独立随机变量期望和方差的性质

合集下载

随机变量的期望与方差

随机变量的期望与方差

随机变量是概率论中非常重要的概念,它描述了一次随机试验中可能出现的各种结果及其对应的概率。

而随机变量的期望和方差是对这些结果的统计性质的度量。

首先,我们来看看随机变量的期望。

期望是对随机变量的平均值的度量,它表示了在多次随机试验中,随机变量的结果的平均表现。

对于离散型随机变量,期望可以用如下公式来计算:E(X) = Σ(x_i * p_i)其中,E(X)表示随机变量X的期望,x_i表示随机变量X可能的取值,p_i表示该取值出现的概率。

对于连续型随机变量,期望的计算方式稍有不同。

在这种情况下,期望可以用如下公式来计算:E(X) = ∫(x * f(x))dx其中,E(X)表示随机变量X的期望,x表示随机变量X的取值,f(x)表示X的概率密度函数。

期望可以理解为随机变量的平均表现,它具有很多应用。

例如,在赌博中,我们可以用期望来判断一个赌局是否合理。

如果某个赌局的期望为负,意味着赌徒平均而言会亏损,此时赌徒应该避免参与这个赌局。

接下来,我们来看看随机变量的方差。

方差是对随机变量结果的离散程度的度量,它表示了多次随机试验中,随机变量结果与其期望之间的差异程度。

方差越大,表示结果的离散程度越大,反之亦然。

对于离散型随机变量,方差可以用如下公式来计算:Var(X) = Σ((x_i - E(X))^2 * p_i)其中,Var(X)表示随机变量X的方差,x_i表示随机变量X可能的取值,p_i表示该取值出现的概率。

对于连续型随机变量,方差的计算方式稍有不同。

在这种情况下,方差可以用如下公式来计算:Var(X) = ∫((x - E(X))^2 * f(x))dx其中,Var(X)表示随机变量X的方差,x表示随机变量X的取值,f(x)表示X的概率密度函数。

方差可以理解为随机变量结果的离散程度。

它具有很多应用。

例如,在金融领域,方差被广泛用于度量投资组合的风险。

一个投资组合的方差越大,意味着其回报的波动性越大,风险越高。

独立随机变量期望和方差的性质

独立随机变量期望和方差的性质
7.4 独立随机变量期望和方差的性质
独立随机变量乘积的期望的性质:
X , Y 独立,则 E XY E X E Y
以离散型随机变量为例, 设二元随机变量 X , Y 的联合分布列 P X xi , Y y j 已知, 则 P X xi , Y y j P X x i P Y y j ,
2 2 E X 2 2 XY Y 2 E X 2 E X Y 2 E Y 2 E XY 2 E X E Y
2 2
E X 2 E X E Y 2 E Y Var X Var Y
Var Y Var X 1 X 2
X r Var X 1
Var X r
r 1 p p2
*********************************************************************** 例 7.4.1 设随机变量 X , Y 相互独立,已知 它们的期望分别为 E X 和 E Y 。令
2
U max X , Y , V max X , Y ,求 E UV 。
解: 分别考虑 X Y 和 X Y 两种情况, 当 X Y 时, U X , V Y ; 当 X Y 时, U Y , V X ; 所以 UV XY ,
E UV E XY E X E Y 。
3
Var X Var X 1 X 2
X n Var X 1 Var X 2
*********************************************************************** 负二项分布随机变量

随机变量方差的定义及性质

随机变量方差的定义及性质
方差与期望值的离散程度有关。如果一个随机变量的取值比较离散,即取值比较分散,那么其方差就比较大;如果一个随机 变量的取值比较集中,即取值比较接近期望值,那么其方差就比较小。
02
CATALOGUE
方差的性质
方差的非负性
总结词
方差具有非负性,即对于任何随机变量X,其方差Var(X)总是非负的。
详细描述
方差的独立性
要点一
总结词
如果两个随机变量X和Y是独立的,那么Var(X+Y) = Var(X) + Var(Y)。
要点二
详细描述
这是方差的一个重要性质,表明如果两个随机变量相互独 立,那么它们的和的方差等于它们各自方差的和。这个性 质在概率论和统计学中非常重要,因为它允许我们通过独 立随机变量的方差来计算复合随机变量的方差。
度。
方差主要关注数据点的离散程度 ,而峰态则关注数据点的集中趋
势。
如果数据分布更加尖锐,即数据 点更加集中在平均值附近,则方 差可能会减小,因为数据点之间
的差异较小。
THANKS
感谢观看
方差还可以表示为
Var(X)=E(X^2)-[E(X)]^2。这个公式可以用来计算方差,其中E(X^2)表示随机变量X的平方的期望值 ,E(X)表示随机变量X的期望值。
方差与期望值的关系
方差的大小与期望值有关。如果一个随机变量的期望值越大,其方差也越大;如果一个随机变量的期望值越小,其方差也越 小。
03
CATALOGUE
方差的应用
方差在统计学中的应用
描述数据分散程度
方差是衡量随机变量取值分散程度的量,用于描述数 据的离散程度。
检验假设
在统计学中,方差分析(ANOVA)等方法用于检验 多个总体均值是否相等,从而判断假设是否成立。

数学期望(均值)、方差和协方差的定义与性质

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。

即()1k k k E X x p ∞==∑。

设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。

即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。

性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。

2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。

期望方差协方差

期望方差协方差

随机变量的数字特征一、数学期望E(x)的性质:性质一:常数C,E(C)=C;性质二:X为随机变量,C为常数,则E(CX)=CE(X);性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y);性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y)二、方差的性质:D(X)=E(X²)-[E(X)]²性质一:C为常数,则D(C)=0;性质二:X为随机变量,C为常数,则D(CX)=C²D(X)D(X±C)=D(X)性质三:X,Y为相互独立随机变量D(X±Y)=D(X)+D(Y)当X,Y不相互独立时:D(X±Y)=D(X)+D(Y)±2COV(X,Y);关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明?证:由COV(X,Y)=E(XY)-E(X)E(Y) 得COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]}=E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y)=E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]=D(X)-D(Y)三、常用函数期望与方差:⑴(0-1)分布:①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0<p<1)②数学期望:p③方差:pq (q=1-p)⑵二项分布B(n,p):①分布律:P{X=K}=(n,k)p^k(1-p)n-k (k=0,1..n;n>=1,0<p<1,q=1-p)②数学期望:np③方差:npq⑶泊松分布π(λ):①分布律:P{X=k}=(λ^k *e^(-λ))/k! (k=0,1,2...;λ>0)②数学期望:λ③方差:λ⑷均匀分布U(a,b):①分布律:f(X)=1/(b-a), a<x<b; f(X)=0,x∈其他值时②数学期望:(a+b)/2③方差:(b-a)²/12⑸指数分布E(λ):①分布律:f(X)=λe^(-λ), X>0; f(X)=0, X≦0;②数学期望:1/λ③方差:1/λ²⑹正态分布N(μ,ρ²)①分布律:f(x)=1/﹙√2π *ρ)*e^(-(x-μ)²/(2ρ²)),(-∞<x<+∞,ρ>0)②数学期望:μ③方差:ρ²四、切比雪夫不等式:随机变量的数学期望E(x)与方差D(x)存在,则对于任意整数ε,不等式:P{|X-E(X)|≥ε}≤D(X)/ε²成立。

随机变量的数学期望与方差

随机变量的数学期望与方差

随机变量的数学期望与方差随机变量是概率论和统计学中的重要概念,用来表示随机试验的结果。

在研究随机变量时,我们常常关注它们的数学特征,其中最常用的指标是数学期望和方差。

一、数学期望数学期望是描述随机变量平均取值的一个指标,记作E(X)。

对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X = x))其中,x 表示随机变量可能的取值,P(X = x)表示随机变量取值为 x 的概率。

通过这个公式,我们可以计算出随机变量的平均取值。

例如,假设我们抛一枚公平的硬币,正面为1,反面为0。

随机变量 X 表示硬币正面朝上的次数,那么 X 的所有可能取值及其概率为:X = 0,P(X = 0) = 1/2X = 1,P(X = 1) = 1/2根据数学期望的计算公式,我们可以计算得到该随机变量的数学期望为:E(X) = 0 * 1/2 + 1 * 1/2 = 1/2这意味着,在多次独立重复抛硬币的实验中,硬币正面朝上的平均次数大约为 1/2。

对于连续型随机变量,数学期望的计算公式稍有不同,可以使用积分的方法计算。

二、方差方差是描述随机变量取值分散程度的一个指标,记作Var(X)或σ²。

对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))² * P(X = x))其中,x 表示随机变量可能的取值,E(X)表示随机变量的数学期望,P(X = x)表示随机变量取值为 x 的概率。

通过这个公式,我们可以计算出随机变量的方差。

方差的计算公式可以拆解为方差等于随机变量与数学期望的偏差的平方乘以概率的和。

这意味着方差可以用来衡量随机变量的取值与其期望值之间的差异程度。

例如,我们继续以抛硬币的例子来说明方差的计算过程。

在之前的例子中,我们已经计算出随机变量 X 的数学期望为 1/2。

现在,我们可以使用方差的公式来计算方差:Var(X) = (0 - 1/2)² * 1/2 + (1 - 1/2)² * 1/2 = 1/4这意味着在多次独立重复抛硬币的实验中,硬币正面朝上的次数与其期望值的差异程度可以用方差 1/4 来描述。

概率论中的期望与方差计算技巧

概率论中的期望与方差计算技巧

概率论中的期望与方差计算技巧概率论是数学中的一个重要分支,它研究的是随机事件的规律性。

在概率论中,期望和方差是两个重要的概念,它们能够帮助我们描述和分析随机变量的特征和变异程度。

本文将介绍一些计算期望和方差的技巧,帮助读者更好地理解和应用概率论。

首先,我们来了解一下期望的概念。

在概率论中,期望是随机变量的平均值,它是对随机变量取值的加权平均。

对于离散型随机变量,期望的计算公式为:E(X) = ΣxP(X=x)其中,X表示随机变量,x表示随机变量的取值,P(X=x)表示随机变量取值为x的概率。

这个公式的意义是,将每个取值乘以其对应的概率,然后将所有结果相加,即可得到期望。

对于连续型随机变量,期望的计算公式为:E(X) = ∫xf(x)dx其中,f(x)表示随机变量的概率密度函数。

这个公式的意义是,将每个取值乘以其对应的概率密度,然后对所有结果进行积分,即可得到期望。

接下来,我们来讨论一下方差的计算技巧。

方差是用来衡量随机变量的离散程度的指标,它表示随机变量与其期望之间的差异。

方差的计算公式为:Var(X) = E[(X-E(X))^2]其中,E(X)表示随机变量的期望。

这个公式的意义是,将随机变量与其期望的差值平方,然后对所有结果进行加权平均,即可得到方差。

在实际计算中,计算期望和方差可能会遇到一些复杂的情况。

下面,我们将介绍一些常见的计算技巧,帮助读者更好地应用概率论。

首先,对于独立随机变量的期望和方差计算,可以利用期望和方差的性质进行简化。

如果X和Y是独立随机变量,那么它们的期望和方差的计算可以分别简化为:E(X+Y) = E(X) + E(Y)Var(X+Y) = Var(X) + Var(Y)这个性质在实际计算中非常有用,可以简化复杂问题的求解过程。

其次,对于二项分布和泊松分布的期望和方差计算,可以利用分布的特性进行简化。

对于二项分布,期望和方差的计算公式为:E(X) = npVar(X) = np(1-p)其中,n表示试验次数,p表示每次试验成功的概率。

数学期望与方差的性质

数学期望与方差的性质

i 1,2,,n
n
n
所以 E(X)= E( Xi )= np D( X ) D( Xi ) np(1 p)
i1
i1
例 一台设备由三部件构成,在设备运转中各部件需要调整的 概率相应为0.10 ,0.20和0.30。假设每台部件的状态是相互独立 的。以 X 表示同时需要调整的部件数,试求 X 的数学期望。
解一 利用公式求E(X ).
先求分布律
X0 1 2 3 P 0.504 0.398 0.092 0.006
E( X ) xk pk 0.6
k
解二 利用性质求E(X )

Xi
1 0
如第i个需调整 如第i个不需调整 i=1,2,3
Xi 0 P 1 P( Ai)
1 P( Ai)
则 X= X1+X2+X3 EX i P( Ai) EX= EX1+EX2+EX3 =0.6
数学期望与方差的性质非常重要,既 可以利用它们简化计算,又可以得到许多 重要结论.
例已知随机变量 X 服从参数为的泊松分布, 简化计
算 且E[(X 1)(X 2)] 1,
则 _ .
本题要求熟悉泊松分布的有关特征,并会利用数学期望的性质
E (X 1)( X 2) E( X 2 3X 2)
解二 利用性质求E(X ), D (X ).
重要方法
若 X表示n重贝努里试验中的“成功” 次数
引入随机变量 X 1 , X 2 , , X n

X
i
1 0
如第i次试验成功
如第i次试验失败 i=1,2,…,n
则 X= X1+X2+…+Xn X1, X 2 ,, Xn 相互独立
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
设 X1 , X 2 ,
, X n 相互独立,且均服从 0-1 分布 B 1, p ,则 X X 1 X 2
Xn
2 对所有 k 1, , n , E X k 1 p 0 1 p p , E X k 1 p 0 1 p p
2 2 E X 2 2 XY Y 2 E X 2 E X E Y E Y
E X 2 E X E Y 2 E Y 2 E X2
E X 2 E X E Y 2 E Y Var X Var Y
Var X Var X 1 X 2
X n Var X 1 Var X 2
*********************************************************************** 负二项分布随机变量
Y ~ NB( r , p ) : 连续不断且独立地重复进行一个参数为 p 的伯努利试验, 第r次 “成功”
出现时所进行的试验次数。更细致地考虑由伯努利试验构造参数为 r,p 的负二项分布 随机变量的过程。从伯努利试验开始到第一次成功,所进行试验的次数是随机的,记 为随机变量 X 1 ,则 X 1 服从参数为 p 的几何分布;然后继续独立地进行伯努利试验,到 第二次试验成功, 我们记从第一次试验成功后开始计算的试验次数为 X 2 , 则 X 2 仍然服 从参数为 p 的几何分布;如此进行下去,到第 r 次“成功”出现时所进行的总的伯努 利试验次数 Y 就等于 X1 加 X2 一直加到 Xr。 设 X1 , X 2 ,
Var X k E X k 2 E X k p p 2 p 1 p ,
2
E X E X1 X 2
X n E X1 E X 2
E X n np Var X n np 1 p
, X r 相互独立,且均服从几何分布 Ge p , Xr ;
E Xk
则 Y X1 X 2
1 p 1 , Var X k 2 , k 1, 2, p p
E Xr r p
,r
E Y E X 1 X 2
X r E X1
2 2
若 X1 , X 2 ,
, X n 相互独立,且都存在方差,则 Var X 1 X 2
X m Var X k
k 1
n
*********************************************************************** 利用独立的 0-1 分布求和计算二项分布随机变量 X ~ b n, p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差 求和的性质。这里我们再回顾一下。
3
2
U max X , Y , V max X , Y ,求 E UV 。
解: 分别考虑 X Y 和 X Y 两种情况, 当 X Y 时, U X , V Y ; 当 X Y 时, U Y , V X ; 所以 UV XY ,
E UV E XY E X E Y 。
Var Y Var X 1 X 2
X r Var X 1
Var X r
r 1 p p2
*********************************************************************** 例 7.4.1 设随机变量 X , Y 相互独立,已知 它们的期望分别为 E X 和 E Y 。令
i 1 j 1
n


*********************************************************************** 独立随机变量和的方差的性质:
X , Y 独立,则 Var X Y Var X Var Y
2 2 Var X Y E X Y E X Y
7.4 独立随机变量期望和方差的性质
独立随机变量乘积的期望的性质:
X , Y 独立,则 E XY E X E Y
以离散型随机变量为例, 设二元随机变量 X , Y 的联合分布列 P X xi , Y y j 已知, 则 P X xi , Y y j P X x i P Y y j ,
m n






i 1, 2,
, m; j 1, 2,
,n

E XY xi y j P X xi , Y y j xi y j P X xi P Y y j
i 1 j 1 m i 1 j 1


m
n


xi P X xi y j P Y y j E X E Y
相关文档
最新文档