(完整版)有理数的乘法知识点总结

合集下载

有理数的乘法知识点总结

有理数的乘法知识点总结

有理数的乘法知识点总结
有理数乘法是数学中的一项基本运算,它涉及到了正数、负数和分数之间的运算。

以下是有理数乘法的一些重要知识点:
1. 乘法的基本性质:
- 乘法交换律:a × b = b × a,无论a和b的值是多少,它们的乘积始终相等。

- 乘法结合律:(a × b) × c = a × (b × c),无论a、b和c的值是多少,它们的乘积始终相等。

- 乘法分配律:a × (b + c) = (a × b) + (a × c),无论a、b和c的值是多少,两边的乘积始终相等。

2. 正数与正数相乘:
- 两个正数相乘,积仍然是正数。

例如:2 × 3 = 6。

- 正数与零相乘,积为零。

例如:4 × 0 = 0。

3. 正数与负数相乘:
- 一个正数与一个负数相乘,积为负数。

例如:3 × (-2) = -6。

4. 负数与负数相乘:
- 两个负数相乘,积为正数。

例如:(-3) × (-2) = 6。

5. 分数相乘:
- 分数相乘时,我们先将两个分数化简为最简形式,然后将它们的分子相乘得到新分子,分母相乘得到新分母。

例如:⅔ × ½ = 1/3。

这些是有理数乘法的基本知识点。

通过掌握这些知识,我们能够更好地理解和运用有理数乘法,解决实际问题中的计算和应用。

记住在计算过程中遵循乘法的基本性质,可以帮助我们减少错误,提高计算准确性。

若还有其他问题,请随时提问。

(完整版)有理数及其运算知识点汇总

(完整版)有理数及其运算知识点汇总

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数及其运算知识点汇总 1、2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

3、任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥09、比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

10、绝对值的性质:①对任何有理数a ,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|11、有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并 用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

有理数的乘法有理数的乘法法则

有理数的乘法有理数的乘法法则

(3) 14372=7472=12.
(4)
7
1 3
0
=
0.
知1-讲
【例2】计算:
(1)
(-3)×9;
(2)
8×(-1);
(3)
1 2
2
.
解: (1) (-3)×9=-27; (2) 8×(-1) =-8;
(3) 122=1.
要得到一个数 的相反数,只要 将它乘 -1.
(来自教材)
总结
知1-讲
知1-练
1 (2014·天津)计算(-6)×(-1)的结果等于( )
A.6
B.-6
C.1
D.-1
2 (中考·温州)计算:(-2)×3的结果是( )
A.-6
B.-1
C.1
D.6
3 (2015·河北)计算:3-2×(-1)=(
A.5
B.1
C.-1
知1-练
) D.6
4 计算:
1 6 9 ; 2 4 6 ; 3 6 1 ; 4 60 ; 52 3 9 4 ; 6 1 3 1 4.
乘都等于它的相反数. 要点精析: (1)如果两个数的积为正数,那么这两个数同正
或同负,反之亦然;
知1-讲
(2)如果两个数的积为负数,那么这两个数一正一0,反之亦然.
3.易错警示:不要与加法法则混为一谈,错误地理 解为“同号取原来的符号”,再把绝对值相乘.
按照上述规律,下面的空格可以各填什么数? 从中可以归纳出什么结论?
(-3) × (-1) =________, (-3) × (-2) =________, (-3) × (-3) =________.
知1-讲
1.有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘. (2)任何数与0相乘,都得0. (3)任何数与1相乘都等于它本身,任何数与-1相

第二章 第7--11节 有理数的乘法

第二章 第7--11节 有理数的乘法

第二章 第7节 有理数的乘法(第1课时)教学目标1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性; 2.培养学生观察、归纳、概括及运算能力.教学重点:会进行有理数乘法的运算.能运用乘法运算律简化运算。

难点:有理数乘法中的符号法则.知识点1. 有理数乘法法则:①两数相乘,同号得_____, 异号得______, 并把____________________.②任何数与0相乘,积仍为________。

知识点2. 有理数乘法的运算 步骤:① 定号 ②绝对值相乘 例1. 计算下列各题4)3)(1(⨯- )7()4)(2(-⨯- )37()73)(3(-⨯- )41()4)(4(-⨯- 221)5(⨯变式练习:421)8)(1(⨯- )45(32)2(-⨯ )143(107)3(-⨯ )21()321)(4(-⨯-知识点3.倒数的定义(1) 如果两个有理数的乘积为______,就称这两个有理数互为________,也称其中一个数是另一个的__________. (2) a 的倒数为__________(0≠a )(3) 如果两个有理数的乘积为-1,就称这两个数互为负倒数。

例2.求下列各数的倒数。

3的倒数是 _________, 0.25的倒数 _________ ,3-的倒数_______,32-的倒数是_______知识点4.多个有理数的乘法运算 (1) 几个不是0的数相乘,负因数的个数是____________ 时,积是正数;负因数的个数是 ____________ 时,积是负数,把_______________相乘。

(2) 几个有理数相乘,有一个因数为0,积就是________. 例3. 计算(1))15.0(5)4(-⨯⨯- )2()65()52)(2(-⨯-⨯- 340)726()1324)(3(⨯⨯-⨯-变式练习1. )107()825(54)1(-⨯-⨯ )158()21()73)(2(-⨯-⨯- )91()2.1(45)3(-⨯-⨯(4)5812()()121523-⨯⨯⨯- 2122)5()5(-⨯⨯-- )100(121)12.0)(6(-⨯⨯-)1431(7)7(+-⨯ 253)3.2(25.2)8(⨯-⨯ )511()5()2(3)9(-⨯-⨯-⨯-*变式练习2:(1).如果ab >0,a+b >0,确定a 、b 的正负。

2024新人编版七年级数学上册《第二章2.2.1有理数的乘法第1课时》教学课件

2024新人编版七年级数学上册《第二章2.2.1有理数的乘法第1课时》教学课件
54 6
多个有理数相乘
时若存在带分数, 要先将其画成假分 数,然后再进行计 算.
巩固练习
计算:
(1)(−4)×5×(−0.25);
(2)
(
3 5
)
(
5) 6
(2).
解:(1)(−4)×5 ×(−0.25)
(2)
(
3 5
)
(
5 6
)(Βιβλιοθήκη )= [−(4×5)]×(−0.25)
[( 3 5)] (2)
探究新知
(+2)×(+3)= +6 (–2)×(+3)= –6 2×0=0
(–2)×(–3)= +6 (+2)×(–3)= –6 (–2)×0=0
根据上面结果可知:
1.正数乘正数积为_正_数;负数乘负数积为_正_数; (同号得正)
2.负数乘正数积为_负_数;正数乘负数积为_负_数; (异号得负)
探究新知
相反数 是自己
探究新知
求一个数的倒数的方法:
1. 求一个不为0的整数的倒数,就是将该整数作分母,1作分子; 2. 求一个真分数的倒数,就是将这个真分数的分母和分子交换位置; 3. 求一个带分数的倒数,先将该数化成假分数,再将其分子和分母的
位置进行互换; 4. 求一个小数的倒数,先将该小数化为分数,再求其倒数 .
甲水库的水位每天升高3厘米,乙水库的水位每天下 降3厘米,4天后,甲、乙水库水位的总变化量各是多少?
第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库
乙水库
探究新知
知识点 1 有理数的乘法法则 探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的

有理数的乘法运算

有理数的乘法运算

有理数的乘法运算
介绍
本文档将介绍有理数的乘法运算。

有理数是整数和分数的统称,可以表示为两个整数的比值。

有理数的乘法是指对两个有理数进行
相乘的运算。

乘法规则
有理数的乘法满足以下规则:
1. 两个正数相乘得正数,两个负数相乘也得正数。

2. 正数与负数相乘得负数,负数与正数相乘也得负数。

3. 任何数与0相乘都得0。

乘法计算方法
有理数的乘法计算方法如下:
1. 如果两个有理数都是整数,则将它们的绝对值相乘,并确定结果的符号。

2. 如果两个有理数中有一个或两个是分数,可以使用分数的乘法法则进行计算。

3. 分数的乘法法则是将两个分数的分子相乘得到新的分子,分母相乘得到新的分母。

示例
以下是一些有理数乘法的示例:
1. 计算2乘以3:2 × 3 = 6。

2. 计算-5乘以4:-5 × 4 = -20。

3. 计算1/2乘以3/4:(1/2) × (3/4) = 3/8。

总结
通过本文档,我们了解了有理数的乘法运算规则和计算方法,并通过示例加深了对乘法运算的理解。

在进行有理数乘法运算时,我们应遵循相应的规则来得到正确的结果。

有理数的乘方知识点以及分类练习(含解析)

有理数的乘方知识点以及分类练习(含解析)

有理数的乘方知识点以及分类练习【知识点1:有理数的乘方的概念和计算】1. 定义:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:na a a an⋅⋅⋅=个.在a n中,a叫做底数, n叫做指数.2. 有理数的乘方特点(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写.3.符号法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,如a n≥0.【知识点1:有理数的乘方的概念和计算 练习】1. 比较(﹣4)3和﹣43,下列说法正确的是( ) A . 它们底数相同,指数也相同 B . 它们底数相同,但指数不相同C . 它们所表示的意义相同,但运算结果不相同D . 虽然它们底数不同,但运算结果相同 2. 下列说法中,正确的是( ).A .一个数的平方一定大于这个数B .一个数的平方一定是正数C .一个数的平方一定小于这个数D .一个数的平方不可能是负数 3. 一个数的平方是它的倒数,那么这个数是( ) A .1B .0C .1或0D .1或1-4. 计算()23-的结果是( ) A .9-B .9C .6-D .65. 下列说法正确的是( ) A .-23的底数是2- B .23读作:2的3次方 C .27的指数是0 D .负数的任何次幂都是负数6. ﹣12020=( ) A .1B .﹣1C .2020D .﹣20207. 对于式子(-2)3,下列说法不正确的是:( ) A .指数是3B .底数是2-C .幂为6-D .表示3个2-相乘8. 下列各组数中,互为相反数的有( )①(2)--和|2|-- ②2(1)-和21- ③32和23 ④3(2)-和32- A .④B .①②C .①②④D .①③④9. 下列每对数中,相等的一对是( ) A .(-1)3和-13 B .-(-1)2和12 C .(-1)4和-14D .-|-13|和-(-1)310. 下列各组数中互为相反数的是( ) A .2与0.5B .(-1)2与1C .-1与(-1)2D .2与|-2|11. 下列各组数中,结果相等的是( ) A .52与25 B .﹣22与(﹣2)2 C .﹣24与(﹣2)4 D .(﹣1)2与(﹣1)2012. 下列运算中错误的是( ) A .(-2)4=16 B .233=827 C .(-3)3=-27 D .(-1)104=113. 式子−435的意义是( ).A . 4与5商的立方的相反数B .4的立方与5的商的相反数C .4的立方的相反数除5D .−45的立方 14. (﹣1)2016的值是( ) A .1 B .﹣1 C .2016 D .﹣2016 15. 下列说法中,正确的个数为( ).①对于任何有理数m ,都有m 2>0; ②对于任何有理数m ,都有m 2=(-m)2;③对于任何有理数m 、n(m≠n),都有(m -n)2>0; ④对于任何有理数m ,都有m 3=(-m)3. A .1 B .2C .3D .016. 在(-2)4中,指数是________,底数是________,在-23中,指数是________,底数是________,在235中底数是________,指数是________. 17. 计算:﹣(﹣3)2= .18. -(-3)= ;-25= ;−(−13)3= ;225= .19. -[-(-3)]3= .20. 已知a <2,且|a-2|=4,则a 3的倒数的相反数是 .【知识点:有理数的混合运算】 1.有理数混合运算的顺序:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.2.在运算过程中注意运算律的运用.【知识点:有理数的混合运算 练习】 1. 计算(-1)2+(-1)3=( )A .-2B .- 1C .0D .22. 计算(﹣2)2015+(﹣2)2014所得的结果是( ) A .﹣2 B.2 C .﹣22014D . 220153. 若(a −1)2+|b −2|=0,则(a −b)2020的值是( ) A .-1B .1C .0D .20184. 1×2+2×3+3×4+…+99×100=( ) A .223300B .333300C .443300D .4333005. 计算(-2)2009+3×(-2)2008的值为( ) A .-22008B .22008C .(-2)2009D .5×220086. 计算−32×(−13)2−(−2)3÷(−12)2的结果是( ). A .-33 B .-31 C .31 D .337. 如果()()01122=-++b a ,那么()2a b -的值为( ) .A .0B .4C .-4D .28. 已知n 表示正整数,则 n n 1(1)(1)2+-+- 的结果是 ( )A .0B .1C .0或1D .无法确定,随n 的不同而不同9. 若a ,b ,c 均为整数,且20212020||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为( )A .2B .3C .2020D .202110. 设三个互不相等的实数,既可表示为1,,a b a +的形式,又可表示为0,,bb a的形式,则20192020a b +的值是( ) A .0 B .1- C .1D .211. 如果有理数m 、n 满足m ≠0,且m +2n =0,则−(n m )2= . 12. 看过西游记的同学都知道:孙悟空会分身术,他摇身一变就变成2个悟空;这两个悟空摇身一变,共变成4个悟空;这4个悟空再变,又变成8个悟空…假设悟空一连变了30次,那么会有 个孙悟空. 13. 若|a +1|+(b -2)2=0,则(a +b )2+a 2003= . 14. 如图是一个计算程序,若输入的值为﹣1,则输出的结果应为 .15. 阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为 . 16. 计算:(1)4×(﹣12−34+2.5)×3﹣|﹣6|;(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)].17. 计算:(1)-14-(1-0.5)×13-[2-(-3)2](2)(-2)4÷(-4)×(12)2-1218. 计算:(1)-81÷214-(-94)÷(-16) (2)-15-213+415÷(-3)×(-521)(3)(-2)3×214+(-32)2÷(-12)3 (4)-9+5×(-6)-(-4)2÷(-8)(5)(-1)5-[-3×(-23)2-113÷(-2)2]19.用简便方法计算:(1)(35−12−712)×(60×37−60×17+60×57)(2)[113×(1-14)2-(-112)2×316]×(-513)20.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个).若经过4小时,100个这样的细菌可分裂成多少个?a⨯的形式(其中a是整数数位只有一位的数,1.把一个大于10的数表示成10nl≤|a|<10,n是正整数),这种记数法叫做科学记数法,如:42000000=4.2×107.2.负数也可以用科学记数法表示,“-”照写,其它与正数一样,如:-3000=-3×103;3.把一个数写成a×10n形式时,若这个数是大于10的数,则n比这个数的整数位数少1.【知识点:科学计数法练习】1.国家统计局的相关数据显示,2018年我国国民生产总值(GDP)超过90万亿元,将这个数据用科学记数法表示为( )A.9×1013元B.9×1012元C.90×1012万元D.9×10142.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为()A.7.6057×105人 B.7.6057×106人C.7.6057×107人 D.0.76057×107人3.计算3.8×107﹣3.7×107,结果用科学记数法表示为()A.0.1×107B.0.1×106C.1×107D.1×1064.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是____________.5.用科学记数法表示:(1)3870000000;(2)3000亿;(3)-287.6.(1)___________(2)________(3)___________1.探索规律的一般方法:(1)从具体的,实际的问题出发,观察各个数量的特点及相互之间的变化规律;(2)由此及彼,合理联想;(3)善于类比,从不同事物中发现其相似或相同点;(4)总结规律,大胆猜想,做出结论,并验证结论正确与否;S(5)在探索规律的过程中,要善于变换思维方式,收到事半功倍的效果。

七年级数学上册第1章《有理数的乘除法》知识点解读(人教版)

七年级数学上册第1章《有理数的乘除法》知识点解读(人教版)

《有理数的乘除法》知识点解读一、关于有理数的乘法知识点一:有理数的乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零。

温馨点拨:(1)有理数乘法法则中的“同号得正,异号得负”是专指“两数相乘”而言的;(2)有理数的乘法与有理数的加法的运算步骤一样,第一步:确定符号;第二步:确定绝对值。

知识点二:有理数的乘法的运算律(掌握)有理数乘法的运算律:算术乘法中适用的交换律、结合律以及乘法对加法的分配律在有理数范围内依然成立。

(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab ba=。

(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即()()ab c a bc=。

(3)乘法分配律:一个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即()a b c ab ac+=+。

知识点三:多个有理数相乘的符号法则(掌握)多个有理数相乘的符号法则:(1)几个不为0的数相乘,积的符号由负数的个数决定。

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

(2)几个数相乘,如果有一个因数为0,积就为0,反之,如果积为0,那么至少有一个因数为0。

例1 计算(134-78-712)×(-117).分析:可以直接利用乘法的分配律计算,即正向运用。

解:(134-78-712)×(-117)=74×(-87)+(-78)×(-87)+(-712)×(-87)=-2+1+23=-13. 说明:利用乘法的分配律可以使某些特殊结构的有理数乘法运算简化,但要注意灵活运用避免符号、拆项等错误。

二、关于有理数的除法知识点一:倒数的概念(理解)倒数的概念:与小学学过的互为倒数的概念一样,即乘积为1的两个数互为倒数,如:3和13,5-和15-,56-和65-分别互为倒数。

一般的,当0a ≠时,a 与1a互为倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(完整版)有理数的乘法知识点总结有理数的乘法知识点总结
1. 有理数的定义
有理数是可以表示为分数形式的数,分为正有理数、负有理数和 0。

2. 有理数的乘法
有理数的乘法满足以下性质:
- 正数与正数相乘,结果仍为正数。

- 负数与负数相乘,结果仍为正数。

- 正数与负数相乘,结果为负数。

- 任何数与 0 相乘,结果都为 0。

3. 有理数的乘法的计算方法
3.1 有理数的乘法运算法则
- 正数与正数相乘,直接相乘并保留正号。

- 负数与负数相乘,直接相乘并保留正号。

- 正数与负数相乘,直接相乘并改变结果的符号为负号。

3.2 有理数的乘法性质
- 乘法交换律:a * b = b * a,对于任意有理数 a 和 b 成立。

- 乘法结合律:(a * b) * c = a * (b * c),对于任意有理数 a、b 和c 成立。

- 乘法分配律:a * (b + c) = (a * b) + (a * c),对于任意有理数 a、b 和 c 成立。

4. 带有变量的有理数的乘法
带有变量的有理数的乘法遵循与实数乘法相同的规则,即乘法
交换律、结合律和分配律。

需要注意的是,当变量的符号与数的符
号不同时,结果为负数。

5. 实际应用
有理数的乘法在日常生活中的应用非常广泛,例如:
- 购物时计算打折后的价格。

- 解决家庭预算问题。

- 勾股定理中的边长关系。

6. 总结
有理数的乘法遵循特定的规则,可以通过直接相乘并根据符号进行判断来计算结果。

了解有理数的乘法规则可以帮助我们更好地理解数学问题,并在实际应用中得到运用。

相关文档
最新文档