【精选资料】七年级下期末复习数学综合练习题

合集下载

人教七年级下册数学期末综合复习题(附答案)

人教七年级下册数学期末综合复习题(附答案)

人教七年级下册数学期末综合复习题(附答案) 一、选择题1.化简4的结果为() A .16 B .4 C .2 D .2±2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( )A .B .C .D . 3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四 4.下列命题是假命题的是( ) A .对顶角相等B .两直线平行,同旁内角相等C .过直线外一点有且只有一条直线与已知直线平行D .同位角相等,两直线平行5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个 6.下列等式正确的是( ) A 93-=- B 49714412=± C 23(8)4-= D .327382-- 7.如图,直线l ∥m ,等腰Rt △ABC 中,∠ACB =90°,直线l 分别与AC 、BC 边交于点D 、E ,另一个顶点B 在直线m 上,若∠1=28°,则∠2=( )A.75°B.73°C.62°D.17°8.如图,在平面直角坐标系中,点A从原点O出发,按A→A1→A2→A3→A4→A5…依次不断移动,每次移动1个单位长度,则A2021的坐标为()A.(673,﹣1)B.(673,1)C.(674,﹣1)D.(674,1)九、填空题9.0.0081的算术平方根是______十、填空题A 关于x轴的对称点是__________.10.平面直角坐标系中,点(3,2)十一、填空题11.已知点A(3a+5,a﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.十三、填空题13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________.十四、填空题14.定义一种新运算“”规则如下:对于两个有理数a ,b ,a b ab b =-,若()()521x -=-,则x =______十五、填空题15.点()2,1P -关于y 轴的对称点Q 的坐标是_______.十六、填空题16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.十七、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8--+-.十八、解答题18.已知6a b +=,4ab =-,求下列各式的值:(1)22a b +;(2)22a ab b -+.十九、解答题19.如图//AB DE .试问B 、E ∠、BCE ∠有什么关系?解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB则B ∠=______( )又∵//AB DE ,//CF AB∴____________( )∴E ∠=____________( )∴12B E ∠+∠=∠+∠( )即B E ∠+∠=____________二十、解答题20.在平面直角坐标系中有三个点(3,2)A -、B (-5,1)、(2,0)C -,(,)P a b 是ABC 的边AC 上任意一点,ABC 经平移后得到111A B C △,点P 的对应点...为1(6,2)P a b ++,(1)点A 到x 轴的距离是 个单位长度;(2)画出ABC 和111A B C △;(3)求111A B C △的面积.二十一、解答题21.阅读下面的文字,解答问题: 22的小数部分我们不可能全212的小数部分,你同意小明的表示方法吗? 21,将这个数减去其整数部分,差是小数部分. 479273<<72,小数部分为72.请解答:(183的整数部分为 ;小数部分为 ;(235a 35b ,求2235a b -+二十二、解答题22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?二十三、解答题23.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒;(2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C .【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是轴对称图形,故选项B不合题意;C.选项的图案可以通过平移得到.故选项C符合题意;D.是轴对称图形,故选项D不符合题意.故选:C.【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.【详解】解:∵点P的坐标为P(3,﹣5),∴点P在第四象限.故选D.【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).4.B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题.【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB//CD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.C【分析】根据算术平方根、立方根的定义计算即可A 、负数没有平方根,故错误B 、49144表示计算算术平方根,所以49714412=,故错误 C 、233(8)64=4-=,故正确D 、32733822⎛⎫--=--= ⎪⎝⎭,故错误 故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键 7.B【分析】如图标注字母M ,首先根据等腰直角三角形的性质得出EBM ∠,再利用平行线的性质即可得出∠2的度数.【详解】解:如图标注字母M ,∵△ABC 是等腰直角三角形,∴45A ABC ∠=∠=︒,∴1284573EBM EBA ∠=∠+∠=︒+︒=︒,又∵l ∥m ,∴273EBM ∠=∠=︒,故选:B .【点睛】本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质.平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…,点A坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位,则2021÷6=336…5,所以,前336次循环运动点A共向右运动336×2=672个单位,且在x轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A2021的坐标是(674,﹣1).故选:C.【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.九、填空题9.3【分析】根据算术平方根的性质解答即可.【详解】解:,0.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.解析:3【分析】根据算术平方根的性质解答即可.【详解】,0.090.09的算术平方根是0.3.故答案为:0.3.【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根.十、填空题10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:()3,2【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点(3,2)A-关于x轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;十一、填空题11.﹣【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.十三、填空题13.120【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF 互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而解析:120【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.【详解】解:Rt△ABE中,∠ABE=30°,∴∠AEB=60°;由折叠的性质知:∠BEF=∠DEF;而∠BED=180°-∠AEB=120°,∴∠BEF=60°;由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC ′=180°-∠BEF =120°.故答案为:120.【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.十四、填空题14.【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得 解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得:38x =, 故答案为38. 【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .十五、填空题15.【分析】根据点关于轴的对称点的坐标的特征,即可写出答案.【详解】解:∵点关于轴的对称点为,∴点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:.解析:()2,1--【分析】根据点关于y 轴的对称点的坐标的特征,即可写出答案.【详解】解:∵点()2,1P -关于y 轴的对称点为Q ,∴点Q 的纵坐标与点P 的纵坐标相同,点Q 的横坐标是点P 的横坐标的相反数,故点Q 的坐标为:()2,1--,故答案为:()2,1--.【点睛】本题考查了与直角坐标系相关的知识,理解点关于y 轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键.十六、填空题16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2021÷6所得的整数及余数,可计算出点A 2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A 6(6,0),∴OA 6=6,∵2021÷6=336…5,∴点A 2021的位于第337个循环组的第5个,∴点A 2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A 2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解. 十七、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(212【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x -=;∴12x -=±∴x=3或x=-1(2)原式1122-+ 12=, 【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 十八、解答题18.(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a2+b2与ab 的值代入原式计算即可求出值.【详解】解:(1)把解析:(1)44;(2)48【分析】(1)把a +b =6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a 2+b 2与ab 的值代入原式计算即可求出值.【详解】解:(1)把6a b +=两边平方得:()222236a b a b ab +=++=,把4ab =-代入得:()222436a b ++⨯-=, ∴2244a b +=;(2)∵2244a b +=,4ab =-,∴22a ab b -+=22a b ab +-=()444--=48.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.十九、解答题19.∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,解析:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点C 作//CF AB ,则B ∠=∠1,同理可以得到E ∠=∠2,由此即可求解.【详解】解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB ,则B ∠=∠1(两直线平行,内错角相等),又∵//AB DE ,//CF AB ,∴DE ∥CF (平行于同一条直线的两直线平行),∴E ∠=∠2(两直线平行,内错角相等)∴12B E ∠+∠=∠+∠(等量代换)即B E ∠+∠=∠BCE ,故答案为:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE .【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 二十、解答题20.(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A 点的纵坐标即可求解;(2)根据网格结构找出点A 、B 、C 的位置,然后顺次连接即可,再根据点P 、P 1的坐标确定出变化规律,然后找出点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)∵(3,2)A -∴点A 到x 轴的距离是2个单位长度故答案为:2;(2)如图,ABC ∆和111A B C ∆为所求作(3)S =11132121213222⨯-⨯⨯-⨯⨯-⨯⨯ =6-1-1-1.5=2.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.二十一、解答题21.(1)9,;(2)15【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a ,b 然后代入代数式即可.【详解】解:(1)∵,即∴的整数部分为9,小数部分为(2)∵,即∴的整数部解析:(1)99;(2)15【分析】(1(2)求出a ,b 然后代入代数式即可.【详解】解:(1)∵910<< ∴99(2)∵56<< ∴55∴5a =,5b =255)15a b -+=-+=【点睛】此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键. 二十二、解答题22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x551820x=>,答:不能剪出长宽之比为5:4,且面积为2360cm的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA +∠FAC =180°,∵∠CAB =60°即∠GCA +∠CAB +∠FAB =180°,∴∠FAB =180°﹣60°﹣∠GCA =120°﹣∠GCA ,由(1)可知,∠CAB =∠MCA +∠ABP ,∵BF 平分∠ABP ,CG 平分∠ACN ,∴∠ACN =2∠GCA ,∠ABP =2∠ABF ,又∵∠MCA =180°﹣∠ACN ,∴∠CAB =180°﹣2∠GCA +2∠ABF =60°,∴∠GCA ﹣∠ABF =60°,∵∠AFB +∠ABF +∠FAB =180°,∴∠AFB =180°﹣∠FAB ﹣∠FBA=180°﹣(120°﹣∠GCA )﹣∠ABF=180°﹣120°+∠GCA ﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα- 【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β,∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时, 如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)110(2)(90 +n )(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平解析:(1)110(2)(90 +12n )(3)201712×90°+20182018212-n ° 【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平分线,用n °的代数式表示出∠OBC 与∠OCB 的和,再根据三角形的内角和定理求出∠BOC 的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O 是∠AB 故答案为:110°;C 与∠ACB 的角平分线的交点, ∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.。

2024年人教版七7年级下册数学期末综合复习题附答案

2024年人教版七7年级下册数学期末综合复习题附答案

2024年人教版七7年级下册数学期末综合复习题附答案一、选择题1.如图所示,下列四个选项中不正确...的是( )A .1∠与2∠是同旁内角B .1∠与4∠是内错角C .3∠与5∠是对顶角D .2∠与3∠是邻补角2.下列图形中,哪个可以通过图1平移得到( )A .B .C .D . 3.在平面直角坐标系中,点()2,1-位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题的是( )A .对顶角相等B .两直线平行,同旁内角相等C .过直线外一点有且只有一条直线与已知直线平行D .同位角相等,两直线平行5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若//CD BE ,若1∠=α,则2∠的度数是( )A .3αB .1803α︒-C .4αD .1804︒-α 6.下列结论正确的是( )A .64的立方根是±4B .﹣18没有立方根C .立方根等于本身的数是0D .327-=﹣37.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与α∠互余的角共有( )A .0个B .1个C .2个D .3个8.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点2021A 的坐标是( )A .(505,505)-B .(505,505)--C .(506,506)--D .(506,506)-九、填空题9.364--的算术平方根是________.十、填空题10.已知点,A a b ()在第四象限,||5,||3a b ==,则点A 关于y 轴对称的坐标是__________.十一、填空题11.如图,,BO CO 是ABC ACB ∠∠、的两条角平分线,100A ∠=︒,则BOC ∠的度数为_________.十二、填空题12.如图,BD 平分∠ABC ,ED ∥BC ,∠1=25°,则∠2=_____°,∠3=______°.十三、填空题13.如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA'恰好落在折痕EF上,点B的对应点B'落在长方形外,B'F与CD交于点H,已知∠B'HC=134°,则∠AGE=_____°.十四、填空题-,,按此规律排列下14.按一定规律排列的一列数依次为:2-,5,10-,17,26去,这列数中第9个数及第n个数(n为正整数)分别是__________.十五、填空题15.如图,直线BC经过原点O,点A在x轴上,AD BC⊥于D.若A(4,0),B(m,3),C(n,-5),则AD BC=______.十六、填空题16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______十七、解答题17.计算:(1) 333|3|--(2) 1333⎛⎫+ ⎪⎝⎭ 十八、解答题18.求下列各式中x 的值:(1)()24264x -=;(2)3338x -=. 十九、解答题19.完成下列证明过程,并在括号内填上依据.如图,点E 在AB 上,点F 在CD 上,∠1=∠2,∠B =∠C ,求证AB ∥CD .证明:∵∠1=∠2(已知),∠1=∠4∴∠2= (等量代换),∴ ∥BF ( ),∴∠3=∠ ( ).又∵∠B =∠C (已知),∴∠3=∠B∴AB ∥CD ( ).二十、解答题20.已知点A (-2,3),B (4,3),C (-1,-3).(1)在平面直角坐标系中标出点A ,B ,C 的位置;(2)求线段AB 的长;(3)求点C 到x 轴的距离,点C 到AB 的距离;(4)求三角形ABC 的面积;(5)若点P 在y 轴上,且三角形ABP 的面积与三角形ABC 的面积相等,求点P 的坐标.二十一、解答题21.已知a是77a b-的平方根.-的整数部分,b是7的小数部分,求()27二十二、解答题22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?二十三、解答题23.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .二十四、解答题24.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.二十五、解答题25.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)【参考答案】一、选择题1.B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A. 1∠与2∠是同旁内角,故该选项正确,不符合题意;B. 1∠与4∠不是内错角,故该选项不正确,符合题意;C. 3∠与5∠是对顶角,故该选项正确,不符合题意;D. 2∠与3∠是邻补角,故该选项正确,不符合题意;故选B .【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.3.B【分析】根据平面直角坐标系的四个象限内的坐标特征回答即可.【详解】解:解:在平面直角坐标系中,点P(−2,1)位于第二象限,故选:B.【点睛】本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限.4.B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题.【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B.【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键.5.D【分析】由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.【详解】解:由题意得:AG∥BE∥CD,CF∥BD,∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°∴∠CFB=∠CDB∴∠CAG=∠CDB由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°∴∠CAG=∠CDB=∠1+∠BAG=2α∴∠2=180°-2∠BDC=180°-4α故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6.D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D、327=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.7.B【分析】由互余的定义、平行线的性质,利用等量代换求解即可.【详解】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:B.【点睛】此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.8.C【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−解析:C【分析】根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”,依此即可得出结论.【详解】解:观察发现:A1(−1,−1),A2(−1,1),A3(1,1),A4(1,−1),A5(−2,−2),A6(−2,2),A7(2,2),A8(2,−2),A9(−3,−3),…,∴A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数),∵2021=505×4+1,∴A2021(−506,−506)故选C.【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”.九、填空题9.2【分析】先求出=4,再求出算术平方根即可.【详解】解:∵=4,∴的算术平方根是2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.解析:2【分析】先求出,再求出算术平方根即可.【详解】解:∵, ∴2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.十、填空题10.【分析】由第四象限点的坐标符号是(+,-),可得,关于y 轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.【详解】解:因为在第四象限,则,所以,又因为关于y 轴对称,x 值相反,y 值不变,解析:53--(,) 【分析】由第四象限点的坐标符号是(+,-),可得53A -(,),关于y 轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.【详解】解:因为,A a b ()在第四象限,则00a b ><,,所以53A -(,), 又因为53A -(,)关于y 轴对称,x 值相反,y 值不变, 所以点A 关于y 轴对称点坐标为53--(,). 故答案为53--(,). 【点睛】本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律.十一、填空题11.140°.【分析】△ABC 中,已知∠A 即可得到∠ABC 与∠ACB 的和,而BO 和CO 分别是∠ABC ,∠ACB 的两条角平分线,即可求得∠OBC 与∠OCB 的度数,根据三角形的内角和定理即可求解.【详解析:140°.【分析】△ABC 中,已知∠A 即可得到∠ABC 与∠ACB 的和,而BO 和CO 分别是∠ABC ,∠ACB 的两条角平分线,即可求得∠OBC 与∠OCB 的度数,根据三角形的内角和定理即可求解.【详解】△ABC 中,∠ABC +∠ACB =180°−∠A =180°−100°=80°,∵BO 、CO 是∠ABC ,∠ACB 的两条角平分线.∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.故填:140°.【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.十二、填空题12.50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可解析:50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC,∠3=∠ABC=∠1+∠DBC,又由BD平分∠ABC得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可.【详解】解:∵BD平分∠ABC,∴∠DBC=∠1=25°;又∵ED∥BC,∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°.故答案为:25、50.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法.十三、填空题13.11【分析】由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数.【详解】解:如图,,,,,折叠,,,,,故答案为:11.解析:11【分析】由外角的性质和平行线的性质求出IEB ∠的度数,即可求出FEB ∠的度数,进而求出AEF ∠的度数,求得AEG ∠的度数,即可求出AGE ∠的度数.【详解】解:如图,134B HC '∠=︒,1349044B IH B HC B '''∴∠=∠-∠=︒-︒=︒,//CD AB ,44IEB B IH '∴∠=∠=︒,折叠,1222BA F B IH ''∴∠=∠=︒, 18022158AEA '∴∠=︒-︒=︒,1792AEG AEA '∴∠=∠=︒, 180907911AGE ∴∠=︒-︒-︒=︒,故答案为:11.【点睛】本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解. 十四、填空题14.;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.十五、填空题15.【分析】作三角形的高线,根据坐标求出BE 、OA 、OF 的长,利用面积法可以得出BC•AD=32.【详解】解:过B 作BE ⊥x 轴于E ,过C 作CF ⊥y 轴于F ,∵B (m ,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE 、OA 、OF 的长,利用面积法可以得出BC•AD=32.【详解】解:过B 作BE ⊥x 轴于E ,过C 作CF ⊥y 轴于F ,∵B (m ,3),∴BE=3,∵A (4,0),∴AO=4,∵C (n ,-5),∴OF=5,∵S △AOB =12AO•BE=12×4×3=6,S △AOC =12AO•OF=12×4×5=10,∴S △AOB +S △AOC =6+10=16,∵S △ABC =S △AOB +S △AOC , ∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.十六、填空题16.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解解析:(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解】解:∵点A (﹣4,0),B (0,3),∴OA =4,OB =3,∴AB5,∴第(3)个三角形的直角顶点的坐标是()12,0;观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.8052,0.故答案为:()【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.十七、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.十八、解答题18.(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和解析:(1)6x =或2x =-;(2)32x =【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1)()24264x -=, ()2216x -=,24x -=±,24x -=或24-=-x ,∴6x =或2x =-;(2)3338x -=, 3278x , 32x =; 【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键. 十九、解答题19.∠4;CE ;同位角相等,两直线平行;C ;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=解析:∠4;CE ;同位角相等,两直线平行;C ;两直线平行,同位角相等;内错角相等,两直线平行【分析】根据平行线的判定和性质解答.【详解】解∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.二十、解答题20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A (-2,3),B (4,3),∴AB =4-(-2)=6;(3)∵C (-1,-3),∴C 到x 轴的距离为3,到直线AB 的距离为6;(4)∵AB =6,C 到直线AB 的距离为6, ∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求∴P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);∴P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.【分析】先进行估算的范围,确定a,b的值,再代入代数式即可解答.【详解】解:∵,∴的整数部分为2,小数部分为,且.∴的整数部分为4.∴,∴.【点睛】本题考查了估算无理数的大小,解析:4±【分析】a,b的值,再代入代数式即可解答.【详解】解:∵23<,∴2,小数部分b2,且475<.∴7a为4.∴(22a b=⨯=,4216∴=±.4【点睛】的范围.二十二、解答题22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.二十三、解答题23.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE =15°,∴∠EBC =∠ABE +∠ABC =15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.二十四、解答题24.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜当20゜<α<90゜时,如图∵CF平分∠OCQ∴∠OCF=∠QCF设∠OCF=∠QCF=x则∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.二十五、解答题25.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。

七年级数学下册期末综合练习题-带答案(人教版)

七年级数学下册期末综合练习题-带答案(人教版)

七年级数学下册期末综合练习题-带答案(人教版)(全卷三个大题,共24个小题;满分100分,考试用时120分钟)姓名 班级 学号 成绩一、选择题(本大题共12小题.每小题只有一个正确选项,每小题3分,共36分)1.在实数0,-π,和-4中,最小的数是( )A .0B .-πC .D .-42.下列计算中,正确的是( )A 2=±B 1=-C 7=-D .5=3.已知点P (x ,y )在第二象限,且2x =,3y =则点P 的坐标为( )A .(-2,3)B .(2,-3)C .(-3,2)D .(2,3)4.将△ABC 沿AB 方向平移到△EFD 的位置,若∠1=31°,∠2=57°,则∠D 的度数为( )A .91°.B .90°.C .92°.D .105°. 5.若m 为任意实数,点(2m +1,m -2)一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,下列能判定AB ∥EF 的条件有( )①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A .1个B .2个C .3个D .4个7.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,个体是( )A .500名学生B .所抽取的50名学生对“世界读书日”的知晓情况C .50名学生D .每一名学生对“世界读书日”的知晓情况8.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对七年级学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作出如下两幅不完整的统计图.由图中信息可知,下列结论错误的是( )A .本次调查的样本容量是600B .选“奉献”的有90人C .扇形统计图中“感恩”所对应的扇形圆心角度数为108°D .选“感恩”的人数比选“敬畏”的人数多100人9.某校运动员分组训练,若每组6人,则余3人;若每组7人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .{6y =x −37y =x +5B .{6y =x −37y +5=xC .{6y =x +37y +5=xD .{6y =x +37y =x +510.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环(10次射击,每次射击最高中10环)的记录,则他第7次射击不能少于( )A .6环B .7环C .8环D .9环11.已知二元一次方程组{5m +4n =200①4m −5n =8②,如果用加减法消去n ,则下列方法可行的是( ) A .①×4+②×5B .①×5+②×4C .①×5﹣②×4D .①×4﹣②×512.若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A .13a ≥B .1314a <<C .1314a ≤<D .1314a <≤二、填空题(本大题共4小题,每小题2分,共8分)13.比较大小用“>”、“<”或“=”填空)14.如图,直线AB CD ,55B ∠=︒和35D∠=︒,则E ∠的度数是 度15.某校学生会组织七年级和八年级共30名同学参加环保志愿者活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于500个,则七年级学生参加活动的人数至多是名16.经调查,某班学生上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据时,“公交车”对应扇形的圆心角是度.三、解答题(本答题共8小题,共56分)17|118.已知ABC在平面直角坐标系中的位置如图所示.将ABC向右平移6个单位长度,再向下平移6个单位长度得到111.(A B C图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的111A B C;(2)直接写出111A B C各顶点的坐标.19.若方程组342312x yax by+=⎧⎨-=⎩与25210x yax by-=⎧⎨+=⎩有相同的解,求a与b的值.20.解不等式组4(1)713843x xxx+≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和.21.某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:.4045A x ≤< .4550B x ≤< .5055C x ≤< .5560D x ≤< .6065E x ≤< .6570F x ≤≤ 并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题(1)补全频数分布直方图,并求出 m 的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?22.如图,已知ACB BDE ∠=∠ 180CAD E ∠+∠=︒.(1)AD 与EF 平行吗?试说明理由.(2)若DA 平分∠BDE ,60ACB BAC ∠=∠=︒ 求证:EF AF ⊥.23.小明家原有15头大牛和5头小牛,每天约用饲料325kg ;三月后,由于经济效益好,小明父亲决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需要多少饲料?若小明父亲估计每头大牛1天约需要饲料15~18kg ,每头小牛1天约需要饲料7~8kg ,你觉得小明父亲的估计准确吗?24.某单位为做好防疫物资调配发放工作,租用A 、B 两种型号的车给全市各个防疫点配送消毒液。

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)

人教版七年级下册数学期末综合复习卷(含答案)一、选择题1.如图所示,B 与2∠是一对( )A .同位角B .内错角C .同旁内角D .对顶角 2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5-- 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,点E 在CA 延长线上,DE 、AB 交于F ,且BDE AEF ∠=∠,B C ∠=∠,EFA 比FDC ∠的余角小10︒,P 为线段DC 上一动点,Q 为PC 上一点,且满足FQP QFP ∠=∠,FM 为EFP ∠的平分线.则下列结论:①//AB CD ;②FQ 平分AFP ∠;③140B E ∠+∠=︒;④QFM ∠的角度为定值.其中正确结论的个数有( )A .1个B .2个C .3个D .4个6.下列说法正确的是( )A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是237.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)九、填空题9.已知1x -=8,则x 的值是________________.十、填空题10.点P (﹣2,3)关于x 轴的对称点的坐标是_____.十一、填空题11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.十二、填空题12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.十三、填空题13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.十四、填空题14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.十五、填空题15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.十六、填空题16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.十七、解答题17.(1)计算:34|22|89-+-; (2)解方程组:1312223x y x y ⎧-=-⎪⎨⎪+=⎩. 十八、解答题18.求下列各式中的x 值:(1)(x ﹣1)2=4;(2)(2x +1)3+64=0;(3)x 3﹣3=38. 十九、解答题19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知)∴∠4=∠ ( )∵∠3=∠4(已知)∴∠3=∠ ( )∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( )即:∠ =∠ .∴∠3=∠ .∴AD //BE ( )二十、解答题20.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C .(1)求出ABC 的面积;(2)平移ABC ,若点A 的对应点2A 的坐标为()0,2-,画出平移后对应的222A B C △,写出2B 坐标.二十一、解答题21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)二十三、解答题23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 二十四、解答题24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.二十五、解答题25.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由【参考答案】一、选择题1.B解析:B【分析】根据“同位角、内错角、同旁内角”的意义进行判断即可.【详解】解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,故选:B.【点睛】本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C 、操场上红旗的飘动不是平移,故本选项错误;D 、教室可移动黑板的左右移动是平移,故本选项正确.故选:D .【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.C【分析】根据各象限内点的坐标特征判断即可.【详解】由图可知,小手盖住的点在第四象限,∴点的横坐标为正数,纵坐标为负数,∴(2,-3)符合.其余都不符合故选:C .【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键. 4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确.故选:B .【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.D【分析】①由BDE AEF ∠=∠可得AE ∥BD ,进而得到B EAF ∠=∠,结合B C ∠=∠即可得到结论;②由//AB CD 得出AFQ FQP ∠=∠,结合FQP QFP ∠=∠即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵BDE AEF ∠=∠,∴AE ∥BD ,∴B EAF ∠=∠,∵B C ∠=∠,∴EAF C ∠=∠,∴//AB CD ,结论①正确;∵//AB CD ,∴AFQ FQP ∠=∠,∵FQP QFP ∠=∠,∴AFQ QFP ∠=∠,∴FQ 平分AFP ∠,结论②正确;∵//AB CD ,∴EFA FDC ∠=∠,∵EFA 比FDC ∠的余角小10︒,∴40EFA ∠=︒,∵B EAF ∠=∠,180EFA E EAF ∠+∠+∠=︒,∴180140B E EFA ∠+∠=︒-∠=︒,结论③正确;∵FM 为EFP ∠的平分线, ∴111222MFP EFP EFA AFP ∠=∠=∠+∠, ∵AFQ QFP ∠=∠, ∴12QFP AFP ∠=∠, ∴1202QFM MFP QFP EFA ∠=∠-∠=∠=︒,结论④正确; 故正确的结论是①②③④;故答案选D .【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意, 故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:a b,∠1=60°,因为//所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…,点A坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位,则2021÷6=336…5,所以,前336次循环运动点A共向右运动336×2=672个单位,且在x轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A2021的坐标是(674,﹣1).故选:C.【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.九、填空题9.65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵=8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10.(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为解析:(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3).【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.十一、填空题11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°十二、填空题12.180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥CD,∴∠1=∠AFD,∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解十三、填空题13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32°故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.十五、填空题15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.十六、填空题16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.十七、解答题17.(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1)232)11x y =⎧⎨=⎩. 【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=222233-= (2)原方程组可化为:32(1)23(2)x y x y -=-⎧⎨+=⎩ , (1)×2−(2)得:−7y =−7,解得:y =1;把y =1代入(1)得:x−3×1=−2,解得:x =1,故方程组的解为:11x y =⎧⎨=⎩ ; 【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.十八、解答题18.(1)x =3或x =﹣1;(2)x =﹣2.5;(3)x =1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.十九、解答题19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.【详解】证明:∵AB//CD(已知)∴∠4=∠FAB(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠FAB(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即:∠FAB=∠CAD∴∠3=∠CAD∴AD //BE (内错角相等,两直线平行)故填:BAF ,两直线平行,同位角相等,BAF ,等量代换,DAC ,DAC ,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 二十、解答题20.(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B 2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A 2的坐标,确定平移方式,然后求出B 2,C 2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)∵在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C ,∴AC =3,BC =2, ∴1=32ABC S AC BC =△; (2)∵A (-3,2),A 2(0,-2),∴A 2是由A 向右平移3个单位得到的,向下平移4个单位长度得到的,∴B 2,C 2的坐标分别为(3,0),(3,-2),如图所示,即为所求.【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a=,∵a>0,∴5a=(2)∵459,∴253<<,∴m=2,n2,∴2m a an-+=)222=))222=+-45=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二十三、解答题23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.二十四、解答题24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ =∠OPN +∠NPQ =∠GOP +∠PQF ,∵∠GOC =∠GOP +∠POQ =135°,∴∠GOP =135°-∠POQ ,∴∠OPQ =135°-∠POQ +∠PQF .如图,当点P 在GF 延长线上时,作PN //a ,连接PQ ,OP ,则PN //a //b ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴135°-∠POQ =∠OPQ +∠PQF .【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.二十五、解答题25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.。

初一下学期数学期末综合练习(附答案)

初一下学期数学期末综合练习(附答案)

2024.7初一数学暑假作业要求请你结合自身数学学习情况选择并完成。

一、必做作业:作业1至作业5(打印,并写在此本上);二、选做作业:1.作业6至作业7(打印,并写在此本上);2.补充练习,自选完成(打印,并写在此本上);3.根据本学期所学内容和掌握情况落实计算。

作业1作业2作业31.9的算术平方根为(A )-3(B )3±(C )3(D )812.在平面直角坐标系中,点(23)-,在(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A ,则点A 表示的数是(A ) 1.5-(B )(C )(D )π4.如图,三角形ABC 中,∠ACB=90°,CD ⊥AB 于点D .在线段AC ,AB ,BC ,CD 中,长度最短的是(A )线段AB(B )线段AC (C )线段BC (D )线段CD5.若m n >,则下列结论正确的是(A )44m n ++>(B )55m n --<(C )m n -->(D )22m n <6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放(厚度忽略不计),若20α∠=︒,则β∠的度数为(A )45°(B )40°(C )25︒ (D )20︒7.经调查,七年级某班学生上学所用的交通工具中,自行车占30%,公交车占25%,私家车占35%,其他占10%.如果用扇形图描述以上数据,下列说法正确的是(A )“自行车”对应扇形的圆心角为30°(B )“公交车”对应扇形的圆心角为90°(C )“私家车”对应扇形的圆心角为35°(D )“其他”对应扇形的圆心角为18°8.已知212x y +=,0x y ≥≥,32M x y =+,给出下面3个结论:①当20x y M ==时,;②M 的最小值是18;③M 的最大值是24.上述结论中,所有正确结论的序号为(A )①②(B )①③(C )②③(D )①②③9.3的相反数是.10.比较大小:415.11.a 与2的差大于1-,用不等式表示为.12.不等式5331x x -≤+的正整数解是_______.13.有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛.以上调查,适宜抽样调查的是_______.(填写序号)14.图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩(单位:分).例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分.第14题图第15题图这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的学生有人.15.如图,第一象限内有两个点3A x y (-,),2B x y -(,),将线段AB 平移,使点A ,B 的对应点分别同时落在两条坐标轴上,则点A 平移后的对应点的坐标为.(写出一个即可)16.某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了足球校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.(1)在这次足球联赛中,若某队得13分,则该队可能负场;(写出一种情况即可)(2)在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队的负场数不同,则乙队最多胜场.17.计算:)323318-++-18.解方程组:23,328.x y x y -=⎧⎨+=⎩19.解不等式组:4(1)22.3x x x x -+⎧⎪-⎨⎪⎩<,<20.完成下面的证明.已知:如图,AD ∥BC ,∠D+∠F=180°.求证:DC ∥EF .证明:∵AD ∥BC ,(已知)∴∠D+=.()∵∠D+∠F=180°,(已知)∴∠C=.(同角的补角相等)∴DC ∥EF .()21.如图,在三角形ABO 中,点A ,B 的坐标分别为(2,4),(4,1),将三角形ABO 向左平移4个单位长度,向上平移1个单位长度得到三角形111A B O ,点A ,B ,O 的对应点分别为111A B O ,,.(1)画出三角形111A B O ,并写出点111A B O ,,的坐标;(2)直接写出三角形111A B O 的面积.表1图1图2表222.某电商销售长征系列画册和红色经典故事两种图书,它们的进价和售价如下表:种类长征系列画册红色经典故事进价(元/套)300a 售价(元/套)b100该电商销售6套长征系列画册和5套红色经典故事,盈利800元;销售10套长征系列画册和15套红色经典故事,盈利1600元.(利润=售价-进价)(1)求表中a ,b 的值;(2)该电商计划购进长征系列画册和红色经典故事两种商品共300套,据市场销售分析,购进红色经典故事进套数不低于长征系列画册套数的2倍.若电商把300套书全部售出,则购进长征系列画册多少套能使利润最大?(直接写出即可)23.为了解某校七年级学生的气象知识竞赛成绩(百分制,单位:分),从中随机抽取了60名学生的成绩,该校甲、乙两个数学课外小组对数据进行了整理、描述,部分信息如下:a .甲小组将数据分为4组,频数分布表与频数分布直方图如下:b .乙小组将数据分为5组,频数分布表与频数分布直方图如下:分组频数60≤x <70970≤x <801080≤x <90m 90≤x ≤10015分组频数60≤x <68868≤x <76676≤x <841084≤x <922492≤x ≤100n(1)写出表1中m 的值,表2中n 的值;(2)补全图1;(3)如果学校准备根据样本的数据分布情况,对七年级竞赛成绩前20%的学生进行表彰,那么哪个数学课外活动小组对数据的整理、描述更合理,为什么?24.对于正实数x 四舍五入到个位后得到的整数记为[]x ,即当n 为非负整数时,若1122n x n -+≤<,则[]x n =,如:[]1.4141=,[]2.63=.(1)[]π=;(2)若[]32x +=,求x 的取值范围;(3)若[]12xx =+,求[]x 的值.25.直线AB∥CD,∠ABC与∠DCB的角平分线交于点E,BE的延长线交CD于点F,FG⊥BF,交直线BC于点G.(1)如图1,求证:EC∥FG;(2)如图2,点M在线段BC上,点N在线段FG上,且∠BEM=∠MEN,连接EG.写出一个∠MEG的度数,使得∠NEG=∠NGE成立,并证明.图1图226.在平面直角坐标系xOy中,已知点P(x,y),若点Q的坐标为(x+2y,y+2x),则称Q是点P的非常变换点.例如:点(2,1)的非常变换点为(4,5).(1)已知点P(x,x-1)的非常变换点为Q,当x=0时,点Q的坐标为,当x=1时,点Q的坐标为;(2)在正方形ABCD中,点A(2,4),B(-4,4),C(-4,-2),D(2,-2),已知点M(x,x+a),N(x+1,x+a+1).①若点M的非常变换点为C,求a的值;②若线段MN上的所有点(含端点)和它们的非常变换点都在正方形ABCD的边上或内部,直接写出a的最小值及此时x的值.③对于每一个a的值,记满足条件的x的最大值与最小值的差为T,直接写出T的最大值及此时a的值.作业41.2024北京月季文化节正式开启,11个展区共展示超3000个品种的月季.传统月季花粉为单粒花粉,呈长球形或超长球形,大小为37.59~51.95μm×17.02~25.33μm .其中37.59μm=0.003759cm ,把0.003759用科学记数法表示为(A )20.375910-⨯(B )20.375910⨯(C )33.75910-⨯(D )33.75910⨯2.不等式3x <21x -的解集在数轴上可以表示为(A )(B )(C )(D )3.在今年的“五一”假期中,昌平消费市场“花样翻新”,多景区客流“爆棚”,客流量与文旅消费均呈现上升趋势.为了解中学生的假期出游情况,从全校2000名学生记录的假期出游时间(单位:小时)中随机抽取了200名学生的假期出游时间(单位:小时)进行统计,以下说法正确的是(A )2000名学生是总体(B )样本容量是2000(C )200名学生的假期出游时间是样本(D )此调查为全面调查4.下列计算正确的是(A )236a a a ⋅=(B )326()a a -=(C )224a a a +=(D )824a a a ÷=5.如果a >b ,那么下列不等关系一定成立的是(A )1a +<1b +(B )2a ->2b-(C )ac >bc(D )5a>5b 6.如图,一条街道有两个拐角ABC ∠和BCD ∠,已知AB CD ∥,若150ABC ∠=︒,则BCD ∠的度数是(A )150︒(B )130︒(C )120︒(D )30︒7.若21x y =⎧⎨=⎩是关于x ,y 的二元一次方程3ax y -=的一个解,则a 的值为(A )1-(B )1(C )2-(D )28.已知a ,b 为有理数,则下列说法正确的是①2()0a b +≥②222a b ab+≥③22()()2a b a b ab+=-+(A )①(B )①②(C )①③(D )①②③9.因式分解:2363a a -+=___________.10.如果一个角等于70︒,那么这个角的补角是_________°.11.计算26+42x x x ÷=().12.已知命题“同位角相等”,这个命题是_________命题.(填“真”或“假”)13.计算:21x +()2x -()=________.14.若24x=,216y =,则x y +=___________.15.4月23日为世界读书日,小萱从图书馆借来一本共266页的书,计划在10天内读完(包括第10天).如果前4天每天只读15页,若从第5天起平均每天读x 页才能按计划完成,则根据题意可列不等式为________________.16.如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的数量关系为_________.17.计算:20112(5)33π---+--.18.解不等式:2113x x +-<.19.解方程组:2734 1.x y x y +=⎧⎨-=⎩,20.解不等式组:2256x x x +⎧⎨+⎩≤3,≤并把它的解集在数轴上表示出来.21.已知21x x -=,求代数式2(1)(3)(3)x x x -+-+的值.22.请补全证明过程或推理理由:如图,∠1+∠2=180°,∠3=∠A ,求证:∠B =∠C .证明:∵∠1+∠2=180°,∴(同旁内角互补,两直线平行).∴∠3=∠D ().又∵∠3=∠A ,∴.∴AB ∥CD ().∴∠B =∠C ().23.某校开展数学节活动,活动成果是学生形成对于数学探索的海报,活动以“集市”形式展览个人的作品,并面向同学和老师讲解自己的作品,“小创客”创意市集作品的评价涉及四个维度:创意的真实性、创意的新颖性、创意的科学性和表达的严谨性,并以四个维度总分记为最后得分,满分100分,小明经过抽样调查部分得分数据,具体得分分布在以下四组内:75≤A <80,80≤B <85,85≤C <90,90≤D≤95,并把得分情况绘制成如下统计图,C 组得分:87,86,88,86,86,89“小创客”创意市集作品得分条形统计图“小创客”创意市集作品得分扇形统计图(1)本次调查了______名学生,B组扇形统计图的圆心角度数为_______°(2)C组得分的平均数是_______,众数是_________,中位数是__________.(3)若某校有500人参加此次“小创客”创意市集作品展示,请你估计得分超过86分的有多少人?24.端午节前夕,小明和小华相约一起去超市购买粽子.小明购买A品牌和B品牌的粽子各1袋,共花费55元;小华购买A品牌粽子3袋和B品牌粽子2袋,共花费135元.(1)求A、B两种品牌粽子每袋各是多少元;(2)端午假期,小明一家回老家探亲,小明妈妈想要再买一些粽子送给亲戚,于是拿出500元交给小明,让他去超市购买A、B两种品牌粽子共18袋,且想要尽量多购入B品牌粽子,请问小明最多购买B品牌粽子多少袋?25.观察个位上的数字是5的两位数的平方(任意一个个位数字为5的两位数5n可用代数式10n+5来表示,其中n≤≤,n为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律.19第1个等式:152=(1×2)×100+25;第2个等式:252=(2×3)×100+25;第3个等式:352=(3×4)×100+25;…(1)写出第4个等式:;(2)用含n的等式表示你的猜想并证明;(3)计算:115²-(8×9×100+25)=.26.小明为了方便探究关于x ,y 的二元一次方程9ax by +=(0,0a b ≠≠)解的规律,把x 和y 的部分值分别填入如下表,(x 的值从左到右依次增大).(1)p 的值为__________(填正确的序号).117②3③-1(2)下列方程中,与9ax by +=组成方程组,在﹣7<x <8范围内有解的是__________(填正确的序号).①2x +y =﹣5,②x +2y=-4,③3x -y =1,(3)已知关于x ,y 的二元一次方程1cx dy +=(0,0c d≠≠)的部分解如下表所示:则方程组91ax by cx dy +=⎧⎨+=⎩的解为__________(填正确的序号)196x y =-⎧⎨=⎩②811x y =-⎧⎨=⎩③14x y =-⎧⎨=⎩④74x y =⎧⎨=-⎩x -7-4028y107p1-5x -7…..0…..8y-2…..q…..1327.已知∠AOB=α(0°<α<90°),点C是射线OB上一点,过点C作OA的垂线交射线OA于点P,过点P作MN∥OB,点D是射线OA上一点,过点D作CD的垂线分别交直线MN,OB于点E,F.(1)如图1,CD平分∠OCP时,①根据题意补全图形;②求∠ODF的度数(用含α式子表示);(2)如图2,当CD平分∠PCB时,直接写出∠ODF的度数(用含α式子表示).图1图228.已知x1,x2是不等式组解集中的解,若存在一个a,使x1+x2=2a,我们把这样的x1,x2称为该不等式组的“关联解”,a叫做“关联系数”.(1)当a=0时,下列不等式组存在“关联解”的是_________.A.124xx x+⎧⎨+⎩>2>B.1112xx x-+⎧⎪⎨-⎪⎩<2>C.3122x xx x+⎧⎨-⎩<2<(2)不等式组31222225x xx a x a⎧-≥-⎪⎨⎪+≤++⎩的解集上存在“关联解”,若x1=﹣2,“关联系数a”的取值范围为.(3)不等式组132x ax x a≥--⎧⎨≤⎩2+的解集存在关联解,x1=8-a,若a+b+c=12,且2101016a b c++是整数,直接写出“关联系数a”的值_________.作业51.在平面直角坐标系中,点P (﹣3,2)在(A )第一象限(B )第二象限(C )第三象限(D )第四象限2.下列调查中,适合采用全面调查方式的是(A )了解某班学生的身高情况(B )了解某批次汽车的抗撞击能力(C )了解某食品厂生产食品的合格率(D )了解永定河的水质情况3.4的算术平方根是(A )4±(B )4(C )2±(D )24.已知12x y =-⎧⎨=⎩是关于x ,y 的方程32mx y +=的解,则m 的值为(A )8(B )8-(C )4(D )4-5.不等式组13x +≥的解集在数轴上表示正确的是(A )(B )(C )(D )6.如图,在三角形ABC 中,点D ,E ,F 分别在AB BC AC ,,上,连接DE DF CD ,,,下列条件中,不能推理出AC DE ∥的是(A )EDC DCF∠=∠(B )DEB FCE ∠=∠(C )180DEC FCE ∠+∠=︒(D )180FDE DEC ∠+∠=︒7.下列四个说法:①若a b >,则a c b c +>+;②若a b >,则ac bc >;③若a b >,且c ≠0,则22a b c c >;④若0a b c <<<,则22a c b c >.其中说法正确的个数是(A )1个(B )2个(C )3个(D )4个8.小兰在学习了“如果//b a ,//c a ,那么//b c .”,由此进行联想,提出了下列命题:①对于任意实数a ,b ,c ,如果a >b ,b >c ,那么a >c ;②对于平面内的任意直线a ,b ,c ,如果a ⊥b ,b ⊥c ,那么a ⊥c ;③对于平面内的任意角α,β,γ,如果α与β互余,β与γ互余,那么α与γ互余;④对于任意图形M ,N ,P (其中图形M ,N ,P 不重合),如果M 可以平移到N ,N 可以平移到P ,那么M 可以平移到P .其中所有真命题的序号是(A )①③(B )①④(C )②③(D )①③④9.把方程31x y +=改写成用含x 的式子表示y 的形式,则y =________________.10.为了解某校学生进行体育活动的情况,从全校2800名学生中随机抽取了100名学生,调查他们平均每天进行体育活动的时间,在这次调查中,样本容量是.11.已知方程()130m m x y +-=是关于x ,y 的二元一次方程,则m =___________.12.某不等式组的解集如图所示,在,和这三个数中,是该不等式组的解.13.《孙子算经》是中国古代重要的数学著作.书中记载了这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为.14.已知关于x 的不等式组0213x m x -<⎧⎨+⎩≥有解,则m 的取值范围是.15.如图,AOB ∠的一边OA 是平面镜,50AOB ∠=︒,点C 是OB 上一点,一束光线从点C 射出,经过平面镜OA 上的点D 反射后沿射线DE 射出,已知ODC ADE =∠∠,要使反射光线DE BO ∥,则DCB ∠=°.16.两个数比较大小,可以通过它们的差来判断,例如:比较m 和n 的大小,我们可以这样判断,当0m n ->时,一定有m >n ;当0m n -=时,一定有m n =;当0m n -<时,一定有m n <.请你根据上述方法判断下列各式.(1)已知42M a b =+,33N a b =+,当a b >时,一定有M ______N (填“>”,“=”或“<”);(2)已知11132M a b =--,1223N b a =-,当M N >时,一定有a ____b (填“>”,“=”或“<”).17()202421+-+-.18.解不等式2123x x-≥,并在数轴上表示它的解集.19.解方程组:2310x yx y-=⎧⎨+=⎩,.20.解不等式组:235412xxx x+⎧>⎪⎨⎪-<+⎩,.21.如图,点B是射线AC上一点,射线AC的端点A在直线DE上,按要求画图并填空:(1)过点B做直线l平行直线DE;(2)用量角器做BAE∠的角平分线,交直线l于点F;(3)做射线AG⊥AF,交直线l于点G;(4)若FBCα∠=,则BFA∠=(用含α的式子表示);(5)请用等式写出BAF DAG∠∠与的数量关系.22.我们已经在小学通过剪拼的方法,知道“三角形内角和等于180°”这一结论,但这种实验得到的结论仍需要严格的证明,小明同学利用所学的平行线的相关知识,采用两种方法,通过添加辅助线进行证明,请你选择其中一.....种方法...完成证明.已知:如图,三角形ABC ,求证:180A ABC ACB ∠+∠+∠=︒.方法一:证明:如图,过点A 作DE BC ∥.方法二:证明:如图,过点C 作CD AB ∥,延长BC 到点E.23.根据《北京市教育委员会关于印发义务教育体育与健康考核评价方案的通知》要求,自2024年起,本市初三年级体育与健康考核评价现场考试内容进行调整,其中运动能力Ⅰ中新增:乒乓球—左推右攻发球、羽毛球—正反手挑球和发高远球两项.某学校为此在体育大课间中专门开设乒乓球和羽毛球课程,需要购买相应的体育器材上课使用,其中羽毛球拍25套,乒乓球拍50套,共花费4500元,已知一套羽毛球拍的单价比一套乒乓球拍的单价高30元.(1)求羽毛球拍和乒乓球拍一套的单价各是多少元?(2)根据需要,学校决定再次购进乒乓球拍和羽毛球拍共50套,恰逢体育用品商店搞“优惠促销”活动,羽毛球拍一套单价打8折,乒乓球拍一套单价优惠4元.若此次学校购买两种球拍的总费用不超过2750元,且购买羽毛球拍数量不少于23套,请通过计算,设计一种符合购买要求且节约资金的购买方案.24.某校组织全体学生参加“网络安全知识”竞赛,为了解学生们在本次竞赛中的成绩,调查小组从中选取若干名学生的竞赛成绩(百分制,成绩取整数)作为样本,进行了抽样调查,下面是对样本数据进行了整理和描述后得到的部分信息:a .抽取的学生成绩的频数分布表:成绩5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤人数a 615b 9b .抽取的学生成绩的频数分布直方图:c .抽取的学生成绩的扇形统计图:A :5060x ≤<B:6070x ≤<C :7080x ≤<D :8090x ≤<E :90100x ≤<E :90100x ≤≤根据以上信息,回答下列问题:(1)写出频数分布表中的数值a =______,b =_______;(2)补全频数分布直方图;(3)扇形统计图中,竞赛成绩为C :7080x ≤<的扇形的圆心角是°;(4)如果该校共有学生400人,估计成绩在7080x ≤<之间的学生有人.25.如图,点E ,G 在线段AB 上,点F 在线段CD 上,EF DG ∥,1=2∠∠.(1)判断AB 与CD 的位置关系,并证明;(2)若=80A ∠︒,BC 平分ACD ∠,1∠与BCF ∠互余,求2∠的度数.26.如图,网格中标有面积为2的长方形ABCD.(1)通过裁剪、拼接长方形ABCD,可以拼出一个面积为2的正方形,请以点D为顶点,在图中画出一个满足条件的正方形,则此正方形的边长为;(2)请在图中建立适当的平面直角坐标系xOy,使点C位于(0,1)-.-,线段AB的中点E位于(1,0)①请选用合适的工具,在平面直角坐标系xOy中描出点(01F,;②若点G的纵坐标为1-,连接EC,三角形ECG的面积是1,直接写出点G的坐标.27.如图,已知AB//CD,∠BGH=∠EFC,点P为直线CD上一动点.(1)求证:EF//GH;(2)作射线HM交直线CD于点M,交直线EF于点N,且GHM PHM∠=∠.①当点P运动到如图1所示的位置时,用等式表示∠1,∠2与∠3之间的数量关系,并证明;②当点P运动到如图2所示的位置时,补全图形,直接用等式写出∠HPD、∠MFE与∠ENM之间的数量关系.图1图228.在平面直角坐标系xOy中,对于图形M与图形N给出如下定义:点P为图形M上任意一点,点P与图形N 上的所有点的距离的最小值为k,将点P延x轴正方向平移2k个单位长度得到点'P,称点'P是点P关于图形N的“关联点”,图形M上所有点的“关联点”组成的新图形记为'M是图形M关于图形N的“相关图形”.M,称'(1)已知(20)t≠.C t,,其中1B,,(0)A-,,(01)①若0t<,点A关于线段BC的“关联点”'A的坐标是;②若1t>,请用尺规在图中画出点A关于线段BC的“关联点”'A(保留作图痕迹);(2)如图,线段DE关于图形N的“相关图形”如图所示(D'F'为曲线且除F'外,其余点的横坐标大于6),如果图形N上的点都在同一条直线上,请在图中画出图形N.作业61.人站在晃动的公共汽车上,若分开两腿站立,则还需伸出一只手抓住栏杆才能站稳,这是利用了.2.若正n边形的每个内角为120°,则这个正n边形的对角线条数为.3.如图,AD是△ABC的中线,AE是△ABD的中线,若CE=9cm,则BC=cm.4.如图,AC⊥BC于点C,D为BC上一点,DE⊥BE于点E,BC平分∠ABE,∠BDE=58°,则∠A=°.5.如图,在五边形ABCDE中,点M,N分别在AB,AE边上,∠1+∠2=100°,则∠B+∠C+∠D+∠E=°.6.将一副三角尺如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为.7.如图,在△ABC中,∠B=40°,∠C=30°,D为边BC上一点,将△ADC沿直线AD翻折后,点C落到点E处.若DE∥AB,则∠ADC的度数为.8.已知a,b,c是△ABC的三边长,a=4,b=6,设△ABC的周长是x.(1)直接写出c及x的取值范围.(2)若x是小于18的偶数,①求c的值;2判断△ABC的形状.9.如图,点D在AB上,点E在AC上,BE,CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.作业71.若算式22+22+22+22可化为2x的形式,则x=.2.若a-b=1,ab=-2,则(a+1)(b-1)=.3.若6a=5,6b=8,则36a-b=.4.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.5.若多项式4x2+1加上一个单项式后能成为完全平方式,则加上的单项式为(写一个即可).6.计算:(1)(-2x)3-3x(x-2x2);(2)[(x+2y)2-(x-2y)(x+2y)]÷4y.7.先化简,再求值:(x-1)2+x(3-x),其中x=-12.8.已知x2-y2=12,x+y=3,求2x2-2xy的值.9.乘法公式的探究及应用.(1)如图①,可以求出阴影部分的面积是(写成两数平方差的形式).(2)若将图①中的阴影部分裁剪下来,重新拼成一个长方形(如图②),则它的宽是,长是,面积是(写成多项式乘法的形式).(3)比较图①、图②中阴影部分的面积,可以得到乘法公式:(用式子表示).(4)运用你所得到的公式,计算下列各题:①(n+1-m)(n+1+m);②1003×997.补充练习一、选择题:1在Rt △ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于点D ,DE ⊥AB 于点E ,若CD =4,则DE 的长()A.2B.3C.4D.52.已知三角形两边长分别为3和7,则第三边长可以是()A.2B.3C.4D.53.AD 是△ACE 中CE 边上的高,延长EC 至点B ,使BC CE =,连接AB .设△ABC 的面积为1S ,ACE △的面积为2S ,那么下列判断正确的是()A.12S S > B.12S S = C.12S S < D.不能确定4.已知三条线段的长分别是3,8,a ,如果这三条线段首尾顺次相接能构成一个三角形,那么整数a 的最大值是()A.11B.10C.9D.75.如图,AC 与BD 相交于点O ,AB DC =,要使ABO DCO △≌△,则需添加的一个条件可以是()A.OB OC= B.A D∠=∠ C.OA OD= D.AOB DOC∠=∠6.如图,测量河两岸相对的两点A ,B 的距离时,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC ≌△ABC ,从而得到ED =AB ,则测得ED 的长就是两点A ,B 的距离.判定△EDC ≌△ABC 的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”7.下列运算正确的是()A.223a a a += B.235a a a ⋅= C.()33ab ab -=- D.()236a a -=-8.若多项式2x m -可以用平方差公式分解因式,则m 的值可以为()A.6B.6- C.9D.9-9.将一副三角板如图放置,使点D 落在AB 上,如果EC AB ∥,那么AFE ∠的度数为()A.45︒B.50︒C.60︒D.75︒10.P 、Q 是△ABC 的边BC 上的两点,且BP=AP=AQ=QC=PQ ,则∠BAC=()A.90°B.120°C.125°D.130°11.如图,已知60AOB ∠=︒,点P 在边OA 上,10OP =,点M 、N 在边OB 上,PM PN =,若2MN =,则OM =()A.3B.5C.4D.6二、填空题12.如图,ABC DEF ≅△△,7BC =,4EC =,则CF 的长为_____.13.如图,已知AC 平分BAD ∠.请添加一个条件:______,使ABC ADC △△≌.14.()3.14π-=_______.15.八角帽又称“红军帽”,是红军的象征,也是中国工农红军军服佩饰最显眼的部分之一,其帽顶近似正八边形,正八边形的一个外角的大小为______.16.如图,已知90B D ∠=∠=︒,请添加一个条件(不添加辅助线)_________,使ABC ADC △≌△,依据是_________.17.如图1,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开,拼接后得到图2,请根据图形的面积写出一个含字母a ,b 的等式_______________.18.如图,在△ABC 中,AB AC =,AD 是BC 边上的中线,BE AC ⊥,垂足为E ,已知25CBE ∠=︒.那么BAC ∠的度数为______.19.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_______.20.将4个数a 、b 、c 、d 排成两行两列,两边各加一条竖直线记成a b cd,定义a b ad bc cd=-,若11811x x xx +-=--,则x =_______.三、解答题21.(一)分解因式:(1)()()23a b a b -+-;(2)22mx mx m -+.(二)计算:(1)()3322a a a a ⋅+-÷;(2)()433226892x y x y x y xy -+÷.22.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为()1,1A ,()4,2B()2,3C .1)画出△ABC 关于y 轴的对称图形;2)若x 轴上存在一点P ,使得PA PB +最短,找出符合条件的点P ,直接写出点P 的坐标____.23.如图,△ABC 与DCB △中,AC 与BD 交于点E ,且ABD DCA ∠=∠,AB DC =.1)求证:ABE DCE △≌△;2)当80BEC ∠=︒,求EBC ∠的度数.24.如图,在△ABC 中,点E 是BC 边上一点,且AB EB =,点D 在AC 上,连接BD ,DE ,如果AD ED =,80A ∠=︒,40CDE ∠=︒,求C ∠的度数.25.如图,等腰△ABC 中,AB AC =.1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①作ABC ∠的角平分线交AC 于点D ;②在边BC 的延长线上作一点E ,使CE CD =,连接DE .2)在(1)所作的图形中,猜想线段BD 与DE 的数量关系,并证明.26.某超市用5000元购进一批新品种苹果进行试销,由于销售状况良好,超市又调拨11000元资金第二次购进该品种苹果,但第二次的进货价比试销时每千克多了0.5元,第二次购进苹果数量是试销时的2倍.1)设试销时该品种苹果的进货价是每千克x 元,则试销时购进苹果数量为______千克?(用含x 的式子表示)2)列分式方程求试销时该品种苹果的进货价是每千克多少元?27.已知等边△ABC ,点D 是BC 边上一点,设()030BAD αα∠=︒<<︒,点C 关于直线AD 的对称点为点E ,CE 交AD 于点F ,连接AE ,连接BE 并反向延长交AD 于点G .(1)依题意补全图形,若20α=︒,则BAE ∠=______°;(2)用含α的式子表示AEB ∠=______°;(3)用等式表示线段AG ,BG 与线段FG 的数量关系,并证明.28.如图,在△ABC 中,点E 在边AB 上,点D 在边BC 上,且BD BE =,连接AD 、CE ,AD 与CE 相交于点F ,BAD BCE ∠=∠.求证:1)BA BC =;2)AF CF =.29.如图,在△ABC 中,AD 为BC 边上的中线,任DA 延长线上报一点F ,使得CF AB =.1)求证:F BAD ∠=∠;完成下面的证明过程:证明:过点C 作CG AB ∥,交AD 的延长线于点G .如图1,G BAD ∴∠=∠∵AD 为BC 边上的中线,∴BD =CD .在△ADB 和△GDC 中,BAD G ADB GDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB GDC ≌△△.∴______.又∵CF =AB ,∴______.∴______.∵G BAD ∠=∠∴F BAD ∠=∠.(2)过点C 作CE AD ⊥于点E ,如图2.用等式表示线段AF DE 、之间的数量关系,并证明.。

人教版数学七年级(下)期末复习综合练习题(含答案)

人教版数学七年级(下)期末复习综合练习题(含答案)

期末复习综合练习题一.选择题1.下列是无理数的是()A.B.C.D.2.下列命题是真命题的是()A.内错角相等B.平面内,过一点有且只有一条直线与已知直线垂直C.相等的角是对顶角D.平面内,过一点有且只有一条直线与已知直线平行3.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC的度数为()A.40°B.60°C.80°D.100°4.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式5.已知点P(3a,a+2)在x轴上,则P点的坐标是()A.(3,2)B.(6,0)C.(﹣6,0)D.(6,2)6.如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF等于()A.35°B.45°C.55°D.65°7.若关于x、y的二元一次方程有公共解3x﹣y=7,2x+3y=1,y=﹣kx﹣9,则k的值是()A.﹣3 B.C.2 D.﹣48.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)9.如图,在下列说法中错误的是()A.射线OA的方向是正西方向B.射线OB的方向是东北方向C.射线OC的方向是南偏东60°D.射线OD的方向是南偏西55°10.有一个男孩的假期有11天在下雨,这11天如果上午下雨下午就不会下雨,下午下雨上午就不下,他的假期里9个上午和12个下午是晴天,他的假期共有几天?()A.12 B.14 C.16 D.18二.填空题11.已知二元一次方程y﹣2x=1,用含x的代数式表示y,则y=.12.若x,y为实数,且|x﹣2|+=0,则(x+y)2019的值为.13.如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于.14.如图,在平面直角坐标系中,O为坐标原点,点A(0,3)和点B(2,0)是坐标轴上两点,点C(m,n)(m≠n)为坐标轴上一点,若三角形ABC的面积为3,则C点坐标为.15.一种微波炉进价为1000元.出售时标价为1500元,双十一打折促销,但要保持利润率不低于2%,则最低可打折.16.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.三.解答题17.解方程组:①②.18.解不等式组,并把解集在数轴上表示出来.19.先化简,再求值:2x3+4x﹣3x2﹣(x﹣3x2+2x3),其中x=﹣3.20.感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F =度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.21.已知关于x,y的方程组的解x,y都为正数.(1)求a的取值范围;(2)是否存在这样的整数a,使得不等式|a|+|2﹣a|<5成立?若成立,求出a的值;若不成立,并说明理由.22.春节是我国的传统节日,为了调查学生对于各地春节民俗活动的了解程度,某校随机抽取一部分学生进行问卷调查,将调查结果按“A:非常了解、B:基本了解、C:了解较少、D:不太了解”四类分别进行统计,并绘制出下面两幅不完整的统计图.请根据两幅统计图的信息,解答下列问题:(1)此次共调查了个学生;(2)扇形统计图中,A所在的扇形的圆心角度数为;(3)将上面的条形统计图补画完整.23.目前节能灯已基本普及,节能还环保,销量非常好,某商场计划购进甲、乙两种型号节能灯共1200只,这两种节能灯的进价、售价如表所示:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)商场应如何进货,使进货款恰好为46000元?(2)若商场销售完节能灯后获利不超过进货价的30%,至少购进甲种型号节能灯多少只?24.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由.参考答案一.选择题1.解:,,是有理数,是无理数,故选:B.2.解:A、内错角相等,是假命题,故此选项不合题意;B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;C、相等的角是对顶角,是假命题,故此选项不合题意;D、平面内,过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;故选:B.3.解:∵∠AOE+∠BOE=180°,∠AOE=140°,∴∠2=40°,∵∠1=∠2,∴∠BOD=2∠2=80°,∴∠AOC=∠BOD=80°.故选:C.4.解:A、日光灯管厂要检测一批灯管的使用寿命,应用抽样调查,故A错误;B、旅客上飞机前的安检,采用普查方式,故B错误;C、了解深圳市居民日平均用水量,采用抽样调查方式,故C错误;D、了解深圳市每天的平均用电量,采用抽样调查方式,故D正确.故选:D.5.解:∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=﹣2,∴3a=﹣6,∴点P的坐标为(﹣6,0).故选:C.6.解:∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE=∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°﹣∠EOF﹣∠BOE=55°.故选:C.7.解:解方程组得:,把代入y=﹣kx﹣9得﹣1=﹣2k﹣9,解得k=﹣4.故选:D.8.解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.9.解:根据图示可知A、射线OA的方向是正西方向,正确;B、射线OB的方向是东北方向,正确;C、射线OC的方向是南偏东30°,错误;D、射线OD的方向是南偏西55°,正确.故选:C.10.解:设上午下雨是x天,下午下雨是y天,假期z天,则晴天为:(z﹣x﹣y)天由题意可得:解得:故选:C.二.填空题11.解:由y﹣2x=1,得到y=2x+1.故答案为:2x+112.解:∵x,y为实数,且|x﹣2|+=0,∴x﹣2=0,y+3=0,∴x=2,y=﹣3,∴(x+y)2019=(2﹣3)2019=﹣1,故答案为:﹣1.13.解:如图,∵AB∥CD,∴∠1=∠BAC=116°,由折叠可得,∠BAD=∠BAC=58°,∵AB∥CD,∴∠2=∠BAD=58°,故答案为:58°.14.解:∵点C(m,n)(m≠n)为坐标轴上一点,∴S△ABC=×3×|m﹣2|=3或S△ABC=×2×|n﹣3|=3,解得:m=4或0,n=6或0,∴C点坐标为(4,0)或(0,6),故答案为:(4,0)或(0,6).15.解:设打x折销售,根据题意可得:1500×≥1000(1+2%),解得:x≥6.8,故要保持利润率不低于2%,则至少可打6.8折.故答案是:6.8.16.解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.三.解答题17.解:①,①+②得:4x=8,解得:x=2,将x=2代入①得:2+2y=9,解得:y=,则方程组的解为;②方程组整理得:,①﹣②得:6y=27,解得:y=,将y=代入②得:3x﹣9=9,解得:x=6,则方程组的解为.18.解:,解第一个不等式得x≥﹣1,解第二个不等式得x<3,则不等式组的解集为﹣1≤x<3,将解集表示在数轴上如下:19.解:原式=2x3+4x﹣3x2﹣x+3x2﹣2x3=3x,当x=﹣3时,原式=﹣9.20.解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.21.解:(1)解方程组得,∵x>0,y>0,∴,解得a>2;(2)存在.∵a>2,而|a|+|2﹣a|<5,∴a+a﹣2<5,解得a<,∴2<a<,∵a为整数,∴a=3.22.解:(1)(19+22)÷41%=100人,故答案为:100.(2)C组人数为:100×39%=39,A组人数为:100﹣41﹣39﹣5=15,A所在的扇形的圆心角度数为:360°×=54°,故答案为:54°.(3)A组的人数:15人,其中男生15﹣5=10人,C组的人数:39人,其中女生39﹣21=18人,补全条形统计图如图所示:23.解:(1)设购进甲型节能灯x只,乙型节能灯y只,根据题意,得:,解得:,答:购进甲型节能灯400只,乙型节能灯800只,进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,由题意,得:(30﹣25)a+(60﹣45)(1200﹣a)≤[25a+45(1200﹣a)]×30%,解得:a≥450.答:至少购进甲种型号节能灯450只.24.解:(1)①若∠BAC=100°,∠C=30°,则∠B=180°﹣100°﹣30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴∠BAG=∠BAC=50°,∠FDG=∠EDB=15°,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°﹣40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴∠BAG=∠BAC,∠FDG=∠EDB,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+(∠BAC+∠C)=40°+×140°=40°+70°=110°;故答案为:115°;110°;②∠AFD=90°+∠B;理由如下:由①得:∠EDB=∠C,∠BAG=∠BAC,∠FDG=∠EDB,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+(∠BAC+∠C)=∠B+(180°﹣∠B)=90°+∠B;(2)如图2所示:∠AFD=90°﹣∠B;理由如下:由(1)得:∠EDB=∠C,∠BAG=∠BAC,∠BDH=∠EDB=∠C,∵∠AHF=∠B+∠BDH,∴∠AFD=180°﹣∠BAG﹣∠AHF=180°﹣∠BAC﹣∠B﹣∠BDH=180°﹣∠BAC﹣∠B﹣∠C=180°﹣∠B﹣(∠BAC+∠C)=180°﹣∠B﹣(180°﹣∠B)=180°﹣∠B﹣90°+∠B=90°﹣∠B.。

人教版七年级数学下册期末综合复习题含答案图文

人教版七年级数学下册期末综合复习题含答案图文

人教版七年级数学下册期末综合复习题含答案图文一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A . B . C . D . 3.下列各点中,在第四象限的是( )A .3,0B .()2,5-C .()5,2--D .()2,3- 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 6.下列说法正确的是( )A .23π-是分数 B .互为相反数的数的立方根也互为相反数 C .25xy -的系数是15- D .64的平方根是4±7.①如图1,//AB CD ,则180A E C ∠+∠+∠=︒;②如图2,//AB CD ,则–P A C ∠=∠∠;③如图3,//AB CD ,则1E A ∠=∠+∠;④如图4,直线////AB CD EF ,点O 在直线EF 上,则–180∠∠+∠=︒αβγ.以上结论正确的个数是( )A .1个B .2个C .3个D .4个8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-九、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.十、填空题10.点A (2,4)关于x 轴对称的点的坐标是_____.十一、填空题11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.十二、填空题12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.十三、填空题13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.十四、填空题14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______. 十五、填空题15.如果点P (x ,y )的坐标满足x +y =xy ,那么称点P 为“美丽点”,若某个“美丽点”P 到y 轴的距离为2,则点P 的坐标为___.十六、填空题16.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.十七、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭十八、解答题18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.十九、解答题19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°(已知),∴AB ∥CD ( ).∴∠B = ( ).又∵∠B =∠D (已知),∴∠D =∠ .∴AD ∥BE ( ).∴∠E =∠DFE ( ).二十、解答题20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';(2)过点A 画线段AD 使//AD BC 且AD BC =;(3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 二十一、解答题21.已知a 172的整数部分,b 173的小数部分.(1)求a ,b 的值;(2)求()()324a b -++的平方根. 二十二、解答题22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图AB BC将它剪开后,重新拼成一个大正方形ABCD.2的虚线,(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.二十三、解答题23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理) 二十四、解答题24.如图1所示:点E 为BC 上一点,∠A =∠D ,AB ∥CD(1)直接写出∠ACB 与∠BED 的数量关系;(2)如图2,AB ∥CD ,BG 平分∠ABE ,BG 的反向延长线与∠EDF 的平分线交于H 点,若∠DEB 比∠GHD 大60°,求∠DEB 的度数;(3)保持(2)中所求的∠DEB 的度数不变,如图3,BM 平分∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).二十五、解答题25.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键. 3.B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确; ∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确; 过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C .【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.B【分析】根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.【详解】 ∵23π-是无理数, ∴A 错误,∵互为相反数的数的立方根也互为相反数,∴B 正确, ∵25xy -的系数是52-, ∴C 错误,∵64的平方根是±8,∴D 错误,故选B .【点睛】本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.7.B【分析】如图1所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠C +∠CEF =180°,则∠A +∠C +∠AEC =360°,故①错误;如图2所示,过点P 作PE //AB ,由平行线的性质即可得到∠A =∠APE =180°,∠C =∠CPE ,再由∠APC =∠APE =∠CPE ,即可得到∠APC =∠A -∠C ,即可判断②;如图3所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠1=∠CEF ,再由∠AEF +∠CEF =∠AEC ,即可判断③ ;由平行线的性质即可得到=180BOE α∠+∠,180COF γ∠+=∠,再由180BOE COF β∠+∠+∠=,即可判断④.【详解】解:①如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠C +∠CEF =180°,∴∠A +∠AEF +∠C +∠CEF =360°,又∵∠AEF +∠CEF =∠AEC ,∴∠A +∠C +∠AEC =360°,故①错误;②如图所示,过点P 作PE //AB ,∵AB //CD ,∴AB //CD //PE ,∴∠A =∠APE =180°,∠C =∠CPE ,又∵∠APC =∠APE =∠CPE ,∴∠APC =∠A -∠C ,故②正确;③如图所示,过点E 作EF //AB ,∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠1=∠CEF ,又∵∠AEF +∠CEF =∠AEC ,∴180°-∠A +∠1=∠AEC ,故③错误;④∵////AB CD EF ,∴=180BOE α∠+∠,180COF γ∠+=∠,∵180BOE COF β∠+∠+∠=,∴180180180αβγ-∠+∠+-∠=,∴–180αβγ∠∠+∠=,故④正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•••,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.九、填空题9.3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.十、填空题10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.十一、填空题11.35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.【详解】解:∵BE和CE分别是∠ABC和∠ACD的角平分线,∴∠EBC=12∠ABC,∠ECD=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD ,∵∠ECD 是△BEC 的一外角,∴∠ECD =∠EBC +∠E ,∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°,故答案为:35.【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键. 十二、填空题12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.十三、填空题13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE . ∴EB1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.十四、填空题14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.十五、填空题15.(2,2),(-2,)【分析】直接利用某个“美丽点”到y 轴的距离为2,得出x 的值,进而求出y 的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当解析:(2,2),(-2,23)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当x=2时,则y+2=2y,解得:y=2,∴点P的坐标为(2,2),当x=-2时,则y-2=-2y,解得:y=23,∴点P的坐标为(-2,23),综上所述:点P的坐标为(2,2)或(-2,23).故答案为:(2,2)或(-2,23).【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键.十六、填空题16.(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2021的坐标.【详解】解:根据题意得4的整数倍的各点如A 4,A 8,A 12等点在第二象限,∵2021÷4=505…1;∴A 2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A 2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.十七、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.十八、解答题18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.十九、解答题19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.二十、解答题20.(1)见解析;(2)见解析;(3),AD ∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC , ∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =, ∴点H 是直线CE 上一动点线段BH 的最小值为154. 故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1)a=2,b=;(2)±3【分析】(1)首先估算出的范围,从而得到和的范围,可得a ,b 值;(2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵,∴,∴,,∴a=2,b解析:(1)a =2,b 4;(2)±3【分析】(123的范围,可得a ,b 值; (2)将a ,b 的值代入计算,再求平方根即可.【详解】解:(1)∵< ∴45<,∴223<,132<<,∴a =2,b 314-;(2)()()324a b -++=())23424++- =9∴()()324a b -++的平方根为±3. 【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a ,b 的值是解题关键. 二十二、解答题22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10;(21;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD(2)∵B 表示的数为-1,∴∴点E 1;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.二十三、解答题23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMN =90°,∠APM =∠PMQ ,∴∠PMQ -∠QMN =90°,∴∠APM -∠QMN =90°;当点M ,N 分别在射线QD ,QF 上时,如图:∵PM ⊥MN ,AB //CD ,∴∠PMQ +∠QMN =90°,∠APM +∠PMQ =180°,∴∠APM +90°-∠QMN =180°,∴∠APM -∠QMN =90°;综上,∠APM +∠QMN =90°或∠APM -∠QMN =90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.二十四、解答题24.(1) ;(2) ;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥E 解析:(1) +180ACB BED ∠∠=︒;(2) 100︒;(3)不发生变化,理由见解析【分析】(1)如图1,延长DE 交AB 于点F ,根据平行线的性质推出+180ACB BED ∠∠=︒;(2)如图2,过点E 作ES ∥AB ,过点H 作HT ∥AB ,根据AB ∥CD ,AB ∥ES 推出BED ABE CDE ∠=∠+∠,再根据AB ∥TH ,AB ∥CD 推出GHD THD THB ∠=∠-∠,最后根据BED ∠比BHD ∠大60︒得出BED ∠的度数;(3)如图3,过点E 作EQ ∥DN ,根据DEB CDE ABE ∠=∠+∠得出βα-的度数,根据条件再逐步求出PBM ∠的度数.【详解】(1)如答图1所示,延长DE 交AB 于点F .AB ∥CD ,所以D EFB ∠=∠,又因为A D ∠=∠,所以A EFB ∠=∠,所以AC ∥DF ,所以ACB CED ∠=∠.因为+180CED BED ∠∠=︒,所以+180ACB BED ∠∠=︒.(2)如答图2所示,过点E 作ES ∥AB ,过点H 作HT ∥AB .设ABG EBG α∠=∠=,FDH EDH β∠=∠=,因为AB ∥CD ,AB ∥ES ,所以ABE BES ∠=∠,SED CED ∠=∠,所以21802BED BES SED ABE CDE αβ∠=∠+∠=∠+∠=+︒-,因为AB ∥TH ,AB ∥CD ,所以ABG THB ∠=∠,FDH DHT ∠=∠,所以GHD THD THB βα∠=∠-∠=-,因为BED ∠比BHD ∠大60︒,所以2+1802()60αββα︒---=︒,所以40βα-=︒,所以40BHD ∠=︒,所以100BED ∠=︒(3)不发生变化如答图3所示,过点E 作EQ ∥DN .设CDN EDN α∠=∠=,EBM KBM β∠=∠=,由(2)易知DEB CDE ABE ∠=∠+∠,所以2+1802100αβ︒-=︒,所以40βα-=︒, 所以180()180DEB CDE EDN EBM PBM PBM αβ∠=∠+∠+︒-∠+∠=+︒--∠, 所以80()40PBM βα∠=︒--=︒.【点睛】本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.二十五、解答题25.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。

2023-2024学年七年级下学期北师大版数学期末综合复习题(含答案)

2023-2024学年七年级下学期北师大版数学期末综合复习题(含答案)

北师大版七年级数学下册期末综合复习测试题考试时间:120分钟满分150分一、单选题(本大题共10小题,每小题4分,总分40分)1.佛山“桑基鱼塘”文化精髓是蚕桑生产历史的见证.产自佛山的蚕丝以其柔韧绵长的特性在纺织领域享有盛誉.某种蚕丝的直径大约是0.000014米,0.000014用科学记数法可表示为( )A.0.14×10﹣4B.1.4×10﹣4C.1.4×10﹣5D.14×10﹣42.如图是某机械加工厂加工的一种零件的示意图,其中AB∥CD,DE⊥BC,∠ABC=70°,则∠EDC等于( )A.10°B.20°C.30°D.40°3.下列图案中,是轴对称图形的是( )A.B.C.D.4.下列说法正确的是( )A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解长江的水质,应采用普查方式D.“若a、b是实数,则a2+b2>0”是随机事件5.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为150米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论有( )A.1个B.2个C.3个D.4个6.将一副三角板按如图放置,其中∠B=∠C=45°,∠D=60°,∠E=30°,如果∠CAD=150°,则∠4=( )A.75°B.80°C.60°D.65°7.如图,大正方形与小正方形的面积之差是48,则阴影部分的面积是( )A.12B.18C.24D.308.如图1的晾衣架中存在多组平行关系,将晾衣架的侧面抽象成如图2的数学问题,已知AB∥MN∥PQ,若∠2=100°,∠3=130°,则∠1的度数为( )A.40°B.50°C.60°D.70°9.如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEF=36,则S△ABC为( )A.2B.3C.4D.510.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有( )A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题4分,总分20分)11.已知长方形的周长为20,设长与宽分别为x,y,则y与x的关系式为 .12.不透明的袋子中装有红、黄、蓝三种颜色的球共20个,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球,摸出的球是红球和不是红球的可能性一样,则黄球和蓝球共有 个.13.若2x+3y﹣4=0,则9x•27y= .14.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=63°,则∠E= .15.如图,四边形ABCD中,AC=6,BD=8,且AC⊥BD,顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此继续下去得到四边形A n B n∁n D n.则A n B n∁n D n的面积是 .三、解答题(本大题共10小题,总分90分)16.(1)化简:4a2b•(﹣2ab)+(2a)2;(2)先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=−12,y=1.17.小明从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买圆规,于是又折回到刚经过的文具店,买到圆规后继续骑车去学校.如图是他本次上学过程中离家距离与所用时间的关系图,根据图象回答下列问题:(1)小明家到学校的路程是 米;(2)小明在文具店停留了 分钟;(3)本次上学途中,小明一共行驶了 米;(4)交通安全不容忽视,我们认为骑自行车的速度超过15千米/时就超过了安全限度.通过计算说明:在整个上学途中哪个时间段小明的骑车速度最快,最快速度在安全限度内吗?18.一个不透明的袋子中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球数量比白球的3倍多10个,已知从袋中摸出一个球是红球的概率是0.3.(1)求袋中红球的个数;(2)求从袋子中摸出一个球是白球的概率;(3)取走10球(其中没有红球),求从剩余的球中摸出一个球是红球的概率.19.教材呈现:华师版义务教育教科书数学七下第82页的部分内容.如图,在△ABC 中,∠ABC =80°,∠ACB =50°,BP 平分∠ABC ,CP 平分∠ACB ,求∠BPC 的度数.解:∵BP 平分∠ABC (已知),∴∠PBC =12∠ABC =12×80°=40°.同理可得∠PCB = °.∵∠BPC +∠PBC +∠PCB =180°  ,∴∠BPC =180°﹣∠PBC ﹣∠PCB (等式的性质)=180°﹣40°﹣ = .(1)对于上述问题,在解答过程的空白处填上适当的内容(理由或数学式).问题推广:(2)如图1,在△ABC 中,∠ABC 、∠ACB 的角平分线交于点P ,将△ABC 沿DE 折叠使得点A 与点P 重合,若∠1+∠2=96°,则∠BPC = 度.(3)如图2,在△ABC 中,∠BAC 的角平分线与△ABC 的外角∠CBM 的角平分线交于点P ,过点B 作BH ⊥AP 于点H ,若∠ACB =82°,则∠PBH = 度.20.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.试说明:BD=CD.21.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.连接DE,若∠ADE=3∠CDE.(1)若∠AED=60°,求∠CDE的度数;(2)若∠AEB=60°,探究DE与BE的位置关系,并说明理由.22.如图,已知CD∥BE,∠1+∠2=180°.(1)试问∠AFE与∠ABC相等吗?请说明理由;(2)若∠D=2∠AEF,∠1=136°,求∠D的度数.23.如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.24.阅读:在计算(x﹣1)(x n+x n﹣1+x n﹣2+⋯+x+1)的过程中,我们可以先从简单的、特殊的情形入手,再到复杂的、一般的问题,通过观察、归纳、总结,形成解决一类问题的一般方法,数学中把这样的过程叫做特殊到一般.如下所示:【观察】①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)【归纳】由此可得:(x﹣1)(x n+x n﹣1+x n﹣2+⋯+x+1)= ;(2)【应用】请运用上面的结论,解决下列问题:计算:22023+22022+22021+⋯+22+2+1;(3)【拓展】请运用上面的方法,求220﹣219+218﹣217+⋯﹣23+22﹣2+1的值.25.在△ABC中,(1)如图①所示,如果∠A=60°,∠ABC和么ACB的平分线相交于点P,那么∠BPC= ;(2)如图②所示,∠ABC和∠ACD的平分线相交于点P,试说明∠BPC=12∠A;(3)如图③所示,∠CBD和∠BCE的平分线相交于点P,猜想∠BPC与∠A的关系并证明你的猜想.参考答案一、单选题(本大题共10小题,每小题4分,总分40分)1-5.CBDDD 6-10.ACBAD.二、填空题(本大题共5小题,每小题4分,总分20分)11.y=10﹣x.12.10.13.81.14.102°.15.24×12n.三、解答题(本大题共10小题,总分90分)16.解:(1)原式=﹣8a3b2+4a2;(2)原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(﹣4xy+2y2)÷(﹣2y)=2x﹣y;当x=−12,y=1时,原式=﹣1﹣1=﹣2.17.解:(1)由图象可得,小明家到学校的路程是1800米,故答案为:1800;(2)小明在书店停留了12﹣9=3(分钟),故答案为:3;(3)本次上学途中,小明一共行驶了:1200+(1200﹣600)+(1800﹣600)=1200+600+1200=3000(米),故答案为:3000;(4)当时间在0~6分钟内时,速度为:1200÷6=200(米/分),当时间在6~9分钟内时,速度为:(1200﹣600)÷(9﹣6)=200(米/分),当时间在12~15分钟内时,速度为:(1800﹣600)÷(15﹣12)=400(米/分),15千米/时=250米/分,∵400>250,∴在12~15分钟时间段小明的骑车速度最快,不在安全限度内.18.解:(1)根据题意得:100×310=30(个),答:袋中红球的个数有30个.(2)设白球有x个,则黄球有(3x+10)个,根据题意得:x+3x+10=100﹣30,解得x=15.则摸出一个球是白球的概率为15100=320;(3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率是3090=13.19.解:(1)∵BP平分∠ABC(已知),∴∠PBC=12∠ABC=12×80°=40°.同理可得∠PCB=25°.∵∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣∠PBC﹣∠PCB(等式的性质)=180°﹣40°﹣25°=115°.故答案为:25,(三角形内角和定理),25°,115°;(2)由折叠的性质可得∠AED=∠PED,∠ADE=∠PDE,∵∠1+∠AEP=180°,∠2+∠ADP=180°,∠1+∠2=100°,∴2∠AED+2∠ADE=260°,∴∠AED+∠ADE=130°,∴∠A=180°﹣∠AED﹣∠ADE=50°,∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BP平分∠ABC,CP平分∠ACB,∴∠ABC=2∠PBC,∠ACB=2∠PCB,∴2∠PBC+2∠PCB=130°,即∠PBC+∠PCB=65°,∴∠BPC=180°﹣∠PBC﹣∠PCB=115°,故答案为:115;(3)∵AP平分∠BAC,BP平分∠CBM,∴∠BAC=2∠BAP,∠CBM=2∠CBP,∵∠CBM=∠BAC+∠ACB,∴∠CBP=∠BAP+40°,∵∠ABC=180°﹣∠ACB﹣∠BAC,∴∠ABC=100°﹣2∠BAP,∵∠ABC+∠CBP+∠BAP+∠P=180°,∴∠P=180°﹣∠BAP﹣∠ABC﹣∠CBP=40°,∵BH⊥AP,即∠BHP=90°,∴∠PBH=180°﹣∠P﹣∠BHP=50°;故答案为:50.20.解:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中{AB=AC∠BAD=∠CAD,AD=AD∴△ABD≌△ACD,(SAS),∴BD=CD.21.解:(1)∵∠ADE=3∠CDE,∴设∠CDE=x,∠ADE=3x,即∠ADC=∠ADE﹣∠CDE=2x,∵AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣2x,∵AE平分∠BAD,∴∠EAD=12∠BAD=90°−x,∵AD∥BE,∴∠BEA=∠EAD=90°﹣x,∠ADE+∠BED=180°,又∵∠DEA=60°,∠BEA+∠DEA=∠BED,∴90°﹣x+60°+3x=180°,∴x=15°,∴∠CDE=15°.(2)DE⊥BE,理由如下:∵∠AEB=60°,AD∥BC,∴∠DAE=∠AEB=60°,∵AE平分∠BAD,∴∠BAD=2∠DAE=120°,∵AB∥CD,∴∠ADC=180°﹣∠BAD=60°,∵∠ADE=3∠CDE,∠ADE=∠ADC+∠CDE,∴∠ADE=32∠ADC=90°,又∵AD∥BC,∴∠BED=180°﹣∠ADE=90°,∴DE⊥BE.22.解:(1)∠AFE与∠ABC相等,理由如下:∵CD∥BE,∴∠1+∠CBE=180°,∵∠1+∠2=180°,∴∠2=∠CBE(同角的补角相等),∴EF∥BC(内错角相等,两直线平行),∴∠AFE=∠ABC(两直线平行,同位角相等),(2)∵CD∥BE,∴∠D=∠AEB,∵∠AEB=∠2+∠AEF,∠D=2∠AEF,∴∠2=∠AEF,即∠D=2∠2,∵∠1=136°,∠1+∠2=180°,∴∠2=44°,即∠D=88°.23.解:(1)∵MN垂直平分BC,∴DC=BD,CE=EB,又∵EC=4,∴BE=4,又∵△BDC的周长=18,∴BD+DC=10,∴BD=5;(2)∵∠ADM=60°,∴∠CDN=60°,又∵MN垂直平分BC,∴∠DNC=90°,∴∠C=30°,又∵∠C=∠DBC=30°,∠ABD=20°,∴∠ABC=50°,∴∠A=180°﹣∠C﹣∠ABC=100°.24.解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;……;∴(x﹣1)(x n+x n﹣1+x n﹣2+⋯+x+1)=x n+1﹣1,故答案为:x n+1﹣1;(2)22023+22022+22021+⋯+22+2+1=(2﹣1)(22023+22022+22021+⋯+22+2+1)=22024﹣1;(3)220﹣219+218﹣217+⋯﹣23+22﹣2+1=(﹣2)20+(﹣2)19+(﹣2)18+(﹣2)17+⋯+(﹣2)3+(﹣2)2+(﹣2)+1=−13×[(−2)−1][(−2)20+(−2)19+(−2)18+(−2)17+⋯+(−2)3+(−2)2+(−2)+1]=−13×[(−2)21−1]=13×221+13.25.解:(1)∵BP、CP分别为∠ABC,∠ACB的平分线,∴∠ABC=2∠PBC,∠ACB=2∠PCB.∵∠A=180°﹣(∠ABC+∠ACB),∴∠A=180°﹣2(∠PBC+∠PCB),∴∠A=180°﹣2(180°﹣∠BPC),∴∠A=﹣180°+2∠BPC,∴2∠BPC=180°+∠A,∴∠BPC=90°+12∠A=90°+12×60°=120°,故答案为:120°;(2)∵BP是∠ABC的角平分线,∴∠PBC=12∠ABC.又∵CP是∠ACD的平分线,∴∠PCD=12∠ACD,∵∠ACD=∠A+∠ABC,∠PCD=∠BPC+∠PBC,∴∠BPC=12∠A;(3)90°−12∠A.证明:∵BP、CP分别是∠ABC与∠ACB的外角平分线,∴∠CBP=12∠CBD,∠BCP=12∠BCE,∴∠CBP+∠BCP=12∠CBD+12∠BCE=12(∠CBD+∠BCE)=12(∠A+∠ACB+∠A+∠ABC)=12(180°+∠A),∴∠BPC=180°﹣(∠CBP+∠BCP)=180°−12(180°+∠A)=90°−12∠A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012-2013第二学期期末七年级数学模拟试题一、选择题:(每小题3分,共计36分) 1.下列各组数中互为相反数的是( )A .-2 与2(2)-B .-2 与38-C .-2 与12- D .2与2-2.下列各组数中是方程组23,3410x y x y -=⎧⎨+=⎩的解为( )A.21x y =⎧⎨=⎩ B. 27x y =-⎧⎨=-⎩ C. 11x y =⎧⎨=-⎩ D. 33x y =⎧⎨=⎩ 3.如图,下列能判定AB ∥CD 的条件有( )个(1)∠B +∠BCD =1800;(2)∠1=∠2; (3)∠3=∠4;(4)∠B =∠5。

A .1B .2C .3D .4★4、 已知31.51=1.147,315.1 =2.472,30.151 =0.532 5,则31510的值是( )A.24.72B.53.25C.11.47D.114.75、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图2所示,那么 ●、▲、■这三种物体按质量从大到小的顺序排列为( ) A . ■●▲B . ■▲●C . ▲●■D . ▲■●6.已知a >b ,则下列不等式正确的是( )A .3-a <3-bB .-2a >-2bC .2-a >2-bD .2a ->2b - 7.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③ 94的平方根是32; ④0.01的算术平方根是0.1;⑤,24a a ±=其中正确的有( )A.1个B.2个C.3个D.4个 8.关于x 、y 的方程组⎩⎨⎧-=+=+31by x y ax 的解为⎩⎨⎧=-=21y x ,则b a +的值是( )A .-2B .-1C .0D .1 9.下列说法错误的是( )A .无数条直线可交于一点ABCD E1 2 3 4 5图1B .直线的垂线有无数条,但过一点与已知直线垂直的直线只有一条C .直线的平行线有无数条,但过直线外一点的平行线只有一条D .互为邻补角的两个角一个是钝角,一个是锐角10.在平面直角坐标系中,点A 位于第二象限,距离x 轴1个单位长度,距y 轴4个单位长度,则点A 的坐标为( )A .(1,4)B .(-4,1)C .(-1,4)D .(4,-1) 11.如图,下列判断正确的是( )A .∠1,∠2, ∠6互为邻补角B .∠2与∠4是同位角C .∠3与∠6是同旁内角D .∠5与∠3是内错角12.实数a ,b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b ->C .0>abD .0>ba二、填空题:1.在3,0,2-,-2四个数中,最小的数是 。

2.如图,若AO ⊥OC ,DO ⊥OB ,∠AOB ∶∠BOC =32∶13,则∠COD = . 32(5)0b +=,那么a b +的值为 .4.如果一个数的平方根是3+a 和152-a ,则这个数为 。

5、将方程632=+y x 写成用含x 的代数式表示y ,则y = ____.6.已知不等式组⎩⎨⎧><m x x 5无解,则m 的取值范围是 ________.7、已知a 、b 、c 满足a +2b +3c =10,3a +2b +c =70,则a +b +c =______________________. 8、某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对______道题,成绩才能在60分以上 ★9.关于x 的方程x m x +=-13的解是非负数,则m 的取值范围是 .10.在一个样本中,50个数据分别落在5个小组内,第1、3、4、5小组的频数分别是3,19,15,5,则第2小组的频数是_______. 11. 写出一个以⎩⎨⎧-==12y x 为解的二元一次方程组是___________.12. 如图,下列用黑白两种正方形进行镶嵌的图案中,第n 个图案白色正方形有_______个.第 3 个第 2 个第 1 个⋅⋅⋅⋅⋅⋅ODCBA三、解答题:1. 解方程组⎩⎨⎧=-=+1523635y x y x 2.计算:3125.0-+1613+32)871(-—211-。

3、解不等式组2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩并把解集在数轴上表示出来;并写出不等式组的所有非负整数解。

4.如图,用4个相同的小长方形与1个小正方形镶嵌成正方形图案,已知该图案的周长为28,小正方形的周长为12,若用x 、y 表示长方形的两边的长(x >y ),求x 、y 的值。

5.如图,BC 与DE 相交于O 点,给出下列三个论断:①∠B =∠E ,②AB ∥DE ,③BC ∥EF .请以其中的两个论断为条件,一个论断为结论,编一道证明题,并加以证明。

已知: (填序号) 求证: (填序号)yx OCDBA证明:6.如图8,已知A (—4,—1),B (—5,—4),C (—1,—3),△ABC 经过平移得到的△A ’B ’C ’,△ABC 中任意一点P ),(11y x’(1)请在图中作出△A ’B ’C ’; (2)写出点A ’、B ’、C ’★7.某商场第1次用39万元购进A 、B 两种商品,销售完后获得利润6万元,它们的进价和售价如下表: (总利润=单件利润×销售量)(1)该商场第1次购进A 、B 两种商品各多少件?(2)商场第2次以原价购进A 、B 两种商品,购进B 商品的件数不变,而购进A 商品的件数是第1次的2倍,A 商品按原价销售,而B 商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B 种商品最低售价为每件多少元?1200135010001200B A 售价(元/件)进价(元/件)价格商品8、小明在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.根据以上提供的信息,解答下列问题:(1)补全频数分布表.(5分)(2)补全频数分布直方图.(2分)(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?(3)分9.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨。

(1)该果农安排甲、乙两种货车时有几种方案?请您帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种运输方案才能使运费最少?最少运费是多少元?201612084户数12100080060010.下列图形是用钉子把橡皮筋紧钉在墙壁上而成的,其中AB ∥CD . ⑴ 如图1,若∠A=300、∠C=500,则∠AEC=_________;⑵ 如图2,若∠A=x 0、∠C=y 0,则∠AEC= (用含x 0、y 0的式子表示);⑶ 如图3,若∠A=m 0、∠C=n 0,那么∠AEC与m 0、n 0之间有什么数量关系?请加以证明。

F 图 3图 2图 1n 0m 0y 0x 0500300EDCBAEDCBAE D CBA部分答案:7.解:(1)设购进A 种商品x 件,B 种商品y 件。

……1分 根据题意得:⎩⎨⎧=-+-=+60000)10001200()12001350(39000010001200y x y x ……4分解得:⎩⎨⎧==150200y x ……6分所以购进A 种商品200件,B 种商品150件。

……7分 (2)设B 种商品的售价为m 元/件。

……8分根据题意得:75000)100015012001350400≥-⨯+-⨯m ()(……10分 解得:m ≥1100……11分答:B 种商品的最低售价为1100元/件。

……12分 8. 第(1)、(2)题,每小题2分,第(3)小题6分(1) ∠AEC=800, (2) ∠AEC=3600-x 0-y 0(3)∠AEC= n 0- m 0…2分证明: ∵AB∥CD, ∠C =n 0…3分 ∴∠EFB = ∠C =n 0…4分又∵∠EFB =∠A+∠AEC,∠A=m 0…5分 ∴n 0= m 0+∠AEC∴∠AEC= n 0- m 0…6分。

相关文档
最新文档