几种重要随机变量的数学期望及方差
概率论与数理统计 --- 第四章{随机变量的数字特征} 第一节:数学期望

这个数能否作为 X的平均值呢?
若统计100天,
可以想象, 若另外统计100天, 车工小张不出废品, 这另外100天每天的平均废品数也不一定是1.27. 一般来说, 若统计n天 ,
(假定小张每天至多出三件废品)
又设飞机机翼受到的正压力W 是V 的函数 : W kV 2 ( k 0, 常数), 求W 的数学期望.
解: 由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0
2 2
a
例7 设二维连续型随机变量(X , Y)的概率密度为
A sin( x y ) 0 x , 0 y f ( x, y) 2 2 0 其它 (1)求系数A , ( 2)求E ( X ), E ( XY ).
x f ( x )x
i i i
i
阴影面积近似为
这正是:
f ( xi )xi
x f ( x )dx
的渐近和式.
小区间[xi, xi+1)
定义: 设X是连续型随机变量, 其密度函数为 f (x), 如果积分: xf ( x )dx
概率论
绝对收敛, 则称此积分值为X的数学期望, 即:
2. 设二维连续型随机变量 (X, Y) 的联合概率密度为 f (x, y), 则: E ( X )
E (Y )
xf X ( x )dx
yfY
( y )dy
xf ( x , y )dxdy,
常用分布的数学期望及方差

−
t2 2
dt , (
x−µ
σ
= t)
=
σ
2π
∫ te
t2 − 2
dt +
∞
µ 2π
∫e
t2 − 2
dt = µ
−
DX = E ( X − µ ) =
2
=
σ2 =− te 2π
σ t 2π −∞
∞
∫
2 2
t2 − e 2
t2 − 2
−∞
∫ (x − µ)
σ
2 ∞
2
1 2π σ
且 X 1 ,L , X n 独立,令 X = X 1 + L + X n ,则 X 的可能 取值为 0,1,…n,
P{ X = k } = C nk p k q n − k , k = 0 , L , n
EX = ∑ EX i = np , DX = ∑ DX i = npq,
i =1 i =1 n n
n
= n ( n − 1) p 2 ∑
n! n! = p ( k − 1) p k −1 q n − k + p p k −1 q n − k ( k − 1)! ( n − k )! ( k − 1)! ( n − k )! k =1 k =1
∑
∑
n
( n − 2)! p k − 2 q n − 2 − ( k − 2 ) + np k = 2 ( k − 2)!( n − 2 − ( k − 2))!
泊 分 3. 松 布
设 X 服从参数为λ泊松分布, 其分布律为 P{ X = k} =
EX =
λk
∑
概率论课程第四章

第四章 数字特征前面我们介绍了随机变量及其分布,对于一个随机变量,只要知道了它的分布(分布函数或分布律、分布密度),它取值的概率规律就全部掌握了。
但在实际问题中,一个随机变量的分布往往不易得到,且常常只需知道随机变量的某几个特征就够了。
例如检查棉花的质量时,我们关心的是棉花纤维的平均长度和纤维长度与平均长度的偏差大小,这些数字反映了随机变量的一些特性,我们称能够反映随机变量特征的数字为随机变量的数字特征。
本章将介绍几个最常用的数字特征:数学期望、方差、协方差和相关系数。
第一节 数学期望一、离散型随机变量的数学期望数学期望反映的是随机变量取值的集中位置的特征,能够满足这一要求的自然是随机变量的平均取值,那么这个平均取值如何得到呢?怎样定义,我们先看一个例题例1:全班40名同学,其年龄与人数统计如下:该班同学的平均年龄为:4092115201519118⨯+⨯+⨯+⨯=a8.194092140152040151940118=⨯+⨯+⨯+⨯=若令X 表示从该班同学中任选一同学的年龄,则X 的分布律为于是,X 取值的平均值,即该班同学年龄的平均值为4092140152040151940118)(⨯+⨯+⨯+⨯==a X E8.19==∑ii i p x定义1:设X 为离散型随机变量,其分布律为i i p x X P ==}{, ,2,1=i如果级数 绝对收敛,则此级数为X 的数学期望(或均值),记为 E(X),即 ∑=ii i p x X E )(意义:E(X)表示X 取值的(加权)平均值。
如果级数 不绝对收敛,则称数学期望不存在。
例2:甲、乙射手进行射击比赛,设甲中的环数为X1,乙中的环数为X2,已知 X1和X2的分布律分别为:问谁的平均击中环数高?解:甲的平均击中环数为 E(X1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均击中环数为 E(X2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X1)> E(X2),即甲的平均击中环数高于乙的平均击中环数。
随机变量的期望与方差

5.(2017· 沧州七校联考)抛掷两枚骰子,当至少有一枚5点 或一枚6点出现时,就说这次实验成功,则在30次实验中成功次 数X的均值是( 55 A. 6 50 C. 3 ) 40 B. 3 D.10
答案 C 1 1 解析 至少有一枚5点或一枚6点的概率为1-(1-3)(1-3)= 4 5 5 5 50 1-9=9.∴X~B(30,9),∴E(X)=30×9= 3 .
n+1 1 (2)E(X)= (1+2+…+n)= , n 2 n+1 2 n+1 2 n+1 2 1 D(X)=n[(1- 2 ) +(2- 2 ) +…+(n- 2 ) ] n+1 2 1 2 1 2 2 2 2 = (1 +2 +3 +…+n )-( ) = (n -1). n 2 12
(3)设X为该生选对试题个数,Y为成绩. 则X~B(50,0.7),Y=3X. ∴E(X)=50×0.7=35,D(X)=50×0.7×0.3=10.5. 故E(Y)=E(3X)=3E(X)=105, D(Y)=D(3X)=9D(X)=94.5. n+1 1 2 35 【答案】 (1)3.5,10, (2) , (n -1) 12 2 12 (3)105,94.5
)
9 D.20
答案 C 解析 由分布列的性质知2x+3x+7x+2x+3x+x=1,∴x 1 20 = ,∴E(x)=0· 2x+1· 3x+2· 7x+3· 2x+4· 3x+5·x=40x= . 18 9
2.设随机变量X~B(n,p),且E(X)=1,6,D(X)=1.28, 则( ) A.n=8,p=0.2 C.n=5,p=0.32 B.n=4,p=0.4 D.n=7,p=0.45
第 课时 随机变量的期望与方差
…2017 考钢下载…
1.了解离散型随机变量的数学期望、方差、标准差的意 义,会根据离散型随机变量的分布列求它的期望、方差. 2.离散型随机变量的期望与方差在现实生活中有着重要意 义,因此求期望、方差是应用题的命题方向.
常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。
六个常用分布的数学期望和方差

即
12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0
(
x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2
4.1随机变量的期望

例2 设X ~ ( ), 求E ( X ).
解 X的分布率为 P{ X k }
X的数学期望为 E( X ) k
E ( X ) = np
i 1 i
可见,服从参数为n和p的二项分布的随机变量X 的数学期望是 n p.
例9 把数字1,2,…,n任意地排成一列,如果数字k恰 好出现在第 k 个位置上,则称为一个巧合,求巧合 个数的数学期望. 解: 设巧合个数为X, 引入
1, 数字k恰好出现在第k个位置上 k=1,2, …,n Xk 否则 0, n 则 X Xk
1 3 6 6
1 2 6 6
1 3 P{ X 70} P ( AB ) P ( A) P ( B ) 6 6 其中A为事件"第一班车8 : 10到站" , B为事件"第二班车
9 : 30到站".候车时间X的数学期望为
3 2 1 3 2 E ( X ) 10 30 50 70 90 27.22分 6 6 36 36 36
因此,在对随机变量的研究中,确定某些数 字特征是重要的 .
在这些数字特征中,最常用的是
数学期望、方差、协方差和相关系数
一、离散型随机变量的数学期望
1.概念的引 入 例如:某7人的高数成绩为90,85,85,
80,80,75,60,则他们的平均成绩为
90 85 2 80 2 75 60 7 1 2 2 1 1 79.3 90 85 80 75 60 7 7 7 7 7
数学期望和方差

数学期望和方差
第四章 数学期望和方差
分布函数能够完整地描述随机变量的统计特 性,但在实际问题中,随机变量的分布函数较 难确定,而它的一些数字特征较易确定.并且 在很多实际问题中,只需知道随机变量的某些 数字特征也就够了.
另一方面,对于一些常用的重要分布,如二 项分布、泊松分布、指数分布、正态分布等, 只要知道了它们的某些数字特征,就能完全确 定其具体的分布.
8 8
9 10 11 12 7 15 10 10 50
则这 50 个零件的平均直径为
8 8 9 7 1015 1110 1210 50 10.14cm
第四章
数学期望和方差
换个角度看,从这50个零件中任取一个,它 的尺寸为随机变量X , 则X 的概率分布为 X P 8
x
| x| 但 | x | f ( x ) dx dx 发散. 2 (1 x )
它的数学期望不存在.
注:虽然f(x)是偶函数,但不能用定理1.1.
第四章
数学期望和方差
§4.2 数学期望的性质
设已知随机变量X的分布,我们需要计算的不 是X的数学期望, 而是X的某个函数的数学期望, 比如说g(X)的数学期望. 那么应该如何计算呢? 更一般的,已知随机向量(X1 , X2 …,Xn ) 的联合分布, Y= g(X1, X2 …,Xn ) 是 (X1 , X2 …,Xn ) 的函数, 需要计算Y 的数学期 望,应该如何计算呢? 我们下面就来处理这个 问题.
8 50
12
9
7 50
10
15 50
12
11
10 50
12
10 50
则这 50 个零件的平均直径为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回主目录
第四章 随机变量的数字特征
EX 2 k 2 k e k k e
k 0
k!
k 1 (k 1)!
§3 几种期望与方差
(k 1)
k
e
k e
k 1
(k 1)!
k 1 (k 1)!
2e
k 2 ee 2
k 2 (k 2)!
DX EX 2 (EX )2 2 2
DX EX 2 (EX )2 n2 p2 n p2 np n2 p2 np(1 p) npq
方法2:
第四章
随机变量的数字特征 §3 几种期望与方差
Xi 服从(0-1)分布, P{Xi 0} q, P{Xi 1} p,i 1,2, , n 且 X1, , X n 独立,令 X X1 X n ,则 X 的可能 取值为 0,1,…n,
第四章 随机变量的数字特征
n
n1 §3 几种期望与方差
EX np
C
k 1 n1
p
k
1
q
n1(k
1)
np
C
i n1
p
i
q
n1i
k 1
i0
np( p q)n1 np
EX 2
n
k 2 Cnk pk qnk
k 0
n
k2
n!
pkqnk
k 0
k!(n k )!
n
p
k
1
k
(k
n! 1)!(n
P{X k} Cnk pk qnk , k 0, , n
EX n EXi np , DX n DX i npq,
i 1
i 1
设 X 服从参数为泊松分布,
其分布律为P{X k} k e ,k=0,1,...
k!
EX k k e e k1 e e
k 0 k!
k1 (k 1)!
P{| X | 3} P{ 3 X 3}
2(3) 1 0.9974
在上一节用切比晓夫不等式估计概率有:
P{| X | 3} 0.8889
返回主目录
k)! pk 1qnk
n
p (k 1)
n!
n
p k 1q nk p
n!
p k 1q nk
k 1
n(n 1)
p2
(k
n
1)!(n)!(n k )!
p q k 2 n2(k 2) np
k 2 (k 2)!(n 2 (k 2))!
n(n 1) p 2 ( p q) n2 np n 2 p 2 np 2 np
|
2 2
t2
e2
dt
2
返回主目录
第四章 随机变量的数字特征 §3 几种期望与方差
P{| X | } P{ X }
( ) ( ) (1) (1) 2(1) 1 0.6826
P{| X | 2} P{ 2 X 2 }
2(2) 1 0.9544
e 2 2 dx
2
1
(t
t2
)e 2
dt,
(
x
t)
2
t2
te 2 dt
t2
e 2 dt
2
2
DX E( X )2 (x )2
1
( x )2
e
2 2
dx, ( x t)
2
2t2
t2
e2
dt
2
t
2
e
t2 2
dt
2
t2
tde 2
2
2
2
2 2
t2
te 2
4.均匀分布
f
(x)
1/(b a), 0, 其它
a
x
b
。
b
EX xf (x)dx x 1 dx a b
ba
2
a
返回主目录
第四章 随机变量的数字特征
§3 几种期望与方差
b
DX EX 2 (EX)2 x2
1
dx ( a b)2 (b a)2
a ba
2
12
EX x
1
(x)2