一些计算期望和方差的技巧,帮助读者更好地理解和应用概率论。
首先,我们来了解一下期望的概念。
在概率论中,期望是随机变量的平均值,它是对随机变量取值的加权平均。
对于离散型随机变量,期望的计算公式为:E(X) = ΣxP(X=x)其中,X表示随机变量,x表示随机变量的取值,P(X=x)表示随机变量取值为x的概率。
这个公式的意义是,将每个取值乘以其对应的概率,然后将所有结果相加,即可得到期望。
对于连续型随机变量,期望的计算公式为:E(X) = ∫xf(x)dx其中,f(x)表示随机变量的概率密度函数。
这个公式的意义是,将每个取值乘以其对应的概率密度,然后对所有结果进行积分,即可得到期望。
接下来,我们来讨论一下方差的计算技巧。
方差是用来衡量随机变量的离散程度的指标,它表示随机变量与其期望之间的差异。
方差的计算公式为:Var(X) = E[(X-E(X))^2]其中,E(X)表示随机变量的期望。
这个公式的意义是,将随机变量与其期望的差值平方,然后对所有结果进行加权平均,即可得到方差。
在实际计算中,计算期望和方差可能会遇到一些复杂的情况。
下面,我们将介绍一些常见的计算技巧,帮助读者更好地应用概率论。
首先,对于独立随机变量的期望和方差计算,可以利用期望和方差的性质进行简化。
如果X和Y是独立随机变量,那么它们的期望和方差的计算可以分别简化为:E(X+Y) = E(X) + E(Y)Var(X+Y) = Var(X) + Var(Y)这个性质在实际计算中非常有用,可以简化复杂问题的求解过程。
其次,对于二项分布和泊松分布的期望和方差计算,可以利用分布的特性进行简化。
对于二项分布,期望和方差的计算公式为:E(X) = npVar(X) = np(1-p)其中,n表示试验次数,p表示每次试验成功的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。
2.熟练能计算随机变量的数学期望与方差。
教学重点:1.随机变量的数学期望For personal use only in study and research; not for commercial use2.随机变量函数的数学期望3.数学期望的性质4.方差的定义For personal use only in study and research; not for commercial use5.方差的性质教学难点:数学期望与方差的统计意义。
教学学时:2学时。
For personal use only in study and research; not for commercial use教学过程:第三章随机变量的数字特征§3.1 数学期望For personal use only in study and research; not for commercial use在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。
然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。
因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。
1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。
车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。
这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。
对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。
但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k kp x由此引入离散随机变量数学期望的定义。
定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果∑∞=1||k k kp x收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。
例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开门。
若每把钥匙试开一次后除去,求打开门时试开次数的数学期望。
解 设试开次数为X ,则nk X p 1)(==,n , ,2 ,1 =k于是∑=⋅=nk n k X E 11)(2)1(1n n n +⋅=21+=n 2. 连续随机变量的数学期望为了引入连续随机变量数学期望的定义,我们设X 是连续随机变量,其密度函数为)(x f ,把区间) , (∞+-∞分成若干个长度非常小的小区间,考虑随机变量X 落在任意小区间] , (dx x x +内的概率,则有)(dx x X x p +≤<=⎰+dx x xdx t f )(dx x f )(≈由于区间] , (dx x x +的长度非常小,随机变量X 在] , (dx x x +内的全部取值都可近似为x ,而取值的概率可近似为dx x f )(。
参照离散随机变量数学期望的定义,我们可以引入连续随机变量数学期望的定义。
定义2 设X 是连续随机变量,其密度函数为)(x f 。
如果⎰∞∞-dx x f x )(||收敛,定义连续随机变量X 的数学期望为⎰∞∞-=dx x f x X E )()(也就是说,连续随机变量的数学期望是一个绝对收敛的积分。
由连续随机变量数学期望的定义不难计算: 若),(~b a U X ,即X 服从), (b a 上的均匀分布,则2)(ba X E +=若X 服从参数为的泊松分布,则λλ=)(X E若X 服从则 ),,(2σμNμ=)(X E3.随机变量函数的数学期望设已知随机变量X 的分布,我们需要计算的不是随机变量X 的数学期望,而是X 的某个函数的数学期望,比如说)(X g 的数学期望,应该如何计算呢?这就是随机变量函数的数学期望计算问题。
一种方法是,因为)(X g 也是随机变量,故应有概率分布,它的分布可以由已知的 X 的分布求出来。
一旦我们知道了)(X g 的分布,就可以按照数学期望的定义把)]([X g E 计算出来,使用这种方法必须先求出随机变量函数)(X g 的分布,一般是比较复杂的。
那么是否可以不先求)(X g 的分布,而只根据X 的分布求得)]([X g E 呢?答案是肯定的,其基本公式如下:设X 是一个随机变量,)(X g Y =,则⎪⎩⎪⎨⎧==⎰∑∞∞-∞=连续离散X dx x f x g X p x g X g E Y E k k k ,)()(,)()]([)(1当X 是离散时, X 的概率函数为 ,2 ,1 ,)()(====k P x X P x P K K k ; 当X 是连续时,X 的密度函数为)(x f 。
该公式的重要性在于,当我们求E [g (X )]时,不必知道g (X )的分布,而只需知道X 的分布就可以了,这给求随机变量函数的数学期望带来很大方便。
4.数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
推广到n 个随机变量有∑∑===ni i ni i X E X E 11)(][。
(4)设X 、Y 相互独立,则有 E (XY )=E (X )E (Y )。
推广到n 个随机变量有 ∏∏===ni i ni i X E X E 11)(][5.数学期望性质的应用例2 求二项分布的数学期望。
解 若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。
若设⎩⎨⎧=次试验失败如第次试验成功如第i i X i 01 i =1,2,…,n 则n X X X X +++= 21,因为 P X P i ==)1(,q P X P i =-==1)0( 所以p p q X E i =*+*=10)(,则=)(X E np X E X E ni i ni i ==∑∑==11)(][可见,服从参数为n 和p 的二项分布的随机变量X 的数学期望是np 。
需要指出,不是所有的随机变量都存在数学期望。
例3 设随机变量X 服从柯西分布,概率密度为 +∞<<-∞=+x x f x ,)()1(12π 求数学期望)(X E 。
解 依数学期望的计算公式有 dx X E x x ⎰+∞∞-+=112)(π因为广义积分dx x x⎰+∞∞-+1不收敛,所以数学期望)(X E 不存在。
§3.2 方差前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是我们要学习的方差的概念。
1. 方差的定义定义3 设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E - (3.1)为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
方差的算术平方根)(X D 称为随机变量X 的标准差,记作)(X σ,即)()(X D X =σ由于)(X σ与X 具有相同的度量单位,故在实际问题中经常使用。
方差刻画了随机变量的取值对于其数学期望的离散程度,若X 的取值相对于其数学期望比较集中,则其方差较小;若X 的取值相对于其数学期望比较分散,则方差较大。
若方差)(X D =0,则随机变量X 以概率1取常数值。
由定义1知,方差是随机变量X 的函数2)]([)(X E X X g -=的数学期望,故⎪⎩⎪⎨⎧--=⎰∑∞∞-∞=连续时当离散时当X dx x f X E x p X E x X D k k k k ,)()]([X ,)]([)(212当X 离散时, X 的概率函数为 ,2 ,1 ,)()(====k P x X P x P K K k ; 当X 连续时,X 的密度函数为)(x f 。
计算方差的一个简单公式:22)]([)()(X E X E X D -=证22222)]([)(])]([)(2[]))([()(X E X E x E X XE X E X E X E X D -=+-=-= 请用此公式计算常见分布的方差。
例4 设随机变量X 服从几何分布,概率函数为1)1(--=k k p p P , k =1,2,…,n其中0<p <1,求)(X D 。
解 记q =1-p∑∞=-=11)(k k kpqX E ∑∞==1)'(k kq p ∑∞==1)'(k k q p )'1(q q p -=p1= ∑∞=-=1122)(k k pqk X E ])1([1111∑∑∞=-∞=-+-=k k k k kq qk k p ∑∞=''=1)(k k q qp +E (X )p q q qp 1)1(+''-=p q qp 1)1(23+-=p p q 122+=22)]([)()(X E X E X D -=22pp -=21p -21p p-= 2. 方差的性质(1)设C 是常数,则D (C )=0。
(2)若C 是常数,则)()(2X D C CX D =。
(3)若X 与Y 独立,则)()()(Y D X D Y X D +=+。
证 由数学期望的性质及求方差的公式得{}{})()()]([)()]([)()()(2)]([)]([)()(2)()()]()([]2[)]([])[()(2222222222222Y D X D Y E Y E X E X E Y E X E Y E X E Y E X E Y E X E Y E x E XY Y X E Y X E Y X E Y X D +=-+-=---++=+-++=+-+=+可推广为:若1X ,2X ,…,n X 相互独立,则∑∑===ni i ni i X D X D 11)(][∑∑===ni i i n i i i X D C X C D 121)(][(4) D (X )=0 ⇔P (X = C )=1, 这里C =E (X )。