2021版高考数学一轮复习第二章函数及其应用2.4指数与指数函数练习理北师大版
高考数学一轮总复习第二章函数导数及其应用2_4指数函数课件理新人教A版

a当n为奇数且n∈N*时,
±n a 当n为偶数且n∈N*时.
(2)根式的性质
①(n a)n=a(n∈N*).
a,n为奇数,
②n
an=
|a|
=a,a≥0, -a,a<0,
n为偶数.
2.有理数指数幂
(1)幂的有关概念: ①正分数指数幂:
= n am
(a>0,m,n∈N*,且n>1);
2.指数函数的图象与底数大小的比较
如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图象,底数a,b,c,d 与1之间的大小关系为c>d>1>a>b.由此我们可得到以下规律:在y轴右(左)侧图 象越高(低),其底数越大.
3.注意事项 (1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平 移、对称、翻折变换得到其图象. (2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合 观察两曲线动与不动及动的范围求解.
(2)若不等式 1+2x+4x·a>0 在 x∈(-∞,1]时恒成立,则实数 a 的取值范围
是
.
解析:从已知不等式中分离出实数 a,得 a>-14x+12x. 因为函数 y=14x 和 y=12x 在 R 上都是减函数,所以当 x∈(-∞,1]时,14x≥14,12 x≥12,
跟踪训练 (1)(2017·江西三校联考)化简4 16x8y4(x<0,y<0)的结果为( )
A.2x2y
B.2xy
C.4x2y
D.-2x2y
答案:D
答案:85
考点二|指数函数的图象及应用 (思维突破) 【例2】 (1)函数f(x)=2|x-1|的图象是( )
高中数学第一轮复习(教师用)第二章函数导数及其应用之第五节指数与指数函数

第二章函数导数及其应用第五节指数与指数函数1.了解指数函数模型的实际背景.2.理解有理数指数幂的定义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.◆教材通关◆1.根式的概念(1)na n=⎩⎨⎧a,n为奇数,|a|=⎩⎪⎨⎪⎧a(a≥0),-a(a<0),n为偶数;(2)(na)n=a(注意a必须使na有意义).[必记结论]在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.易忽视字母的符号.3.指数函数的图象与性质[1.画指数函数图象时应抓住图象上的三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . 2.底数a 与1的大小关系决定了指数函数图象的“升降”:当a >1时,指数函数的图象“上升”;当0<a <1时,指数函数的图象“下降”.3.底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越高.4.指数函数的图象向左(或向右)平移不会与x 轴有交点,向上(或向下)平移a 个单位后,图象都在直线y =a (或y =-a )的上方.[小题诊断]1.化简的结果是( )A .-9B .7C .-10D .9解析:=-1=23-1=7.答案:B2.在同一直角坐标系中,函数f (x )=2x +1与g (x )=⎝⎛⎭⎫12x -1的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称解析:∵g (x )=21-x =f (-x ),∴f (x )与g (x )的图象关于y 轴对称. 答案:A3.设a =22.5,b =2.50,c =⎝⎛⎭⎫12 2.5,则a ,b ,c 的大小关系是( ) A .a >c >b B .c >a >b C .a >b >cD .b >a >c解析:因为a =22.5>1,b =2.50=1,c =⎝⎛⎭⎫12 2.5<1,所以a >b >c . 答案:C4.(2018·邯郸质检)已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( )解析:由函数y =kx +a 的图象可得k <0,0<a <1,又因为与x 轴交点的横坐标大于1,所以k >-1,所以-1<k <0.函数y =a x +k 的图象可以看成把y =a x 的图象向右平移-k 个单位得到的,且函数y =a x +k 是减函数,故此函数与y 轴交点的纵坐标大于1,结合所给的选项,应该选B.答案:B5.指数函数y =f (x )的图象经过点(m,3),则f (0)+f (-m )=________. 解析:设f (x )=a x (a >0且a ≠1),∴f (0)=a 0=1. 且f (m )=a m =3.∴f (0)+f (-m )=1+a -m =1+1a m =43.答案:436.已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.解析:因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3), 所以函数f (x )在定义域上单调递增, 所以1a >1,解得0<a <1. 答案:(0,1)◆ 易错通关 ◆1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.[小题纠偏]1.判断正误(请在括号中打“√”或“×”). (1)n a n =(na )n =a .( )(2)分数指数幂a m n 可以理解为mn个a 相乘.( )( )答案:(1)× (2)× (3)×2.若函数y =(a -1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 答案:(1,2)考点一 指数幂的运算 自主探究 基础送分考点——自主练透[题组练通]1.求值:解析:原式==1+14×23-110=1+16-110=1615.2.化简:解析:原式=-54·1ab 3=-5ab4ab 2.3.化简:解析:.指数幂运算的4个原则(1)有括号的先算括号里面的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.考点二 指数函数的图象及应用 互动探究 重点保分考点——师生共研[典例] (1)函数y =a x -1a(a >0,a ≠1)的图象可能是( )(2)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:(1)函数y =a x -1a 由函数y =a x 的图象向下平移1a 个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.故选D. (2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].故b 的取值范围是[-1,1].答案:(1)D (2)[-1,1]与指数函数有关的图象问题的求解方法1.已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.2.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到,特别地,当底数a 与1的大小关系不确定时应注意分类讨论.3.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.[即时应用]1.(2018·唐山模拟)当x ∈[1,2]时,函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是( )A.⎣⎡⎦⎤12,2B.⎣⎡⎭⎫12,1∪(]1,2 C.⎣⎡⎦⎤14,2D.⎣⎡⎦⎤14,2解析:当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,需满足12×12 ≤a 1,即12≤a <1,综上可知,a ∈⎣⎡⎭⎫12,1∪(]1,2.答案:B2.若函数y =|3x -1|在(-∞,k ]上单调递减,则k 的取值范围为________.解析:函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.由图象知,其在(-∞,0]上单调递减,所以k 的取值范围是(-∞,0].答案:(-∞,0]考点三指数函数的性质及应用多维探究题点多变考点——多角探明[锁定考向]高考常以选择题或填空题的形式考查指数函数的性质及应用,难度偏小,属中低档题.常见的命题角度有:(1)比较指数式的大小;(2)与指数函数有关的函数值域问题;(3)探究指数型函数的性质.角度一比较指数式的大小1.(2018·滕州模拟)下列各式比较大小正确的是()A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1解析:A中,∵函数y=1.7x在R上是增函数,2.5<3,∴1.72.5<1.73.B中,∵y=0.6x在R上是减函数,-1<2,∴0.6-1>0.62.C中,∵0.8-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小.∵y=1.25x在R上是增函数,0.1<0.2,∴1.250.1<1.250.2,即0.8-0.1<1.250.2.D中,∵1.70.3>1,0<0.93.1<1,∴1.70.3>0.93.1.答案:B比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.角度二 与指数函数有关的函数值域问题2.已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.解析:令t =2x ,∵0≤x ≤2,∴1≤t ≤4,又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12,∵1≤t ≤4,∴t =1时,y max =52.答案:52形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.角度三 探究指数函数性质的问题3.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝⎛⎭⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减,故选B.答案:B4.已知函数f (x )=2|2x-m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.解析:令t =|2x -m |,则t =|2x -m |在区间⎣⎡⎭⎫m 2,+∞上单调递增,在区间⎝⎛⎦⎤-∞,m2上单调递减,而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].答案:(-∞,4]与指数函数有关的复合函数的单调性,要弄清复合函数由哪些基本初等函数复合而成,要注意数形结合思想的运用.[即时应用]1.设a =40.8,b =80.46,c =⎝⎛⎭⎫12-1.2,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >a >bD .c >b >a解析:∵a =21.6,b =21.38,c =21.2,函数y =2x 在R 上单调递增,且1.2<1.38<1.6,∴21.2<21.38<21.6,即c <b <a .答案:A2.设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1解析:根据题意可知,对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,∴K ≥1,故选D.答案:D3.(2018·皖南八校联考)对于给定的函数f (x )=a x -a -x (x ∈R ,a >0,a ≠1),下面给出五个命题,其中真命题是________(只需写出所有真命题的编号).①函数f (x )的图象关于原点对称; ②函数f (x )在R 上不具有单调性; ③函数f (|x |)的图象关于y 轴对称; ④当0<a <1时,函数f (|x |)的最大值是0; ⑤当a >1时,函数f (|x |)的最大值是0.解析:∵f (-x )=-f (x ),∴f (x )为奇函数,f (x )的图象关于原点对称,①真;当a >1时,f (x )在R 上为增函数,当0<a <1时,f (x )在R 上为减函数,②假;y =f (|x |)是偶函数,其图象关于y 轴对称,③真;当0<a <1时,y =f (|x |)在(-∞,0)上为增函数,在[0,+∞)上为减函数,∴当x =0时,y =f (|x |)的最大值为0,④真;当a >1时,f (x )在(-∞,0)上为减函数,在[0,+∞)上为增函数,∴当x =0时,y =f (x )的最小值为0,⑤假,综上,真命题是①③④.答案:①③④课时作业单独成册 对应学生用书第201页A 组——基础对点练1.函数f (x )=2|x -1|的大致图象是( )解析:f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1,所以f (x )的图象在[1,+∞)上为增函数,在(-∞,1)上为减函数.答案:B2.(2018·广州市模拟)设a =0.70.4,b =0.40.7,c =0.40.4,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <c <b C .b <c <aD .c <b <a解析:∵函数y =0.4x 在R 上单调递减,∴0.40.7<0.40.4,即b <c ,∵y =x 0.4在(0,+∞)上单调递增,∴0.40.4<0.70.4,即c <a ,∴b <c <a .答案:C 3.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )解析:故选C.答案:C4.设x >0,且1<b x <a x ,则( ) A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b解析:∵1<b x ,∴b 0<b x ,∵x >0,∴b >1,∵b x <a x ,∴⎝⎛⎭⎫a b x >1,∵x >0,∴ab >1⇒a >b ,∴1<b <a .故选C. 答案:C5.已知函数f (x )=a x ,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2解析:∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上, ∴x 1+x 2=0. 又∵f (x )=a x ,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A. 答案:A6.已知则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:∵y =⎝⎛⎭⎫25x 为减函数,35>25,∴b <c . 又∵y =在(0,+∞)上为增函数,35>25,∴a >c ,∴b <c <a ,故选D. 答案:D7.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )解析:由函数f (x )的图象可知,-1<b <0,a >1,则g (x )=a x +b 为增函数,当x =0时,g (0)=1+b >0,故选C.答案:C8.已知一元二次不等式f (x )<0的解集为{x |x <-1或x >12},则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}解析:因为一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >12,所以可设f (x )=a (x +1)·⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)·⎝⎛⎭⎫10x -12<0,即10x <12,x <-lg 2,故选D. 答案:D9.函数y =⎝⎛⎭⎫122x -x 2的值域为( ) A.⎣⎡⎭⎫12,+∞ B .⎝⎛⎦⎤-∞,12 C.⎝⎛⎦⎤0,12 D .(0,2]解析:∵2x -x 2=-(x -1)2+1≤1, 又y =⎝⎛⎭⎫12t 在R 上为减函数, ∴y =⎝⎛⎭⎫122x -x 2≥⎝⎛⎭⎫121=12, 即值域为⎣⎡⎭⎫12,+∞. 答案:A10.(2018·哈尔滨模拟)函数f (x )=e 2x +1e x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 解析:f (x )=e 2x +1e x =e x +1e x ,∵f (-x )=e -x +1e -x =e x +1e x =f (x ),∴f (x )是偶函数,∴函数f (x )的图象关于y 轴对称.答案:D11.(2018·北京丰台模拟)已知奇函数y ={ f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0,且a ≠1)对应的图象如图所示,那么g (x )=( )A.⎝⎛⎭⎫12-x B .-⎝⎛⎭⎫12xC .2-xD .-2x解析:由题图知f (1)=12,∴a =12,f (x )=⎝⎛⎭⎫12x , 由题意得g (x )=-f (-x )=-⎝⎛⎭⎫12-x =-2x ,故选D. 答案:D12.关于x 的方程⎝⎛⎭⎫32x =2+3a 5-a 有负数根,则实数a 的取值范围为________. 解析:由题意,得x <0,所以0<⎝⎛⎭⎫32x <1, 从而0<2+3a 5-a <1,解得-23<a <34.答案:⎝⎛⎭⎫-23,34 13.不等式2x 2-x <4的解集为________.解析:不等式2x 2-x <4可转化为2x 2-x <22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.答案:{x |-1<x <2}14.已知y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.解析:设t =12x ,当x ≥0时,2x ≥1,∴0<t ≤1,f (t )=-t 2+t =-⎝⎛⎭⎫t -122+14,∴0≤f (t )≤14,故当x ≥0时,f (x )∈⎣⎡⎦⎤0,14.∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈⎣⎡⎦⎤-14,0.故函数的值域为⎣⎡⎦⎤-14,14.答案:⎣⎡⎦⎤-14,14 B 组——能力提升练1.设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x-1,则有( )A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23 B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32 D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13解析:∵函数f (x )的图象关于直线x =1对称,∴f (x )=f (2-x ),∴f ⎝⎛⎭⎫13=f ⎝⎛⎭⎫2-13=f ⎝⎛⎭⎫53,f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫2-23=f ⎝⎛⎭⎫43,又∵x ≥1时,f (x )=3x -1为单调递增函数,且43<32<53,∴f ⎝⎛⎭⎫43<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫53, 即f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13.选B. 答案:B2.已知实数a ,b 满足等式2 017a =2 018b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个解析:设2 017a =2 018b =t ,如图所示,由函数图象,可得若t >1,则有a >b >0;若t =1,则有a =b =0;若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立.答案:B3.(2018·莱西一中模拟)函数y =a x -a -1(a >0,且a ≠1)的图象可能是( )解析:函数y =a x -1a 是由函数y =a x 的图象向下平移1a 个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a >1,平移距离大于1,所以C 项错误,故选D.答案:D4.(2018·日照模拟)若x ∈(2,4),a =2x 2,b =(2x )2,c =22x ,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >a >c解析:∵b =(2x )2=22x ,∴要比较a ,b ,c 的大小,只要比较当x ∈(2,4)时x 2,2x,2x 的大小即可.用特殊值法,取x =3,容易知x 2>2x >2x ,则a >c >b .答案:B5.已知a >0,且a ≠1,f (x )=x 2-a x .当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A.⎝⎛⎦⎤0,12∪[2,+∞) B .⎣⎡⎭⎫12,1∪(1,2] C.⎝⎛⎦⎤0,14∪[4,+∞) D .⎣⎡⎭⎫14,1∪(1,4]解析:当x ∈(-1,1)时,均有f (x )<12,即a x >x 2-12在(-1,1)上恒成立,令g (x )=a x ,m (x )=x 2-12,当0<a <1时,g (1)≥m (1),即a ≥1-12=12,此时12≤a <1;当a >1时,g (-1)≥m (1),即a -1≥1-12=12,此时1<a ≤2.综上,12≤a <1或1<a ≤2.故选B.答案:B6.(2018·菏泽模拟)若函数f (x )=1+2x +12x +1+sin x 在区间[-k ,k ](k >0)上的值域为[m ,n ],则m +n 的值是( )A .0B .1C .2D .4解析:∵f (x )=1+2·2x2x +1+sin x=1+2·2x +1-12x +1+sin x=2+1-22x +1+sin x=2+2x -12x +1+sin x .记g (x )=2x -12x +1+sin x ,则f (x )=g (x )+2,易知g (x )为奇函数,则g (x )在[-k ,k ]上的最大值与最小值互为相反数,∴m +n =4. 答案:D7.若x log 52≥-1,则函数f (x )=4x -2x +1-3的最小值为( )A .-4B .-3C .-1D .0解析:∵x log 52≥-1,∴2x ≥15,则f (x )=4x -2x +1-3=(2x )2-2×2x -3=(2x -1)2-4.当2x =1时,f (x )取得最小值-4.答案:A8.若x >1,y >0,x y +x -y =22,则x y -x -y 的值为( )A. 6 B .-2 C .2D .2或-2解析:∵x >1,y >0,∴x y >1,0<x -y <1,则x y -x -y >0.∵x y +x -y =22,∴x 2y +2x y ·x -y +x -2y =8,即x 2y +x -2y =6,∴(x y -x -y )2=4,从而x y -x-y =2,故选C.答案:C9.已知实数a ,b 满足12>⎝⎛⎭⎫12a >⎝⎛⎭⎫22b >14,则( )A .b <2b -aB .b >2b -aC .a <b -aD .a >b -a解析:由12>⎝⎛⎭⎫12a,得a >1;由⎝⎛⎭⎫12a >⎝⎛⎭⎫22b ,得⎝⎛⎭⎫222a >⎝⎛⎭⎫22b ,进而2a <b ; 由⎝⎛⎭⎫22b >14,得⎝⎛⎭⎫22b >⎝⎛⎭⎫224,进而b <4. ∴1<a <2,2<b <4. 取a =32,b =72,得b -a =72-32=2,有a >b -a ,排除C ;b >2b -a ,排除A ;取a =1110,b =3910,得b -a =3910-1110=145,有a <b -a ,排除D.故选B.答案:B10.已知函数f (x )=⎝⎛⎭⎫2x -12x ·,m ,n 为实数,则下列结论中正确的是( )A .若-3≤m <n ,则f (m )<f (n )B .若m <n ≤0,则f (m )<f (n )C .若f (m )<f (n ),则m 2<n 2D .若f (m )<f (n ),则m 3<n 3解析:∵f (x )的定义域为R ,其定义域关于原点对称,f (-x )===f (x ),∴函数f (x )是一个偶函数,又x >0时,2x -12x 与是增函数,且函数值为正,∴函数f (x )=⎝⎛⎭⎫2x -12x ·在(0,+∞)上是一个增函数,由偶函数的性质知,函数f (x )在(-∞,0)上是一个减函数,此类函数的规律是:自变量离原点越近,函数值越小,即自变量的绝对值越小,函数值就越小,反之也成立.对于选项A ,无法判断m ,n 离原点的远近,故A 错误;对于选项B ,|m |>|n |,∴f (m )>f (n ),故B 错误;对于选项C ,由f (m )<f (n ),一定可得出m 2<n 2,故C 是正确的;对于选项D ,由f (m )<f (n ),可得出|m |<|n |,但不能得出m 3<n 3,故D 错误.综上可知,选C.答案:C11.(2017·高考全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B .13C.12D .1解析:由f (x )=x 2-2x +a (e x -1+e -x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e -(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e -x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e -1+1)=0,解得a =12.故选C.答案:C12.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.解析:因为f (1+x )=f (1-x ),所以函数f (x )关于直线x =1对称,所以a =1,所以函数f (x )=2|x -1|的图象如图所示,因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.答案:113.(2018·眉山模拟)已知定义在R 上的函数g (x )=2x +2-x +|x |,则满足g (2x -1)<g (3)的x 的取值范围是________.解析:∵g (x )=2x +2-x +|x |,∴g (-x )=2x +2-x +|-x |,2x +2-x +|x |=g (x ),则函数g (x )为偶函数,当x ≥0时,g (x )=2x +2-x +x ,则g ′(x )=(2x -2-x )·ln 2+1>0,则函数g (x )在[0,+∞)上为增函数,而不等式g (2x -1)<g (3)等价于g (|2x -1|)<g (3),∴|2x -1|<3,即-3<2x -1<3,解得-1<x <2,即x 的取值范围是(-1,2).答案:(-1,2)14.(2018·信阳质检)若不等式(m 2-m )2x -⎝⎛⎭⎫12x <1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是________.解析:(m 2-m )2x -⎝⎛⎭⎫12x <1可变形为m 2-m <⎝⎛⎭⎫12x +⎣⎡⎦⎤⎝⎛⎭⎫12x 2,设t =⎝⎛⎭⎫12x ,则原条件等价于不等式m 2-m <t +t 2在t ≥2时恒成立,显然t +t 2在t ≥2时的最小值为6,所以m 2-m <6,解得-2<m <3.答案:(-2,3)。
高考数学一轮复习第2章基本初等函数导数及其应用第6讲指数与指数函数知能训练轻松闯关理北师大版

第讲指数与指数函数.(·哈尔滨模拟)函数()=的图像( ).关于原点对称.关于直线=对称.关于轴对称.关于轴对称解析:选()==+,因为(-)=-+=+=(),所以()是偶函数,所以函数()的图像关于轴对称..(·高考山东卷)设=,=,=,则,,的大小关系是( ).<<.<<.<<.<< 解析:选.因为指数函数=在(-∞,+∞)上为减函数,所以>,即>,又<<,>,所以<,故选..化简(>,>)的结果是( )...解析:选.原式==---·+-=..(·北京丰台区一模)已知奇函数=如果()=(>,且≠)对应的图像如图所示,那么()=( ).-.-.-解析:选.由题图知()=,所以=,()=,由题意得()=-(-)=-=-..若函数()=-(>,≠),满足()=,则()的递减区间是( ).[,+∞).(-∞,].(-∞,-].[-,+∞)解析:选.由()=得=,所以=或=-(舍去),即()=.由于=-在(-∞,]上递减,在[,+∞)上递增,所以()在(-∞,]上递增,在[,+∞)上递减,故选..(·丽水模拟)当∈(-∞,-]时,不等式(-)·-<恒成立,则实数的取值范围是( ).(-,).(-,).(-,).(-,)解析:选.原不等式变形为-<,因为函数=在 (-∞,-]上是减函数,所以≥=,当∈(-∞,-]时,-<恒成立,等价于-<,解得-<<..计算:×+×-=.解析:原式=×+×-=.答案:.已知正数满足--=,函数()=,若实数、满足()>(),则、的大小关系为.解析:因为--=,所以=或=-(舍去).故函数()=在上递增,由()>(),得>.答案:>.(·太原质检)已知函数()=,()=-,若存在∈[,],对任意的∈[-,],都有()≥(),则实数的取值范围是.解析:对于()==-,∈[,],令=,则∈()=-=-+,∈,故()有最大值,即()=.而()=-在[-,]上递减,所以()=(-)=-.题目中“存在∈[,],对于任意的∈[-,]都有()≥()”等价于()≥(),即≥-,故≥.答案:.(·济宁月考)已知函数()=(-)(>,且≠),若对任意,∈,>,则的取值范围是.解析:当<<时,-<,=递减,所以()递增;当<<时,-<,=递增,所以 ()递减;当=时,()=;当>时,->,=递增,所以()递增.又由题意知()递增,故的取值范围是(,)∪(,+∞).答案:(,)∪(,+∞).求下列函数的定义域和值域.()=;()= .解:()显然定义域为.因为-=-(-)+≤,且=为减函数.所以≥=.故函数=的值域为.()由--≥,得-≥=-,因为=为增函数,所以-≥-,即≥-,此函数的定义域为,由上可知--≥,所以≥.即函数的值域为[,+∞)..已知函数()=+(>,≠,∈).()若()为偶函数,求的值;()若()在区间[,+∞)上是增函数,试求,应满足的条件.解:()因为()为偶函数,所以对任意的∈,都有(-)=(),即+=-+,+=-+,解得=.()记()=+=①当>时,()在区间[,+∞)上是增函数,即()在区间[,+∞)上是增函数,所以-≤,≥-.②当<<时,()在区间[,+∞)上是增函数,即()在区间[,+∞)上是减函数,但()在区间[-,+∞)上是增函数,故不存在,的值,使()在区间[,+∞)上是增函数.所以()在区间[,+∞)上是增函数时,,应满足的条件为>且≥-..(·高考山东卷)若函数()=是奇函数,则使()>成立的的取值范围为( ).(-,).(-∞,-).(,+∞).(,) 解析:选.因为函数=()为奇函数,所以(-)=-(),即=-.化简可得=,则>,即->,即>,故不等式可化为<,即<<,解得<<,故选..(·北京朝阳区一模)记-为区间[,]的长度.已知函数=,∈[-,](≥),其值域为[,],则区间[,]的长度的最小值是.解析:由题可知,函数=,∈[-,](≥),由图像可知,=,当≤≤时,函数的最大值为(-)=()=,函数的值域为[,].当>时,函数的值域为[,()].因为()>()=,所以区间[,]的长度的最小值为-=.。
高三数学一轮复习 第2章 函数、导数及其应用第5课时 指数与指数函数精品课件 理 北师大

• 3.指数函数的图象和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图象
图象特征
在x轴 上方,过定点 (0,1)
当x逐渐增大时, 图象逐渐下降
当x逐渐增大时, 图象逐渐上升
函数
定义域
值域
性 单调性 质
函数 值变 化规律
y=ax(a>0,且a≠1)
D.f(-2)>f(2)
解析: 由a-2=4,a>0,得a=12, ∴f(x)=21-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|,即f(-2)>f(-1). 答案: A
4.方程3x-1=19的解是________. • 答案: -1
5.函数y=121-x的值域是________. 解析: 函数的定义域为R,令u=1-x∈R, ∴y=21u>0. 答案: (0,+∞)
• (2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函 数.
• 1.与指数函数有关的复合函数的定义域、值域的求法
• (1)函数y=af(x)的定义域与y=f(x)的定义域相同; • (2)先确定f(x)的值域,再根据指数函数的值域、单调性,可确定y=
af(x)的值域. • 2.与指数函数有关的复合函数的单调性的求解步骤 • (1)求复合函数的定义域; • (2)弄清函数是由哪些基本函数复合而成的; • (3)分层逐一求解函数的单调性; • (4)求出复合函数的单调区间(注意“同增异减”).
【变式训练】 1.计算下列各式:
• 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的 图象,通过平移、对称变换得到其图象.
高考数学统考一轮复习 第二章 函数、导数及其应用 第四节 指数与指数函数(教师文档)教案 文 北师

学习资料第四节指数与指数函数授课提示:对应学生用书第20页[基础梳理]1.根式(1)根式的概念①若x n=a,则x叫作a的n次方根,其中n>1且n∈N+。
式子na叫作根式,这里n叫作根指数,a叫作被开方数.②a的n次方根的表示:x n=a⇒x=错误!(2)根式的性质①(错误!)n=a(n∈N+).②错误!=错误!2.有理数指数幂(1)幂的有关概念:①正分数指数幂:a错误!=错误!(a>0,m,n∈N+,且n>1);②负分数指数幂:a=错误!=错误!(a>0,m,n∈N+,且n>1);③0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的运算性质:①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图像及性质函数y=a x(a>0,且a≠1)图像0<a<1a>1图像特征在x轴上方,过定点(0,1)当x逐渐增大时,图像逐渐下降当x逐渐增大时,图像逐渐上升性质定义域R值域(0,+∞)单调性减增函数值变化规律当x=0时,y=1当x<0时,y>1;当x>0时,0<y<1当x<0时,0<y<1;当x>0时,y>11.一个关注点错误!开方化简,要看n的奇偶性.2.指数函数图像和性质的注意点(1)指数函数y=a x(a>0,a≠1)的图像和性质与a的取值有关,应分a>1与0<a<1来研究.(2)画指数函数y=a x(a>0,且a≠1)的图像,应抓住三个关键点:(1,a),(0,1),错误!. 3.指数函数的图像与底数大小的比较如图是指数函数(1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图像,底数a,b,c,d与1之间的大小关系为c>d>1>a>b。
规律:在y轴右(左)侧图像越高(低),其底数越大.4.指数函数图像的对称规律函数y=a x的图像与y=a-x的图像关于y轴对称,y=a x的图像与y=-a x的图像关于x轴对称,y=a x的图像与y=-a-x的图像关于坐标原点对称.[四基自测]1.(基础点:有理数指数幂运算)化简[(-2)6]错误!-(-1)0的结果为()A.-9B.7C.-10 D.9答案:B2.(基础点:指数函数图像)函数f(x)=1-e x的图像大致是()答案:A3.(基础点:指数函数解析式)若函数f(x)=a x(a>0,且a≠1)的图像经过点A错误!,则f (-1)=________.答案:错误!4.(易错点:指数函数性质)函数y=(ax+1)e x过定点________.答案:(0,1)授课提示:对应学生用书第21页考点一实数指数幂的化简与求值[例](1)化简错误!(x<0,y<0)的结果为()A.2x2y B.2xyC.4x2y D.-2x2y[解析]错误!=(16x8y4)错误!=[24(-x)8·(-y)4]错误!=24·错误!·(-x)8·错误!·(-y)4·错误!=2(-x)2(-y)=-2x2y.[答案] D(2)错误!错误!+2-2·错误!错误!-(0.01)0.5.[解析]原式=1+错误!×错误!错误!-错误!错误!=1+错误!×错误!-错误!=1+错误!-错误!=错误!.[破题技法]指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式来表示,运用指数幂的运算性质来解答.将本例(1)中的“x<0,y<0”去掉后,如何化简该式.解析:416x8y4=2|x2y|=错误!。
高考数学一轮总复习第二章函数、导数及其应用第五节指数与指数函数课件理

第五节 指数(zhǐshù)与指数(zhǐsh
第一页,共19页。
化简:(1)(a14ba123)b243a-ab132 b13(a>0,b>0); (2)-287-23+(0.002)-21-10( 5-2)-1+( 2- 3)0.
第二页,共19页。
12 1 解析:(1)原式=(aab3b2a2a-3b133b)13 2=a32+16-1+13b1+13-2-13= ab-1. (2)原式=-287-23+5100-12- 51-0 2+1 =-28723+50012-10( 5+2)+1 =49+10 5-10 5-20+1=-1697.
第九页,共19页。
(1)(2016·福 建 五 校 联 考 ) 定 义 运 算
a⊕b=
a,a≤b,
则函数
b,a>b,
f(x)=1⊕2x 的图象是( )
第十页,共19页。
解析:因为当 x≤0 时,2x≤1; 当 x>0 时,2x>1. 则 f(x)=1⊕2x=21x,,xx>≤00,,图象 A 满足. 答案:A
第三页,共19页。
1.这类问题的求解,首先将根式、分数指数幂统一为分数指数 幂,以便利用法则计算,但应注意:
(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序. 2.当底数是负数时,先确定符号,再把底数化为正数. 3.运算结果不能同时含有根号和分数指数,也不能既有分母又 含有负指数.
第四页,共19页。Fra bibliotekA.(-∞,+∞)
B.(-2,+∞)
C.(0,+∞)
D.(-1,+∞)
第七页,共19页。
解析:(1)当 x=1 时,y=a1-a=0, ∴函数 y=ax-a 的图象过定点(1,0),C 项满足. (2)因为 2x>0,所以由 2x(x-a)<1 得 a>x-12x, 令 f(x)=x-12x,则函数 f(x)在(0,+∞)上是增函数,所以 f(x) >f(0)=0-120=-1,所以 a>-1. 答案:(1)C (2)D
高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案
第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n=1a m n=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编有下列四个式子:①3(-8)3=-8;② (-10)2=-10;③4(3-π)4=3-π;④2 017(a -b )2 017=a -b . 其中正确的个数是( )A .1B .2C .3D .4B ①④正确,(-10)2=|-10|=10,②错误; 4(3-π)4=|3-π|=-(3-π)=π-3,③错误,故选B.2.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3xD 根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x是增函数,所以D 正确.3.(2017·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y=1-x 的图象上.4.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________. 由1-e x ≥0,e x≤1,故函数f (x )的定义域为{x |x ≤0}. 所以0<e x ≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)0.027-13-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【解】 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=⎝ ⎛⎭⎪⎫-52a -16b -3÷(2a 13b -32)·a 12b 12=-54a -12b -32·a 12b 12=-54b -1=-54b.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b-32=85.指数函数的图象及应用(1)函数f (x )=21-x的大致图象为()(2)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f (x )=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.)1.函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 D 由f (x )=a x -b 的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.若函数y =21-x+m 的图象不经过第一象限,求m 的取值范围.y =⎝ ⎛⎭⎪⎫12x -1+m ,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m ≤-2.指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质.(1)已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. ①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.【解】 (1)选B.把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c . (2)①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).②令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ) 故f (x )的值域为(0,+∞)时,a 的值为0.有关指数函数性质的问题类型及解题策略(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小 1.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1BA 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73. B 中,因为y =0.6x在R 上是减函数,-1<2, 所以0.6-1>0.62. C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小. 因为y =1.25x在R 上是增函数,0.1<0.2, 所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.角度二 解简单的指数方程或不等式2.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 因为2x 2-x <4,所以2x 2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质 3.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在 因为f (x )=2|x -a |,所以f (x )的图象关于x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是 1——换元法解决指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x与a 2x(log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数y =9x+m ·3x-3在区间上单调递减,则m 的取值范围为________.设t =3x ,则y =9x +m ·3x -3=t 2+mt -3.因为x ∈,所以t ∈⎣⎢⎡⎦⎥⎤19,9.又函数y =9x+m ·3x -3在区间上单调递减,即y =t 2+mt -3在区间⎣⎢⎡⎦⎥⎤19,9上单调递减, 故有-m2≥9,解得m ≤-18.所以m 的取值范围为(-∞,-18]. (-∞,-18]1.下列函数中值域为正实数的是( )A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2xBA 中,y =-5x<0,B 中,因为1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数,所以y =⎝ ⎛⎭⎪⎫131-x的值域是正实数,C 中,y =⎝ ⎛⎭⎪⎫12x-1≥0,D 中,y =1-2x ,由于2x >0,故1-2x <1,又1-2x≥0,故0≤y <1,故符合条件的只有B.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8a bC .-6a bD .-6abC 原式=4÷⎝ ⎛⎭⎪⎫-23a 23-(-13)b -13-23=-6ab -1=-6a b,故选C.3.函数y =a x-1a(a >0,a ≠1)的图象可能是( )D 函数y =a x -1a 的图象由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.4.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >cB .a >c >bC .c >a >bD .b >c >aA 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .5.(2017·莱芜模拟)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g (x )=|2x -4|在 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).7.指数函数y =f (x )的图象经过点(m ,3),则f (0)+f (-m )=________. 设f (x )=a x(a >0且a ≠1),所以f (0)=a 0=1. 且f (m )=a m =3.所以f (0)+f (-m )=1+a -m=1+1a m =43.438.614-(π-1)0-⎝ ⎛⎭⎪⎫33813+⎝ ⎛⎭⎪⎫164-23=________. 原式=52-1-⎝ ⎛⎭⎪⎫27813+(4-3)-23=32-32+42=16. 169.(2015·高考山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.①当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.-3210.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(-1,2)11.求下列函数的定义域和值域. (1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y = 32x -1-19. (1)显然定义域为R .因为2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, 因为y =3x为增函数,所以2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,所以y ≥0. 即函数的值域为 (1)因为f (x )为偶函数, 所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间 因为函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,所以a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a+a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a.因为a <-1,所以⎝ ⎛⎭⎪⎫13a>3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞). 14.(2017·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,则12≤b <1. b ·f (a )=b ·f (b )=b (b +1)=b 2+b =⎝ ⎛⎭⎪⎫b +122-14,所以34≤b ·f (a )<2.⎣⎢⎡⎭⎪⎫34,215.已知函数y =2-x 2+ax +1在区间(-∞,3)内递增,求a 的取值范围. 函数y =2-x 2+ax +1是由函数y =2t 和t =-x 2+ax +1复合而成.因为函数t =-x 2+ax +1在区间 (-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减,且函数y =2t在R 上单调递增,所以函数y =2-x 2+ax +1在区间(-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减. 又因为函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,所以3≤a2,即a ≥6.16.已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围. (1)因为f (x )是定义在(-∞,+∞)上的奇函数, 所以f (0)=0,即1-42a 0+a =0.解得a =2.(2)因为y =f (x )=2x-12x +1,所以2x=1+y 1-y .由2x>0知1+y 1-y >0,所以-1<y <1.即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x -2等价于t (2x -1)2x+1≥2x -2,即(2x )2-(t +1)2x+t -2≤0.令2x =u ,因为x ∈(0,1],所以u ∈(1,2]. 又u ∈(1,2]时,u 2-(t +1)u +t -2≤0恒成立.所以⎩⎪⎨⎪⎧12-(t +1)+t -2≤0,22-2(t +1)+t -2≤0,解得t ≥0.故所求t 的取值范围为[0,+∞).。
高考数学一轮复习第二章函数、导数及其应用第6讲指数式与指数函数课件理
1.下列根式与分数指数幂的互化中,正确的是( C )
1
A.- x=(-x) 2 (x>0)
1
B. 6 y2 =y 3 (y<0)
3
C.x 4 =
4
1 x
3
(x>0)
D.x
1 3
=-
3
x (x≠0)
2.函数 f(x)=4x2+x 1的图象( D )
A.关于原点对称 C.关于 x 轴对称
B.关于直线 y=x 对称 D.关于 y 轴对称
3.(2016年浙江模拟)已知实数 a,b 满足等式 2017a=2018b, 下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;
⑤a=b.其中不可能成立的关系式有( B )
A.1 个
B.2 个
C.3 个
D.4 个
解析:设 2017a=2018b=t,如图 D5,由函数图象,可得, 若 t>1,则有 a>b>0.①成立;
第6讲 指数式与指数函数
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌 握幂的运算. 3.理解指数函数的概念,理解指数函数的单调性,掌握指 数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型.
1.分数指数幂
正分数 指数幂
正数的正分 数指数幂
0的正分数 指数幂
1
a2
1
b3
(2)
.
6 a b5
思路点拨:根式的形式通常写成分数指数幂后再进行运算.
1
11
11
1
1
解:(1)原式=23 3 ×1+(23) 4 ×2 4 +(2 3 ×3 2 )6-23 3 =23 3
高考数学一轮总复习教学课件第二章 函 数第6节 指数函数
则x+y+e>e,从而ln(x+y+e)>ln e=1,A正确,B错误;
给定条件不能比较x+y与1的大小,当x+y=1时,logπ|x+y|=0,C,D
错误.故选A.
角度二
解简单的指数方程或不等式
[例 3] (1)若
[例2] (1)(2024·江苏苏州模拟)若a=0.30.7,b=0.70.3,c=1.20.3,则
a,b,c的大小关系是(
√
A.a>b>c B.c>b>a
C.b>c>a D.a>c>b
)
解析:(1)因为函数y=0.3x,y=0.7x在R上是减函数,
所以0<0.30.7<0.30.3<0.30=1,0.70.3<0.70=1,
(1)若函数y=f(x)的图象关于原点对称,求函数g(x)=f(x)+
点x0;
解:(1)因为f(x)的图象关于原点对称,
所以f(x)为奇函数,
所以f(-x)+f(x)=0,
所以a·2-x-2-x+a·2x-2x=0,
即(a-1)·(2-x+2x)=0,所以a=1.
的零
x
-x
x
-x
所以 f(x)=2 -2 ,所以 g(x)=2 -2 + ,
+
√
B.[ ,2]
C.(-∞, )
x
一轮复习课时训练§2.4:指数与指数函数
第二章§4:指数与指数函数(与一轮复习课件对应的课时训练)满分100,训练时间50分钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(827)23+(-1)3372964的值为 A .0 B .89 C .43 D .292.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则f(x)=2x ⊕2-x 的图象是3.若函数f(x)、g(x)分别为R 上的奇函数、偶函数,且满足f(x)-g(x)=e x ,则有A .f(2)<f(3)<g(0)B .g(0)<f(3)<f(2)C .f(2)<g(0)<f(3)D .g(0)<f(2)<f(3)4.关于函数f(x)=2x -2-x (x ∈R)有下列三个结论:①f(x)的值域为R ;②f(x)是R 上的增函数;③对x ∈R ,f(-x)+f(x)=0成立,其中所有正确的序号为A .①②B .①③C .②③D .①②③ 5.已知函数y =22x+x +a 的定义域为[1,2],则实数a 的取值范围是 A .[-6,-3] B .[3,6]C .(-∞,-6)∪(-3,+∞)D .(-∞,3)∪(6,+∞)二、填空题:本大题共3小题,每小题8分,共24分.6.函数y =(12)-x 2+2x 的单调递增区间为________. 7.函数f(x)=1+22x -1的奇偶性是________. 8.已知a ,b ∈(0,+∞),a +b =1,M =2a +2b ,则M 的取值范围是________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问8分,(2)小问10分)已知函数f(x)=b·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A(1,6),B(3,24),(1)试确定f(x);(2)若不等式(1a )x +(1b)x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.10.(本小题满分18分,(1)小问5分,(2)小问6分,(3)小问7分)已知定义在R 上的奇函数f(x),且当x ∈(0,1)时,f(x)=2x4x +1. (1)求f(x)在(-1,1)上的解析式;(2)判断f(x)在(0,1)上的单调性,并给予证明;(3)当λ为何值时,关于x 的方程f(x)=λ在x ∈(-1,1)上有实数解.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:(827)23+(-1)3372964=[(23)3]23-13(94)3=49-49=0. 答案:A2.解析:x ≥0时,2x ≥1≥2-x >0,x <0时,0<2x <1<2-x . ∴f(x)=2x ⊕2-x =⎩⎪⎨⎪⎧2-x x ≥02x x <0. 答案:C3.解析:∵f(x)-g(x)=e x 且f(x)、g(x)分别为R 上的奇函数、偶函数,∴f(-x)-g(-x)=e -x ,即-f(x)-g(x)=e -x,解得f(x)=e x -e -x 2,g(x)=-e x +e -x2.易得f(x)在[0,+∞)上是增函数,∴f(3)>f(2)>f(0)=0且g(0)=-1,∴g(0)<f(2)<f(3).答案:D4.解析:∵y =2x 在R 上为增函数,y =2-x 在R 上为减函数, ∴y =2x -2-x 在R 上是增函数.∴②正确.又当x →+∞时,2x →+∞,2-x →0.∴2x -2-x →+∞,当x →-∞时,2x →0,2-x →+∞,∴2x -2-x →-∞,∴f(x)的值域为R.∴①正确. 又f(-x)=2-x -2x =-f(x),∴f(-x)+f(x)=0.∴③正确. 答案:D 5.解析:函数y =22x +x +a的定义域为[1,2]时,即2x +x +a ≠0在x ∈[1,2]上恒成立, ∴a =-2x -x 在x ∈[1,2]上无解.设g(x)=-2x -x ,则g(x)在x ∈[1,2]上为单调减函数,g(x)∈[-6,-3].∴a <-6或a >-3.答案:C二、填空题:本大题共3小题,每小题8分,共24分.6.解析:设t =-x 2+2x ,则y =(12)t ,又y =(12)t 在定义域上为减函数. ∴当原函数递增时,t =-x 2+2x 递减,又-x 2+2x ≥0,∴0≤x ≤2.∴t =-x 2+2x 的递减区间[1,2].∴原函数递增区间为[1,2].答案:[1,2]7.解析:f(x)的定义域为{x|x ∈R ,且x ≠0},f(x)=1+22x -1=2x +12x -1,∴f(-x)=2-x +12-x -1=2x +11-2x =-f(x),∴f(x)为奇函数.答案:奇函数8.解析:设x =2a ,则x ∈(1,2),依题意M =2a +21-a =2a +22a =x +2x ,易知函数y =x +2x在(1,2)上是减函数,在(2,2)上是增函数,∴22≤M <3.答案:[22,3)三、解答题:本大题共2小题,共36分.9. (本小题满分18分,(1)小问8分,(2)小问10分)解:(1)由已知⎩⎪⎨⎪⎧ ba =6ba 3=24,∴⎩⎪⎨⎪⎧ a =2b =3或⎩⎪⎨⎪⎧a =-2b =-3(舍去), ∴f(x)=3·2x .(2)由(1)知(1a )x +(1b )x -m ≥0在x ∈(-∞,1]上恒成立,得m ≤(12)x +(13)x 在x ∈(-∞,1]上恒成立.设g(x)=(12)x +(13)x ,则g(x)在(-∞,1]上递减, ∴g(x)min =g(1)=13+12=56. ∴所求m 的范围为(-∞,56]. 10. (本小题满分18分(1)小问5分,(2)小问6分,(3)小问7分)解:(1)当x ∈(-1,0)时,-x ∈(0,1).∵f(x)为奇函数,∴f(x)=-f(-x)=-2-x4-x +1=-2x4x +1. 又f(0)=0,∴可得函数f(x)的表达式为分段函数, 即f(x)=⎩⎨⎧-2x 4x +1,x ∈(-1,0)0, x =02x4x +1, x ∈(0,1).(2)f(x)在(0,1)上是减函数.当x ∈(0,1)时,f(x)=2x4x +1.设0<x 1<x 2<1,则f(x 1)-f(x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1). ∵0<x 1<x 2<1,∴2x 2-2x 1>0,2x 1+x 2-1>0,∴f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),故f(x)在(0,1)上单调递减.(3)∵当x ∈(0,1)时,f(x)是减函数,∴f(x)∈(25,12).同理x ∈(-1,0)时,f(x)∈(-12,-25),又f(0)=0,故当-12<λ<-25或25<λ<12或λ=0时,f(x)=λ在x ∈(-1,1)上有实数解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 指数与指数函数核心考点·精准研析考点一指数幂的化简与求值1.下列等式成立的是( )A.(-2)-2=4B.2a-3=(a>0)C.(-2)0=-1D.()4=(a>0)2.(2019·全国卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:+=(R+r).设α=,由于α的值很小,因此在近似计算中≈3α3,则r的近似值为( )A.RB.RC.RD.R3.设2x=8y+1,9y=3x-9,则x+y的值为________.4.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于________.【解析】1.选D.对于A,(-2)-2=,故A错误;对于B,2a-3=,故B错误;对于C,(-2)0=1,故C错误;对于D,()4=.2.选D.由题可知M1+M2=M1,把α=代入得:M1+M2=M1,=[-]M1=M1=M1,由题中给出的≈3α3,所以≈3,r3≈R3,r≈R.3.因为2x=8y+1=23(y+1),所以x=3y+3,因为9y=3x-9=32y,所以x-9=2y,解得x=21,y=6,所以x+y=27.答案:274.由f(a)=3得2a+2-a=3,所以(2a+2-a)2=9,即22a+2-2a+2=9.所以22a+2-2a=7,故f(2a)=22a+2-2a=7.答案:7指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.(5)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数,形式力求统一.考点二指数函数的图像及应用【典例】1.已知0<a<1,b<-1,则函数y=a x+b的图像必定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.函数f(x)=1-e|x|的图像大致是( )3.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围为________.【解题导思】序号联想解题1 由0<a<1,b<-1,y=a x+b,想到指数函数的图像2 由f(x)=1-e|x|,想到偶函数以及函数值小于等于03 由|y|=2x+1,想到讨论y≥0与y<0【解析】1.选A.y=a x+b(0<a<1,b<-1)的图像如图.由图像可知,y=a x+b的图像必定不经过第一象限.2.选A.因为函数f(x)=1-e|x|是偶函数,且值域是(-∞,0],只有A满足上述两个性质.3.分别作出两者的图像,通过图像的交点个数来判断参数的取值范围. 曲线|y|=2x+1与直线y=b的图像如图所示,由图像可得若|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]1.指数函数图像的画法(判断)及应用方法(1)画(判断)指数函数y=a x(a>0,a≠1)的图像,应抓住三个关键点:(1,a),(0,1),.(2)与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解.2.指数函数的图像与底数大小的比较在第一象限内,指数函数y=a x(a>0,a≠1)的图像越高,底数越大.【秒杀绝招】T2可用排除法解决,T3可利用2x+1的取值范围直接求解.1.不论a为何值,函数y=(a-1)2x-恒过定点,则这个定点的坐标是( )A. B.C. D.【解析】选C.y=(a-1)2x-=a-2x,令2x-=0,得x=-1,故函数y=(a-1)2x-恒过定点.2.函数y=a x-(a>0,且a≠1)的图像可能是( )【解析】选D.若a>1,则y=a x-在R上是增函数,当x=0时,y=1-∈(0,1),A,B不满足.若0<a<1,则y=a x-在R上是减函数,当x=0时,y=1-<0,C错,D项满足.3.(2020·吉安模拟)若函数y=|2x-1|的图像与直线y=b有两个公共点,则b的取值范围为________. 【解析】作出曲线y=|2x-1|的图像与直线y=b如图所示.由图像可得b的取值范围是(0,1).答案:(0,1)考点三指数函数的性质及应用命题精解读1.考什么:(1)求指数函数的单调性,利用指数函数的单调性比较大小、求值或解不等式、求参数值等问题.(2)考查数学运算、直观想象、逻辑推理等核心素养.2.怎么考:指数函数的奇偶性、单调性,函数的周期性以及对称性等知识单独或交汇考查,也可能以分段函数的形式呈现.3.新趋势:以指数函数为载体,单调性与比较大小、求参数值或范围交汇考查,指数函数与其他基本初等函数交汇,指数函数的图像与对称性、交点个数、不等式交汇考查.学霸好方法1.比较指数式的大小的方法(1)能化成同底数的先化成同底数幂,再利用单调性比较大小.(2)不能化成同底数的,一般引入“1”“0”等中间量比较大小.(3)在研究指数型函数的单调性时,当底数a与“1”的大小关系不确定时,要分类讨论.2.指数函数单调性的判断(1)求单调区间必须先求定义域.(2)根据底数a进行判断,0<a<1为减函数,a>1为增函数.(3)指数型函数的单调性根据复合函数“同增异减”.比较指数式的大小【典例】已知f(x)=2x-2-x,a=,b=,则f(a),f(b)的大小关系是________.【解析】易知f(x)=2x-2-x在R上为增函数,又a==>=b.所以f(a)>f(b).答案:f(b)<f(a)如何比较指数式的大小?提示:首先将指数式化为同底,再考虑相应指数函数的单调性,最后得出结论.解简单的指数方程或不等式【典例】1.已知实数a≠1,函数f(x)=若f(1-a)=f(a-1),则a的值为________.2.设函数f(x)=若f(a)<1,则实数a的取值范围是________.【解析】1.当a<1时,41-a=21,解得a=;当a>1时,代入不成立.故a的值为.答案:2.当a<0时,不等式f(a)<1可化为-7<1,即<8,即<,因为0<<1,所以a>-3,所以-3<a<0;当a≥0时,不等式f(a)<1可化为<1,所以0≤a<1.故a的取值范围是(-3,1).答案:(-3,1)如何解简单的指数方程或不等式?提示:充分利用指数函数的性质,将指数方程或不等式转化为一次、二次方程或不等式,即可解决.指数函数性质的综合应用【典例】1.若对于任意x∈(-∞,-1],都有(3m-1)2x<1成立,则m的取值范围是( )A. B.C.(-∞,1)D.(-∞,1]2.已知函数f(x),若在其定义域内存在实数x满足f(-x)=-f(x),则称函数f(x)为“局部奇函数”,若函数f(x)=4x-m·2x-3是定义在R上的“局部奇函数”,则实数m的取值范围是 ( )A.[-2,2)B.[-2,+∞)C.(-∞,2)D.[-4,-2)【解析】1.选C.因为2x>0,所以不等式(3m-1)2x<1对于任意x∈(-∞,-1]恒成立,等价于3m-1<=对于任意x∈(-∞,-1]恒成立.因为x≤-1,所以≥=2.所以3m-1<2,解得m<1,所以m的取值范围是(-∞,1).2.选B.根据“局部奇函数”的定义可知,方程f(-x)=-f(x)有解即可,即4-x-m·2-x-3=-(4x-m·2x-3),所以4-x+4x-m(2-x+2x)-6=0,化为(2-x+2x)2-m(2-x+2x)-8=0有解,令2-x+2x=t(t≥2),则有t2-mt-8=0在[2,+∞)上有解,设g(t)=t2-mt-8,则g(2)≤0,得m≥-2,综上可得实数m的取值范围为[-2,+∞).任意x∈[-2,-1],都有3m-1<成立与存在x∈[-2,-1],使得3m-1<成立一样吗?提示:不一样,前者3m-1比的最小值还要小,而后者只需小于它的最大值即可.1.(2020·西安模拟)已知f(x)=2x-2-x,a=,b=,c=log2,则f(a),f(b), f(c)的大小关系为( )A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)【解析】选B.易知f(x)=2x-2-x在R上为增函数,又a==>=b>0, c=log2<0,则a>b>c,所以f(c)<f(b)<f(a).2.若≤,则函数y=2x的值域是( )A. B.C. D.[2,+∞)【解析】选B.因为≤=24-2x,则x2+1≤4-2x,即x2+2x-3≤0,所以-3≤x≤1,所以≤y≤2.3.若函数f(x)=a|x+1|(a>0,且a≠1)的值域为[1,+∞),则f(-4)与f(1)的关系是( )A.f(-4)>f(1)B.f(-4)=f(1)C.f(-4)<f(1)D.不能确定【解析】选A.由题意知a>1,所以f(-4)=a3,f(1)=a2,由指数函数的单调性知a3>a2,所以f(-4)>f(1).1.已知0<a<1,x>y>1,则下列各式中正确的是( )A.x a<y aB.a x<a yC.a x>a yD.a x>y a【解析】选B.对于A,因为>1,所以=>=1,所以x a>y a,所以A错误; 0<a<1,所以f(x)=a x为减函数,又x>y>1,所以a x<a y,B正确,C错误;对于D,因为a x<a0=1而y a>y0=1,所以a x<y a,所以D错误.2.若函数f(x)=的值域是,则f(x)的单调递增区间是________.【解析】令g(x)=ax2+2x+3,由于f(x)的值域是,所以g(x)的值域是[2,+∞).因此有解得a=1,这时g(x)=x2+2x+3,f(x)=.由于g(x)的单调递减区间是(-∞,-1], 所以f(x)的单调递增区间是(-∞,-1]. 答案:(-∞,-1]。