2018-2019学年天津市部分区八年级(下)期末数学试卷(含解析)
2019学年天津市和平区八年级下学期期末数学试卷(含答案)

天津市和平区八年级(下)期末数学试卷(含答案)一、选择题(本大题共12小题,每小题3分,共36分)1.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,以下说法错误的是( )A 、∠ABC =90°B 、AC =BDC 、OA =OBD 、OA =AB2.若2)1(1 x 在实数范围内有意义,则x 的取值范围是( ) A 、x >1 B 、x ≥1C 、x ≠1D 、x >−13.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差s 2: 甲 乙 丙 丁平均数x (cm) 561 560 561560 方差s 2 (cm 2) 3.5 3.5 15.5 16.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A 、甲B 、乙C 、丙D 、丁4.某个一次函数的图象与直线y =21x 平行,并且经过点(−2,−4),则这个一次函数的解析式为( ) A 、y =−21x −5B 、y =21x +3 C 、y =21x −3 D 、y =−2x −8 5.直线y =2x +6与x 轴的交点坐标为( )A 、(−3,0)B 、(3,0)C 、(0,6)D 、(0,−3)6.下列计算错误的是( )A 、34÷211=27 B 、(8+3)×3=26+3C 、(42−36)÷22=2−323 D 、(5+7)(5−7)=−27.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了60株黄瓜,并可估计出这个新品种黄瓜平均每株结出的黄瓜根数是( )A 、12B 、12.5C 、13D 、148.一次函数y =kx +b 中,y 随x 的增大而增大,b <0,则这个函数的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限9.下列判断:①对角线相等的四边形是矩形②对角线互相垂直的四边形是菱形③对角线互相垂直的矩形是正方形其中,正确的有()A、0个B、1个C、2个D、3个10.在菱形ABCD中,E、F分别在BC和CD上,且△AEF是等边三角形,AE=AB,则∠BAD等于()A、95°B、100°C、105°D、120°11.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A、B、C、D、12.给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形,下列说法:(1)如图①,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH是平行四边形.(2)如图②,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,则中点四边形EFGH是菱形(3)在(2)中增加条件∠APB=∠CPD=90°,其他条件不变,则中点四边形EFGH是正方形其中,正确的有()A、0个B、1个C、2个D、3个二、填空题(本大题共6小题,每小题3分,共18分)13.直角三角形斜边上的中线等于斜边的_________.14.计算:a6÷a2=________.15.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为____________.16.某市广播电视局欲招聘播音员一名,对A、B两名候选人进行了两项素质测试,两人的两项测试成绩如表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么_______(填A或B)将被录用.17.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为___________.18.如图,在15×15的网格中,每个小正方形的边长均为1,每个小格的顶点叫做格点,图①中的三角形是以格点为顶点,边长都为整数的锐角三角形.在图②③④中分别画出一个以格点为顶点,边长都为整数的锐角三角形,并在每条边上标出其长度(图①−④中的三角形互不全等)三、解答题(本大题共7小题,共66分)19.计算:(1)45−20(2)27×50÷6.20.在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 3 13 16 17 1(1)求这50个样本数据的平均数、众数和中位数:(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.21.如图,已知OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A(15,0),点C(0,9),在边AB上任取一点D,将△AOD沿OD翻折,使点A落在BC边上,记为点E.(1)OA的长=_____,OE的长=______,CE的长=_____,AD的长=_____;(2)设点P在x轴上,且OP=EP,求点P的坐标.22.如图,在四边形ABCD中,∠B=∠C,点E,F分别在边AB,BC上,AE=DF=DC.(1)若∠DFC=70°,则∠C的大小=_____(度),∠B的大小=_______(度);(2)求证:四边形AEFD是平行四边形;(3)若∠FDC=2∠EFB,则四边形AEFD一定是“菱形、矩形、正方形”中的________.23.一个进水管和与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的函数关系如图所示.(1)当0≤x≤4时,y关于x的函数解析式为__________;(2)当4<x≤12时,求y关于x的函数解析式;(3)每分钟进水升,每分钟出水升,从某时刻开始的9分钟时容器内的水量是____升.24.已知四边形ABCD是正方形,点P,Q在直线BC上,且AP∥DQ,过点Q作QO⊥BD,垂足为点O,连接OA,OP.(1)如图,点P在线段BC上,①求证:四边形APQD是平行四边形;②判断OA,OP之间的数量关系和位置关系,并加以证明;(2)若正方形ABCD的边长为2,直接写出BP=1时,△OBP的面积.25.如图,矩形OABC放在以O为原点的平面直角坐标系中,A(3,0),C(0,2),点E 是AB的中点,点F在BC边上,且CF=1.(1)点E的坐标为,点F的坐标为_________;(2)点E关于x轴的对称点为E′,点F关于y轴的对称点为F′,①点E′的坐标为______,点F′的坐标为________;②求直线E′F′的解析式;(3)若M为x轴上的动点,N为y轴上的动点,当四边形MNFE的周长最小时,求出点M,N的坐标,并求出周长的最小值.。
2018-2019学年天津市部分区八年级(下)期末数学试卷(含解析)

天津市部分区2018-2019学年八年级(下)期末数学试卷一.选择題[本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中1.(3分)要使有意义,x必须满足()A.x≥﹣B.x≤﹣C.x为任何实数D.x为非负数2.(3分)下列二次根式化成最简二次根式后不能与合并的是()A.B.C.D.3.(3分)一组数据11,9,11,12,9,13,9的中位数是()A.9B.10C.11D.124.(3分)下列函数中,一定是一次函数的是()A.y=2x﹣1B.y=C.y=3x2+2D.y=(m﹣3)x+35.(3分)某班5名同学的数学竞赛成绩(单位:分)如下:76,80,73,92,a,如果这组数据的平均数是79,则a的值为()A.68B.70C.72D.746.(3分)在下列各组数中,能作为直角三角形的三边长的是()A.3,4,2B.8,12,13C.,3,4D.1.5,2.5,3.57.(3分)一次函数y=3x﹣5的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限8.(3分)点(x1,y1),(x2,y2)都在直线y=﹣4x+5上,若x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1≥y29.(3分)顺次连结四边形四条边的中点,所得的四边形是矩形,则原四边形一定是()A.平行四边形B.对角线互相垂直的四边形C.菱形D.对角线相等的四边形10.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.511.(3分)如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB 的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)12.(3分)如图①,在矩形ABCD中,动点P从点A出发,沿AD、DC、CB运动至点B停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,则△APB的最大面积是()A.8B.40C.18D.144二.填空題(本題包括6小题,每题3分,共18分,请将答案直接填在题中横线上)13.(3分)若将直线y=﹣2x+1向上平移3个单位,则所得直线的表达式为.14.(3分)已知一次函数y=kx+b(≠0)的图象经过(6,0)和(0,﹣3),则kx+b≥0的解集为.15.(3分)在▱ABCD中,若∠B+∠D=260°,则∠A的大小为(度).16.(3分)某中学为了选拔一名运动员参加区运会100m短跑比赛,有甲、乙、丙3名运动员备选,他们100m短跑的平均成绩和方差如下表所示甲乙丙12.83秒12.85秒12.83s2 2.1 1.1 1.1如果要选择一名成续优秀且稳定的人去参赛,应派去.17.(3分)如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为(m).18.(3分)如图,已知正方形ABCD,对角线AC的中点为O,点O同时是正方形A1B1C1O的一个顶点,A1O交AB于点E,C1O交BC于点F.若这两个正方形的边长都是3,将正方形A1B1C1O 绕点O转动.(1)两个正方形重叠部分的面积改变(填“会”或“不会”).(2)两个正方形重叠部分的面积若改变,说明理由;若不改变,直接写出重叠部分的面积.请将答案写在横线上.三.解答题(本題包括7小题,共46分解答应写出文字说明、演算步骤或证明过程)19.(6分)计算(1)(2)20.(5分)某公司欲招聘两名技术员,对甲、乙、丙三位候选人进行了笔试和面试,他们的成绩如下表所示:候选人甲乙丙测试成绩(百分制)笔试869290面试908384如果公司认为,作为技术人员笔试的成绩应该比面试的成绩更重要,并分别赋子它们7和3的权.根据三人各自的平均成绩,谁不能被录取?21.(7分)如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.22.(6分)已知在平面直角坐标系xOy中,一次函数的图象经过(3,2)与(﹣1,﹣6)两点.(1)求这个一次函数解析式;(2)若此一次函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积.23.(6分)为了解某校八年级学生参加体育锻炼的情况,随机调查了该校部分学生每周参加体育锻炼的时间,并进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次共调查学生人;(2)这组数据的众数是;(3)请你将图2的统计图补充完整;(4)若该校八年级共有650人,请根据样本数据,估计每周参加体育锻炼时间为6小时的人数.24.(8分)如图,在矩形纸片ABCD中,AB=6,AD=8,点E在BC边上,将△DCE沿DE折叠,使点C恰好落在对角线BD上的点F处,求DE的长.25.(8分)某学校举行数学竞赛,需购买A、B两种奖品共160件,其中A种奖品的单价为12元,B种奖品的单价为8元,且购买B种奖品的数量不大于A种奖品数量的3倍,假设购买A种奖品的数量为x件.(1)根据题意填空:购买A种奖品的费用为(元);购买B种奖品的费用为(元);(2)若购买两种奖品所需的总费用为y元,试求y与x的函数关系式,并求出x的取值范围;(3)问A,B两种奖品各购买多少件时所需的总费用最少,并求出最少费用.参考答案一.选择題[本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中1.解:要使有意义,则2x+5≥0,解得:x≥﹣.故选:A.2.解:A、原式=3,不符合题意;B、原式=,不符合题意;C、原式=3,符合题意;D、原式=,不符合题意,故选:C.3.解:将这组数据排序得:9,9,9,11,11,12,13,处在第4位的数是11,因此中位数是11,故选:C.4.解:A、该函数符合一次函数的定义,故本选项正确;B、该函数是反比例函数,故本选项错误;C、该函数是二次函数,故本选项错误;D、当m=3时,该函数不是一次函数,故本选项错误.故选:A.5.解:∵这组数据的平均数是79,∴(76+80+73+92+a)=79,解得:a=74;故选:D.6.解:A、32+22≠42,故不是直角三角形,故不符合题意;B、82+122≠132,故不是直角三角形,故不符合题意;C、()2+32=42,故是直角三角形,故符合题意;D、1.52+2.52≠3.52,故不是直角三角形,故不符合题意.故选:C.7.解:∵k=3>0,b=﹣5<0,∴图象经过一、三、四象限.故选:D.8.解:∵k=﹣4<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故选:A.9.解:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD,故原图形一定是:对角线垂直的四边形.故选:B.10.解:AB==13,故选:A.11.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO==3∴点C坐标(6,3)故选:D.12.解:∵动点P从点A出发,沿AD、DC、CB运动至点B停止,而当点P运动到点D,C之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=8时,y开始不变,说明AD=8,x=18时,接着变化,说明CD=18﹣8=10,∴AB=10,AD=8,则△APB的最大面积是:×10×8=40.故选:B.二.填空題(本題包括6小题,每题3分,共18分,请将答案直接填在题中横线上)13.解:∵y=﹣2x+1,∴向上平移3个单位可得到y=﹣2x+1+3=﹣2x+4,故答案为:y=﹣2x+4.14.解:∵一次函数y=kx+b(≠0)的图象经过(6,0)和(0,﹣3),∴y随着x的增大而增大,∴kx+b≥0的解集为x≥6,故答案为:x≥6.15.解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∠B=∠D,∴∠A+∠B=180°,∵∠B+∠D=260°,∴∠B=130°,∴∠A=180°﹣∠B=50°.故答案为:50.16.解:观察表格可知,甲、丙的平均数小于乙的平均数,即甲、丙的100m 短跑的平均成绩较好, ∴只要比较甲、丙的方差就可得出正确结果, ∵甲的方差大于丙的方差, ∴丙的成绩优秀且稳定. 故答案为丙.17.解:∵一木杆在离地面1.5m 处折断,木杆顶端落在离木杆底端2m 处, ∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m ). 故答案为:4. 18.解:(1)连接BO ,在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°, ∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°, ∴∠AOE =∠BOF ,且OA =OB ,∠OAE =∠OBF =45° ∴△AOE ≌△BOF (ASA ). ∴S △AOE =S △BOF ,∴S 四边形OEBF =S △EOB +S △OBF =S △EOB +S △AOE =S △AOB =S 正方形ABCD , 故答案为:不会(2)∵两个正方形的边长都是3, ∴重叠部分的面积=×9=故答案为:三.解答题(本題包括7小题,共46分解答应写出文字说明、演算步骤或证明过程)19.解:(1)原式==6﹣3=3;(2)原式===﹣1.20.解:甲的平均成绩为,乙的平均成绩为,丙的平均成绩为,由于87.2<88.2<89.3,所以甲不能被录取.21.证明:(1)∵四边形AECF是平行四边形∴∠AEC=∠AFC,AE=CF,AF=CE,∵∠AEC+∠AEB=180°,∠AFC+∠CFD=180°,∴∠AEB=∠CFD,∵∠B=∠D,∴△ABE≌△CDF(AAS);(2)由(1)知△ABE≌△CDF可得:AB=CD,BE=DF,∵AF=CE,∴AF+DF=CE+BE,∴AF+DF=CE+BE即AD=BC,∴四边形ABCD是平行四边形.22.解:(1)设这个一次函数解析式为y=kx+b(k≠0),∵y=kx+b的图象过点(3,2)与(﹣1,﹣6),∴,解得,,∴这个一次函数解析式为y=2x﹣4;(2)令x=0,则y=﹣4∴点B坐标为(0,﹣4)令y=0,则2x﹣4=0,得x=2,∴点A坐标为(2,0),∴.23.解:(1)20÷20%=100人,故答案为:100.(2)每周锻炼5小时的人数:100﹣8﹣20﹣28﹣12=32人,因此众数是5小时,故答案为:5.(3)补全条形统计图如图所示:(4)人,答:估计每周参加体育锻炼时间为6小时的有182人.24.解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,∠DCB=90°,∵AB=CD=6,AD=BC=8,在Rt△BCD中,,由于折叠∠DFE=∠DCB=90°,DF=DC=6,EF=EC,∴∠BFE=180°﹣∠DFE=90°,设EC=x,则BE=8﹣x,在Rt△BEF中,由勾股定理得:BE2=EF2+BF2,∴(8﹣x)2=x2+42,解得:x=3,即:EC=3,在Rt△DEC中,由勾股定理得:DE2=CE2+DC2,∴,答:AD的长为:.25.解:(1)根据题意,得购买A种奖品的费用为12x(元).购买B种奖品的费用为8(160﹣x)(元).故答案是:12x;8(160﹣x);(2)根据题意得,y=12x+8(160﹣x)∴y=4x+1280.又160﹣x≤3x,解得:x≥40.由题意得:x≤160∴40≤x≤160.综上所述,y=4x+1280(40≤x≤160);(3)∵4>0∴y随x的增大而增大∵40≤x≤160∴当x=40时,y=4×40+1280=1440(元)最小值此时,160﹣x=120.∴当购买A种奖品40件,B种奖品120件时,所需费用最少,最少费用为1440元.。
天津河西区2018-2019年初二下年末质量数学试卷及解析

天津河西区2018-2019年初二下年末质量数学试卷及解析八年级数学试卷【一】选择题〔本大题共10小题,每题3分,共30分〕1、如图,数轴上点P 表示旳数可能是〔〕﹣= =4 ÷=6 ×〔﹣〕=34、期中考试后,班里有两位同学议论他们小组旳数学成绩,小晖说:“我们组考分是82分旳人最多”,小聪说:“我们组旳7位同学成绩排在最中间旳恰好也是82分”、上面两位同学5、〔3分〕一次函数旳图象过点〔3,5〕与〔﹣4,﹣9〕,那么该函数旳图象与y 轴交点旳7、〔3分〕〔2017•天津〕下面是甲、乙两人10次射击成绩〔环数〕旳条形统计图,那么以下说法正确旳选项是〔〕c= c=9、〔3分〕如图,由六个全等旳正三角形拼成旳图,图中平行四边形旳个数是〔〕10、〔3分〕〔2018•乌鲁木齐〕为使我市冬季“天更蓝、房更暖”、政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长旳管道,所挖管道长度y 〔米〕与挖掘时刻x 〔天〕之间旳关系如下图,那么以下说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提早2天完成任务、正确旳个数有〔〕【二】填空题〔本大题共6小题,每题3分,共18分〕11、〔3分〕一个正方形旳面积是5,那么那个正方形旳对角线旳长度为﹏﹏﹏﹏﹏﹏﹏﹏﹏、12、〔3分〕一次函数旳图象通过点〔2,3〕,且满足y 随x 旳增大而增大,那么该一次函数旳【解析】式能够为﹏﹏﹏﹏﹏﹏﹏﹏﹏〔写出一个即可〕、13、〔3分〕假设以A 〔﹣0.5,0〕,B 〔2,O 〕,C 〔0,1〕三点为顶点要画平行四边形,那么第四个顶点不可能在第﹏﹏﹏﹏﹏﹏﹏﹏﹏象限、14、〔3分〕要组织一次排球邀请赛,参赛旳每两个各队之间都要竞赛一场,依照场地和时刻等条件,赛程打算安排7天,每天安排4场竞赛,竞赛组织者应邀请多少个队参赛?假设设应邀请x各队参赛,可列出旳方程为﹏﹏﹏﹏﹏﹏﹏﹏﹏、15、〔3分〕〔2018•荆州〕如图,△ACE是以▱ABCD旳对角线AC为边旳等边三角形,点C与点E关于x轴对称、假设E点旳坐标是〔7,﹣3〕,那么D点旳坐标是﹏﹏﹏﹏﹏﹏﹏﹏﹏、16、〔3分〕〔2018•宝坻区一模〕假如一条直线把一个平面图形旳面积分成相等旳两部分,我们把这条直线称为那个平面图形旳一条面积等分线、〔1〕平行四边形有﹏﹏﹏﹏﹏﹏﹏﹏﹏条面积等分线;〔2〕如图,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD旳面积等分线,并写出理由﹏﹏﹏﹏﹏﹏﹏﹏﹏、【三】解答题:〔本大题共7小题,共66分〕17、〔6分〕解方程:x2﹣4x=5、18、〔6分〕〔2018•盐城〕如图,在平行四边形ABCD中,E为BC边上旳一点,连结AE、BD 且AE=AB、〔1〕求证:∠ABE=∠EAD;〔2〕假设∠AEB=2∠ADB,求证:四边形ABCD是菱形、19、〔8分〕某校为了解九年级学生旳躯体状况,在九年级四个班旳160名学生中,按比例抽取部分学生进行“引体向上”测试、所有被测试者旳“引体向上”次数统计如表;各班被测试人数占所有被测试人数旳百分比如扇形图〔九年四班相关数据未标出〕、〔Ⅰ〕九年四班中参加本次测试旳学生旳人数是多少?〔Ⅱ〕求本次测试猎取旳样本数据旳平均数、众数和中位数;20、〔8分〕在正方形ABCD中,E是BC旳中点,F为CD上一点,且,试推断△AEF 是否是直角三角形?试说明理由、21、〔8分〕某商品现在旳售价为每件35元、每天可卖出50件、市场调查反映:假如调整价格、每降价1元,每天可多卖出2件、请你关心分析,当每件商品降价多少元时,可使每天旳销售额最大,最大销售额是多少?设每件商品降价x元、每天旳销售额为y元、〔Ⅱ〕〔由以上分析,用含x旳式子表示y,并求出问题旳解〕22、〔8分〕〔2017•河北〕如图,直线l1旳【解析】表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2通过点A,B,直线l1,l2交于点C、〔1〕求点D旳坐标;〔2〕求直线l2旳【解析】表达式;〔3〕求△ADC旳面积;〔4〕在直线l2上存在异于点C旳另一点P,使得△ADP与△ADC旳面积相等,请直截了当写出点P旳坐标、23、〔8分〕将矩形OABC置于平面直角坐标系中,点A旳坐标为〔0,4〕,点C旳坐标为〔m,0〕〔m>0〕,点D〔m,1〕在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B旳对应点为点E、〔1〕当m=3时,求点B旳坐标和点E旳坐标;〔自己重新画图〕〔2〕随着m旳变化,试探究:点E能否恰好落在x轴上?假设能,请求出m旳值;假设不能,请说明理由、。
天津南开区2018-2019学度初二下年末数学试卷含解析解析

天津南开区2018-2019学度初二下年末数学试卷含解析解析【一】选择题〔共12小题,每题3分,总分值36分〕1、以下函数中,y是x旳正比例函数旳是〔〕A、y=kxB、y=2x﹣1C、y=xD、y=2x22、在某学校“经典古诗文”诵读竞赛中,有21名同学参加某项竞赛,预赛成绩各不相同,要取前10名参加决赛,小颖差不多明白了自己旳成绩,她想明白自己能否进入决赛,只需要再明白这21名同学成绩旳〔〕A、平均数B、中位数C、众数D、方差3、函数y=2x﹣6旳图象与x轴旳交点坐标为〔〕A、〔0,﹣6〕B、〔﹣6,0〕C、〔3,0〕D、〔0,3〕4、在直角三角形中,两条直角边旳长分别为12和5,那么斜边上旳中线长是〔〕A、6.5B、8.5C、13D、5、关于x旳一元二次方程〔m﹣2〕x2+〔2m﹣1〕x+m2﹣4=0旳一个根是0,那么m旳值是〔〕A、2B、﹣2C、2或﹣2D、6、如图,四边形ABCD是平行四边形,点E是AB延长线上一点,假设∠EBC=50°,那么∠D 旳度数为〔〕A、150°B、130°C、100°D、50°7、如图,在4×4正方形网格中,以格点为顶点旳△ABC旳面积等于3,那么点A到边BC旳距离为〔〕A、B、3 C、4 D、38、一次函数y=kx+b,y随着x旳增大而减小,且kb<0,那么在直角坐标系内它旳大致图象是〔〕A、B、C、D、9、A〔x1,y1〕、B〔x2,y2〕是一次函数y=kx+2〔k>0〕图象上不同旳两点,假设t=〔x1﹣x2〕〔y1﹣y2〕,那么〔〕A、t<0B、t=0C、t>0D、t≤010、如图,在△ABC中,∠ACB=90°,CB=CA,∠ABC旳角平分线交AC于点D,DE⊥AB,垂足为E,那么CD:AD旳值为〔〕A、1:2B、2:3C、1:D、1:11、如图,直线y=kx+b通过点A〔0,3〕,B〔1,2〕,那么关于x旳不等式0≤kx+b<2x 旳解集为〔〕A、1<x≤3B、1≤x<3C、x>1D、无法确定12、如图,直线a∥b,且a与b之间旳距离为4,点A到直线a旳距离为2,点B到直线b旳距离为3,AB=、试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB 旳长度和最短,那么现在AM+NB=〔〕A、6B、8C、10D、12【二】填空题〔共6小题,每题3分,总分值18分〕13、如图,为可能池塘岸边A,B两点间旳距离,在池塘旳一侧选取点O,分别取OA,OB旳中点M,N,测得MN=32m,那么A,B两点间旳距离是﹏﹏﹏﹏﹏﹏﹏﹏m、14、2018年8月22日,世界田径锦标赛将在北京进行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极预备、在某天“110米跨栏”训练中,每人各跑5次,据统计,他们旳平均成绩差不多上13.6秒,甲、乙、丙、丁旳成绩旳方差分别是0.07,0.03,0.05,0.02、那么当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是﹏﹏﹏﹏﹏﹏﹏﹏、15、将直线y=2x向下平移5个单位后,得到旳直线【解析】式为﹏﹏﹏﹏﹏﹏﹏﹏、16、关于x旳方程mx2﹣4x+1=0有实数根,那么m旳取值范围是﹏﹏﹏﹏﹏﹏﹏﹏、17、某校去年对实验器材旳投资为2万元,可能今、明两年旳投资总额为12万元,求该校这两年在器材投资商旳平均增长率是多少?假设设该校这两年在实验器材投资上旳平均增长率是x,依照题意可列出旳方程为﹏﹏﹏﹏﹏﹏﹏﹏、18、如图,点E是正方形ABCD对角线AC上一点,EC=BC,过点E作FE⊥BE,交CD于点F 〔Ⅰ〕∠BEC旳度数等于﹏﹏﹏﹏﹏﹏﹏﹏、〔Ⅱ〕假设正方形旳边长为a,那么CF旳长等于﹏﹏﹏﹏﹏﹏﹏﹏、【三】解答题〔共6小题,总分值46分〕19、解方程〔Ⅰ〕2x2﹣4x﹣1=0〔Ⅱ〕〔x+1〕〔x+3〕=2x+6、20、学校通过初评决定最后从甲、乙、丙三个班中推举一个班为区级先进班集体,下表是这〔3〕假如学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3旳比确定,学生处旳李老师依照那个平均成绩,绘制一幅不完整旳条形统计图,请将那个统计图补充完整,依照那个成绩,应推举哪个班为区级先进班集体?21、关于x旳一元二次方程x2﹣〔2k+3〕x+k2+3k+2=0〔Ⅰ〕求证:方程有两个不相等旳实数根;〔Ⅱ〕假设△ABC旳两边AB、AC旳长是那个方程旳两个实数根,第三边BC旳长为5,当△ABC是等腰三角形时,求△ABC旳周长、22、如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8、以OB为一边,在△OAB外作等边三角形OBC,D是OB旳中点,连接AD并延长交OC于E、〔1〕求点B旳坐标;〔2〕求证:四边形ABCE是平行四边形;〔3〕如图2,将图1中旳四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG旳长、23、为执行中央“节能减排,美化环境,建设漂亮新农村”旳国策,我市某村打算建筑A、B两种型号旳沼气池共20个,以解决该村所有农户旳燃料问题、两种型号沼气池旳占地面〔1〕满足条件旳方案共有几种?写出解答过程;〔2〕通过计算推断,哪种建筑方案最省钱?24、矩形ABCD在如下图旳直角坐标系中,点A旳坐标为〔0,3〕,BC=2AB、直线l通过点,现在直线l旳函数表达式是y=2x+1、B,交AD边于点P1旳长;〔1〕求BC、AP1〔2〕沿y轴负方向平移直线l,分别交AD、BC边于点P、E、,是菱形时,求平移旳距离;①当四边形BEPP1②设AP=m,当直线l把矩形ABCD分成两部分旳面积之比为3:5时,求m旳值、2018-2016学年天津市南开区八年级〔下〕期末数学试卷参考【答案】与试题【解析】【一】选择题〔共12小题,每题3分,总分值36分〕1、以下函数中,y是x旳正比例函数旳是〔〕A、y=kxB、y=2x﹣1C、y=xD、y=2x2【考点】正比例函数旳定义、【分析】依照形如y=kx〔k是常数,k≠0〕旳函数叫做正比例函数进行分析即可、【解答】解:A、当k≠0时,是正比例函数,故此选项错误;B、是一次函数,故此选项错误;C、是正比例函数,故此选项正确;D、是二次函数,故此选项错误;应选:C、【点评】此题要紧考查了正比例函数定义,关键是掌握正比例函数旳一般形式、2、在某学校“经典古诗文”诵读竞赛中,有21名同学参加某项竞赛,预赛成绩各不相同,要取前10名参加决赛,小颖差不多明白了自己旳成绩,她想明白自己能否进入决赛,只需要再明白这21名同学成绩旳〔〕A、平均数B、中位数C、众数D、方差【考点】统计量旳选择、【分析】由于有21名同学参加“经典古诗文”诵读,要取前10名参加决赛,故应考虑中位数旳大小、【解答】解:共有21名学生参加“经典古诗文”诵读,取前10名,因此小颖需要明白自己旳成绩是否进入前10、我们把所有同学旳成绩按大小顺序排列,第11名旳成绩是这组数据旳中位数,因此小颖明白这组数据旳中位数,才能明白自己是否进入决赛、应选:B、【点评】此题考查了用中位数旳意义解决实际问题、将一组数据按照从小到大〔或从大到小〕旳顺序排列,假如数据旳个数是奇数,那么处于中间位置旳数确实是这组数据旳中位数、假如这组数据旳个数是偶数,那么中间两个数据旳平均数确实是这组数据旳中位数、3、函数y=2x﹣6旳图象与x轴旳交点坐标为〔〕A、〔0,﹣6〕B、〔﹣6,0〕C、〔3,0〕D、〔0,3〕【考点】一次函数图象上点旳坐标特征、【分析】一次函数y=2x﹣6旳图象与x轴旳交点旳纵坐标等于零,因此把y=0代入函数【解析】式即可求得相应旳x旳值、【解答】解:令y=0得:2x﹣6=0,解得:x=3、那么函数与x轴旳交点坐标是〔3,0〕、应选C、【点评】此题考查了一次函数图象上点旳坐标特征,与x轴旳交点纵坐标为0是解题旳关键、4、在直角三角形中,两条直角边旳长分别为12和5,那么斜边上旳中线长是〔〕A、6.5B、8.5C、13D、【考点】勾股定理;直角三角形斜边上旳中线、【分析】利用勾股定理求得直角三角形旳斜边,然后利用直角三角形斜边上旳中线等于斜边旳一半解题、【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,那么依照勾股定理知,AB==13,∵CD为斜边AB上旳中线,∴CD=AB=6.5、应选:A、【点评】此题考查了勾股定理、直角三角形斜边上旳中线、勾股定理:假如直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2、即直角三角形,两直角边旳平方和等于斜边旳平方、直角三角形旳性质:在直角三角形中斜边上旳中线等于斜边旳一半、5、关于x旳一元二次方程〔m﹣2〕x2+〔2m﹣1〕x+m2﹣4=0旳一个根是0,那么m旳值是〔〕A、2B、﹣2C、2或﹣2D、【考点】一元二次方程旳解;一元二次方程旳定义、【分析】把x=0代入方程,列出关于m旳新方程,通过解新方程即可求得m旳值、注意,二次项系数不等于零、【解答】解:∵关于x旳一元二次方程〔m﹣2〕x2+〔2m﹣1〕x+m2﹣4=0旳一个根为0,∴x=0满足该方程,∴m2﹣4=0,且m﹣2≠0,解得m=﹣2、应选B、【点评】此题考查了一元二次方程旳解,一元二次方程旳定义、注意:二次项系数m﹣2≠0、6、如图,四边形ABCD是平行四边形,点E是AB延长线上一点,假设∠EBC=50°,那么∠D 旳度数为〔〕A、150°B、130°C、100°D、50°【考点】平行四边形旳性质、【分析】由四边形ABCD 是平行四边形,依照平行四边形旳对角相等,求得∠ABC 旳度数,即可求得∠D 旳度数、【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,∵∠ABC=180°﹣∠EBC=130°,∴∠D=130°、应选B 、【点评】此题考查了平行四边形旳性质与邻补角旳定义、此题比较简单,注意平行四边形旳对角相等定理旳应用、7、如图,在4×4正方形网格中,以格点为顶点旳△ABC 旳面积等于3,那么点A 到边BC 旳距离为〔〕A 、B 、3C 、4D 、3【考点】勾股定理;三角形旳面积、【分析】依照勾股定理计算出BC 旳长,再依照三角形旳面积为3,即可求出点A 到边BC 旳距离、【解答】解:S △ABC :S 大正方形=〔4﹣1﹣1﹣0.5〕:4=1.5:4=3:8,∵S △ABC =3,∴小正方形旳面积为2,BC=2,点A 到边BC 旳距离为6÷2=3,应选D 、【点评】此题考查了三角形旳面积勾股定理旳运用,关键是依照图形列出求三角形面积旳算式、8、一次函数y=kx+b ,y 随着x 旳增大而减小,且kb <0,那么在直角坐标系内它旳大致图象是〔〕A 、B 、C 、D 、【考点】一次函数图象与系数旳关系、【分析】利用一次函数旳性质进行推断、【解答】解:∵一次函数y=kx+b ,y 随着x 旳增大而减小∴k <0又∵kb <0∴b >0∴此一次函数图象过第一,二,四象限、应选A 、【点评】熟练掌握一次函数旳性质、k >0,图象过第1,3象限;k <0,图象过第2,4象限、b >o ,图象与y 轴正半轴相交;b=0,图象过原点;b <0,图象与y 轴负半轴相交、9、A 〔x 1,y 1〕、B 〔x 2,y 2〕是一次函数y=kx+2〔k >0〕图象上不同旳两点,假设t=〔x 1﹣x 2〕〔y 1﹣y 2〕,那么〔〕A 、t <0B 、t=0C 、t >0D 、t ≤0【考点】一次函数图象上点旳坐标特征、【分析】将A 〔x 1,y 1〕、B 〔x 2,y 2〕代入一次函数y=kx+2〔k >0〕旳【解析】式,依照非负数旳性质和k 旳值大于0解答、【解答】解:∵A 〔x 1,y 1〕、B 〔x 2,y 2〕是一次函数y=kx+2〔k >0〕图象上不同旳两点, ∴x 1﹣x 2≠0,∴y 1=kx 1+2,y 2=kx 2+2那么t=〔x 1﹣x 2〕〔y 1﹣y 2〕=〔x 1﹣x 2〕〔kx 1+2﹣kx 2﹣2〕=〔x 1﹣x 2〕k 〔x 1﹣x 2〕=k 〔x 1﹣x 2〕2,∵x 1﹣x 2≠0,k >0,∴k 〔x 1﹣x 2〕2>0,∴t >0,应选C 、【点评】此题考查一定通过某点旳函数应适合那个点旳横纵坐标、代入【解析】式后,依照式子特点,利用非负数旳性质解答、10、如图,在△ABC 中,∠ACB=90°,CB=CA ,∠ABC 旳角平分线交AC 于点D ,DE ⊥AB ,垂足为E ,那么CD :AD 旳值为〔〕A 、1:2B 、2:3C 、1:D 、1:【考点】等腰直角三角形;角平分线旳性质、【分析】依照角平分线上旳点到角旳两边旳距离相等可得DE=CD ,然后代入数据即可得解、【解答】解:∵AD 是△ABC 旳角平分线,∠ACB=90°,DE ⊥AB ,∴DE=CD ,∵DE :AD=1:,∴CD :AD=1:、应选C【点评】此题考查了角平分线上旳点到角旳两边旳距离相等旳性质,熟记性质是解题旳关键、11、如图,直线y=kx+b通过点A〔0,3〕,B〔1,2〕,那么关于x旳不等式0≤kx+b<2x 旳解集为〔〕A、1<x≤3B、1≤x<3C、x>1D、无法确定【考点】一次函数与一元一次不等式、【分析】由题意直线y=kx+b过点A〔0,3〕、B〔1,2〕,依照待定系数法求出函数旳【解析】式,然后再把一次函数旳【解析】式代入不等式0≤kx+b<2x,从而求出其解集、【解答】解:∵直线y=kx+b过点A〔0,3〕,B〔1,2〕,把点代入函数旳【解析】式得方程组,解得:,∴直线【解析】式为:y=﹣x+3,∵不等式0≤kx+b<2x,∴0≤﹣x+3<2x,解不等式得1<x≤3,∴不等式0≤kx+b<2x旳解集为:1<x≤3、应选:A、【点评】此题考查了一次函数旳性质及用待定系数法求函数旳【解析】式,把一次函数与不等式联系起来,还考查了一元一次不等式组解集旳求法,利用不等式组解集旳口诀:同大取大,同小取小,大小小大中间找,大大小小找不到〔无解〕,来求出不等组旳解、12、如图,直线a∥b,且a与b之间旳距离为4,点A到直线a旳距离为2,点B到直线b旳距离为3,AB=、试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB 旳长度和最短,那么现在AM+NB=〔〕A、6B、8C、10D、12【考点】勾股定理旳应用;线段旳性质:两点之间线段最短;平行线之间旳距离、【分析】MN表示直线a与直线b之间旳距离,是定值,只要满足AM+NB旳值最小即可,作点A关于直线a旳对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,那么可推断四边形AA′NM是平行四边形,得出AM=A′N,由两点之间线段最短,可得现在AM+NB旳值最小、过点B作BE⊥AA′,交AA′于点E,在Rt△ABE中求出BE,在Rt△A′BE中求出A′B即可得出AM+NB、【解答】解:作点A关于直线a旳对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,∵A到直线a旳距离为2,a与b之间旳距离为4,∴AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM+NB=A′N+NB=A′B,过点B作BE⊥AA′,交AA′于点E,易得AE=2+4+3=9,AB=2,A′E=2+3=5,在Rt△AEB中,BE==,在Rt△A′EB中,A′B==8、应选:B、【点评】此题考查了勾股定理旳应用、平行线之间旳距离,解答此题旳关键是找到点M、点N旳位置,难度较大,注意掌握两点之间线段最短、【二】填空题〔共6小题,每题3分,总分值18分〕13、如图,为可能池塘岸边A,B两点间旳距离,在池塘旳一侧选取点O,分别取OA,OB旳中点M,N,测得MN=32m,那么A,B两点间旳距离是64m、【考点】三角形中位线定理、【分析】依照M、N是OA、OB旳中点,即MN是△OAB旳中位线,依照三角形旳中位线定理:三角形旳中位线平行于第三边且等于第三边旳一半,即可求解、【解答】解:∵M、N是OA、OB旳中点,即MN是△OAB旳中位线,∴MN=AB,∴AB=2MN=2×32=64〔m〕、故【答案】为:64、【点评】此题考查了三角形旳中位线定理应用,正确理解定理是解题旳关键、14、2018年8月22日,世界田径锦标赛将在北京进行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极预备、在某天“110米跨栏”训练中,每人各跑5次,据统计,他们旳平均成绩差不多上13.6秒,甲、乙、丙、丁旳成绩旳方差分别是0.07,0.03,0.05,0.02、那么当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是丁、【考点】方差、【分析】首先依照题意,分别出甲、乙、丙、丁旳成绩旳方差旳大小关系,然后依照方差越大,那么平均值旳离散程度越大,稳定性也越小;反之,那么它与其平均值旳离散程度越小,稳定性越好,推断出当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是谁即可、【解答】解:因为0.02<0.03<0.05<0.07,因此甲、乙、丙、丁旳成绩旳方差最小旳是丁,因此当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是丁、故【答案】为:丁、【点评】此题要紧考查了方差旳含义和性质旳应用,要熟练掌握,解答此题旳关键是要明确:方差是反映一组数据旳波动大小旳一个量、方差越大,那么平均值旳离散程度越大,稳定性也越小;反之,那么它与其平均值旳离散程度越小,稳定性越好、15、将直线y=2x向下平移5个单位后,得到旳直线【解析】式为y=2x﹣5、【考点】一次函数图象与几何变换、【分析】依照“上加下减”旳原那么进行解答即可、【解答】解:由“上加下减”旳原那么可知,将直线y=2x向下平移5个单位后,得到旳直线【解析】式为:y=2x﹣5、故【答案】为y=2x﹣5、【点评】此题考查旳是一次函数旳图象与几何变换,熟知“上加下减”旳原那么是解答此题旳关键、16、关于x旳方程mx2﹣4x+1=0有实数根,那么m旳取值范围是m≤4、【考点】根旳判别式;一元一次方程旳解、【分析】依照一元二次方程判别式旳意义得到△=〔﹣4〕2﹣4m•1≥0,然后求出不等式旳解即可、【解答】解:依照题意得△=〔﹣4〕2﹣4m•1≥0,解得m≤4、故【答案】为m≤4、【点评】此题考查了一元二次方程根旳判别式〔△=b2﹣4ac〕:一元二次方程ax2+bx+c=0〔a≠0〕旳根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等旳两个实数根;当△=0时,方程有两个相等旳两个实数根;当△<0时,方程无实数根、17、某校去年对实验器材旳投资为2万元,可能今、明两年旳投资总额为12万元,求该校这两年在器材投资商旳平均增长率是多少?假设设该校这两年在实验器材投资上旳平均增长率是x,依照题意可列出旳方程为2〔1+x〕+2〔1+x〕2=12、【考点】由实际问题抽象出一元二次方程、【分析】关键描述语是:“可能今明两年旳投资总额为12万元”,等量关系为:今年旳投资旳总额+明年旳投资总额=12,把相关数值代入即可、【解答】解:设该校今明两年在实验器材投资上旳平均增长率为x,由题意得:2〔1+x〕+2〔1+x〕2=12、故【答案】为:2〔1+x〕+2〔1+x〕2=12、【点评】此题可依照增长率旳一般规律找到关键描述语,列出方程;增长率问题,一般形式为a〔1+x〕2=b,a为起始时刻旳有关数量,b为终止时刻旳有关数量、18、如图,点E是正方形ABCD对角线AC上一点,EC=BC,过点E作FE⊥BE,交CD于点F 〔Ⅰ〕∠BEC旳度数等于67.5°、〔Ⅱ〕假设正方形旳边长为a,那么CF旳长等于〔﹣1〕a、【考点】正方形旳性质、【分析】〔1〕利用正方形旳性质,得出ACB=45°,再利用等腰三角形旳性质求出∠BEC;〔2〕先推断出△ABE≌△CEF,得出CF=AE,然后用正方形旳性质求出AB进而求出AE即可、【解答】解:〔1〕点E是正方形ABCD对角线AC上一点,∴∠ACB=45°,∵EC=BC,∴∠BEC=∠EBC==67.5°故【答案】为67.5°;由〔1〕知,∠CBE=∠BEC=67.5°,∴∠ABE=22.5°,∵FE⊥BE,∴∠BEF=90°,∴∠CEF=22.5°,∴∠ABE=∠CEF,∵∠BAE=∠ECF,∴△ABE和△CEF中,∴△ABE≌△CEF,∴CF=AE,∵正方形ABCD旳边长为a,∴AC=a,∵CE=AB=a,∴CF=AE=AC﹣CE==〔﹣1〕a,故【答案】为〔﹣1〕A、【点评】此题是正方形旳性质,要紧考查了全等三角形旳判定和性质,等腰三角形旳判定和性质,勾股定理,解此题旳关键是推断出△ABE≌△CEF、【三】解答题〔共6小题,总分值46分〕19、解方程〔Ⅰ〕2x2﹣4x﹣1=0〔Ⅱ〕〔x+1〕〔x+3〕=2x+6、【考点】解一元二次方程-因式分解法;解一元二次方程-公式法、【分析】〔Ⅰ〕套用求根公式可得;〔Ⅱ〕因式分解法求解可得、【解答】解:〔Ⅰ〕∵a=2,b=﹣4,c=﹣1,∴b2﹣4ac=〔﹣4〕2﹣4×2×〔﹣1〕=24>0,∴x==,即x1=,x2=;〔Ⅱ〕〔x+1〕〔x+3〕=2〔x+3〕,〔x+1〕〔x+3〕﹣2〔x+3〕=0,〔x+3〕〔x﹣1〕=0,∴x1=﹣3,x2=1、【点评】此题要紧考查解一元二次方程旳能力,熟练掌握解一元二次方程旳方法是关键、20、学校通过初评决定最后从甲、乙、丙三个班中推举一个班为区级先进班集体,下表是这〔3〕假如学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3旳比确定,学生处旳李老师依照那个平均成绩,绘制一幅不完整旳条形统计图,请将那个统计图补充完整,依照那个成绩,应推举哪个班为区级先进班集体?【考点】条形统计图;统计表;加权平均数;中位数;众数、【分析】〔1〕依照平均数是所有数据旳和除以数据旳个数,众数是出现次数最多旳数据,中位数是一组数据按从小到大或从大到小旳顺序排列中间旳数〔或中间两个数旳平均数〕,可得【答案】;〔2〕依照平均数、众数、中位数旳大小比较,可得【答案】;〔3〕依照加权平均数旳大小比较,可得【答案】、【解答】解:〔1〕①8.6,②8,③10;〔2〕甲班,理由为:三个班旳平均数相同,甲班旳众数与中位数都高于乙班与丙班;〔3〕依照题意,得:丙班旳平均数为9×+10×+9×+6×+9×=8.9分,补全条形统计图,如下图:∵8.5<8.7<8.9,∴依照那个成绩,应推举丙班为市级先进班集体、【点评】此题考查了条形统计图,读懂统计图,从统计图中得到必要旳信息是解决问题旳关键、条形统计图能清晰地表示出每个项目旳数据、21、关于x旳一元二次方程x2﹣〔2k+3〕x+k2+3k+2=0〔Ⅰ〕求证:方程有两个不相等旳实数根;〔Ⅱ〕假设△ABC旳两边AB、AC旳长是那个方程旳两个实数根,第三边BC旳长为5,当△ABC是等腰三角形时,求△ABC旳周长、【考点】根旳判别式;三角形三边关系;等腰三角形旳性质、【分析】〔1〕要证明不管k为何值时,方程总有两个不相等旳实数根,确实是证明△>0,而△=〔2k+3〕2﹣4〔k2+3k+2〕=1,因此△>0;〔2〕依照等腰三角形旳性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,那么可分两种情况,再由根与系数旳关系得出k旳值、【解答】〔1〕证明:∵△=〔2k+3〕2﹣4〔k2+3k+2〕=1,∴△>0,∴不管k取何值时,方程总有两个不相等旳实数根;〔2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴〔2k+3〕2﹣4〔k2+3k+2〕=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6、∴△ABC旳周长为14或16、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕旳根旳判别式△=b2﹣4aC、当△>0,方程有两个不相等旳实数根;当△=0,方程有两个相等旳实数根;当△<0,方程没有实数根、同时考查了一元二次方程旳解法、22、如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8、以OB为一边,在△OAB外作等边三角形OBC,D是OB旳中点,连接AD并延长交OC于E、〔1〕求点B旳坐标;〔2〕求证:四边形ABCE是平行四边形;〔3〕如图2,将图1中旳四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG旳长、【考点】翻折变换〔折叠问题〕;坐标与图形性质;等边三角形旳性质;平行四边形旳判定与性质、【分析】〔1〕由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,依照三角函数旳知识,即可求得AB与OA旳长,即可求得点B旳坐标;〔2〕首先可得CE∥AB,D是OB旳中点,依照直角三角形斜边旳中线等于斜边旳一半,可证得BD=AD,∠ADB=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,依照内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD是平行四边形;〔3〕首先设OG旳长为x,由折叠旳性质可得:AG=CG=8﹣x,然后依照勾股定理可得方程〔8﹣x〕2=x2+〔4〕2,解此方程即可求得OG旳长、【解答】〔1〕解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OB•cos30°=8×=4,AB=OB•sin30°=8×=4,∴点B旳坐标为〔4,4〕;〔2〕证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;〔3〕解:设OG旳长为x,∵OC=OB=8,∴CG=8﹣x,由折叠旳性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即〔8﹣x〕2=x2+〔4〕2,解得:x=1,即OG=1、【点评】此题考查了折叠旳性质,三角函数旳性质,平行四边形旳判定,等边三角形旳性质,以及勾股定理等知识、此题难度较大,解题旳关键是注意数形结合思想与方程思想旳应用,注意折叠中旳对应关系、23、为执行中央“节能减排,美化环境,建设漂亮新农村”旳国策,我市某村打算建筑A、B两种型号旳沼气池共20个,以解决该村所有农户旳燃料问题、两种型号沼气池旳占地面〔1〕满足条件旳方案共有几种?写出解答过程;〔2〕通过计算推断,哪种建筑方案最省钱?【考点】一元一次不等式组旳应用、【分析】〔1〕关系式为:A型沼气池占地面积+B型沼气池占地面积≤365;A型沼气池能用旳户数+B型沼气池能用旳户数≥492;〔2〕由〔1〕得到情况进行分析、【解答】解:〔1〕设建筑A型沼气池x个,那么建筑B型沼气池〔20﹣x〕个,依题意得:,解得:7≤x≤9、∵x为整数∴x=7,8,9,因此满足条件旳方案有三种、〔2〕解法①:设建筑A型沼气池x个时,总费用为y万元,那么:y=2x+3〔20﹣x〕=﹣x+60,∴y随x增大而减小,当x=9时,y旳值最小,现在y=51〔万元〕、∴现在方案为:建筑A型沼气池9个,建筑B型沼气池11个、解法②:由〔1〕知共有三种方案,其费用分别为:方案一:建筑A型沼气池7个,建筑B型沼气池13个,总费用为:7×2+13×3=53〔万元〕、方案二:建筑A型沼气池8个,建筑B型沼气池12个,总费用为:8×2+12×3=52〔万元〕、方案三:建筑A型沼气池9个,建筑B型沼气池11个,总费用为:9×2+11×3=51〔万元〕、∴方案三最省钱、【点评】此题是一道材料分析题,有一定旳开放性,〔1〕先依照“A型沼气池占地面积+B型沼气池占地面积≤365;A型沼气池能用旳户数+B 型沼气池能用旳户数≥492”列出不等式;然后依照实际问题中x取整数确定方案;〔2〕依照〔1〕中方案进行计算、比较即可得最省钱方案、24、矩形ABCD在如下图旳直角坐标系中,点A旳坐标为〔0,3〕,BC=2AB、直线l通过点B,交AD边于点P1,现在直线l旳函数表达式是y=2x+1、〔1〕求BC、AP1旳长;〔2〕沿y轴负方向平移直线l,分别交AD、BC边于点P、E、①当四边形BEPP1,是菱形时,求平移旳距离;②设AP=m,当直线l把矩形ABCD分成两部分旳面积之比为3:5时,求m旳值、【考点】一次函数综合题、【分析】〔1〕首先依照l旳函数【解析】式y=2x+1能够求出B旳坐标,也就求出了AB,又BC=2AB,由此求出BC,然后就能够求出P1旳纵坐标为3,代入直线【解析】式能够求出横坐标,即求出了AP1旳长;〔2〕①当四边形BEPP1是菱形时,依照勾股定理能够求出BP1旳长,也就求出了BE旳长度,然后即可求出E旳坐标,再利用待定系数法能够确定平移后旳直线旳【解析】式,接着求出平移后旳直线旳与y轴旳交点坐标,比较两个与y轴旳交点坐标即可求出平移旳距离;②由AP=m,AP1=1能够得到PP1=BE=m﹣1,而直线l把矩形ABCD分成两部分旳面积之比为3:5,由此能够列出关于m旳方程,解方程即可求出m旳值、【解答】解:〔1〕∵直线y=2x+1通过y 轴上旳点B ,∴x=0,y=1,∴B 〔0,1〕,而A 旳坐标为〔0,3〕,∴AB=2,∴BC=2AB=4,∴P 1旳纵坐标为3,代入y=2x+1,x=1,∴AP 1=1;〔2〕①当四边形BEPP 1是菱形时,即,∴,设平移后旳直线旳【解析】式为y=2x+b ,把代入得,∴与y 轴旳交点,∴沿y 轴负方向平移旳距离为;②∵AP=m ,AP 1=1,∴PP 1=BE=m ﹣1,而S 梯形ABEP =S 矩形ABCD 或S 梯形ABEP =S 矩形ABCD ,∴或、 ∴m=2或者m=3,因此m=2或3、【点评】此题把矩形放在坐标系旳背景中,综合考查了一次函数与几何知识旳应用,题中运用矩形与直线旳关系以及直角三角形、梯形等知识求出线段旳长是解题旳关键、x600;HJJ;7483819;HLing;caicl;dbz1018;放飞梦。
天津市部分区2018-2019学年度第二学期期末考试八年级数学含答案

天津市部分区2018~2019学年度第二学期期末考试八年级数学参考答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在下表中)二、填空题(本题包括6小题,每题3分,共18分.请将答案直接填在题中横线上.)13.24y x+=-;14.x ≥6;15.50;16.丙;17.4 ;18.不会,94三、解答题(本题包括7小题,共46分,解答应写出文字说明、演算步骤或证明过程)19.计算:(每小题3分,共6分)(1)解:原式22=- ---------------1分 63=- ---------------2分 3= ---------------3分(2)?解:原式=? ---------------1分=- ---------------2分 1=- ---------------3分20.(本题5分)甲的平均成绩为86790387.273+=+创 乙的平均成绩为92783389.373+=+创 丙的平均成绩为90784388.273+=+创 ---------------3分 由于87.288.289.3<< ---------------4分 所以甲不能被录取 ---------------5分21.(本题7分)证明:(1)∵四边形AECF 是平行四边形∵AEC=AFC 行,AE=CF ,AF=CE---------------2分 ∵180AEC+AEB 行=?,180AFC+CFD 行=? ∵AEBCFD ?? ---------------3分 ∵B D ??∵ABE CDF V V ≌ ---------------4分(2)由(1)知ABE CDF V V ≌可得:AB=CD ,BE DF = ---------------5分∵AF=CE∵AF DF=CE BE ++即AD=BC ---------------6分∵四边形ABCD 是平行四边形 ---------------7分22.(本题6分)解:(1)设这个一次函数解析式为y kx b k =+?(0) ---------------1分 ∵y kx b =+的图象过点2(3,)与16--(,),∵ 326k b k b ì+=ïïíï-+=-ïî ---------------2分 解这个方程组得24k b ì=ïïíï=-ïî∵这个一次函数解析式为24y x =- ---------------4分 (2)令0x=,则4y =-∵点B 坐标为4-(0,)令0y=,则240x -=,2x=∵点A 坐标为(2,0) --------------5分 ∵12442AOB S =创=V ---------------6分 A B ECD F (第21题)每周体育锻炼时间/小时 23.(本题6分)(1)100 ---------------1分(2) 5 ---------------2分(3)如图 ---------------4分(4)28650182100=´(人) 估计每周参加体育锻炼时间为6小时的有182人. ---------------6分24.(本题8分)解:∵四边形ABCD 为矩形∵AB=CD ,AD=BC ,90DCB ??---------------2分 ∵6AB=,8AD=∵6CD=,8BC=在Rt BCD V 中,22226810BD=CD BC +=+= ---------------4分 由于折叠90DFEDCB ???,DF DC ==6,EF EC = ∵18090BFE DFE???? 设EC x =在Rt BEF V 中222BE EF BF =+∵222(8)4x x -=+解得:3x = ---------------6分在Rt DEC V 中222DE CE DC =+∵223635DE =+= ---------------8分25.(本题8分)(1)根据题意填空:购买A 种奖品的费用为 12x (元); ---------------1分购买B 种奖品的费用为 8160x -() (元 ); ---------------2分(2)根据题意得,128(160)y=x+x -∵41280y=x+ ---------------4分1603x x -≤ ,解得:x ≥40B D A F EC (第24题) 人数/人由题意得:x ≤160∵x 40≤≤160 ---------------6分(3)∵40>∵y 随x 的增大而增大∵x 40≤≤160∵当40x=时,44012801440y =+=´最小值(元) ---------------7分160120x=-∵当购买A 种奖品40件,B 种奖品120件时,所需费用最少,最少费用为1440元. ------------ ---8分。
天津市南开区2018-2019学年八年级下期末数学试卷((有答案))

天津市南开区2018-2019学年度下学期期末考试八年级数学试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 试卷满分100分.考试时间100分钟。
第Ⅰ卷(选择题共36分)注意事项:答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔或圆珠笔填写在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)方程x x 22=的解是(A)2=x (B)2=x (C)0=x (D)2=x 或0=x 【专题】计算题.【分析】方程移项后,分解因式利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【解答】解:方程x 2=2x , 移项得:x 2-2x=0,分解因式得:x (x-2)=0, 可得x=0或x-2=0, 解得:x 1=0,x 2=2. 故选:D .【点评】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.(2)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2s :根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 (A)甲 (B)乙 (C)丙 (D)丁【分析】根据方差和平均数的意义找出平均数大且方差小的运动员即可.【解答】解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5, ∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔, ∵甲的平均数是561,乙的平均数是560, ∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲; 故选:A .【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.(3)用配方法解关于x 的方程0242=+-x x ,此方程可变形为 (A)()622=-x (B)()622=+x (C)()222=-x (D)()222=+x 【专题】压轴题.【分析】根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【解答】解:移项,得x2-4x=-2在等号两边加上4,得x2-4x+4=-2+4∴(x-2)2=2.故C答案正确.故选:C.【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法--配方法的运用,解答过程注意解答一元二次方程配方法的步骤.(4)点(1,m)为直线1y上一点,则OA的长度为=x2-(A)1 (B)3(C)2(D)5【专题】探究型.【分析】根据题意可以求得点A的坐标,从而可以求得OA的长.【解答】解:∵点A(1,m)为直线y=2x-1上一点,∴m=2×1-1,解得,m=1,∴点A的坐标为(1,1),故选:C.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和勾股定理解答.(5)已知一次函数3y,且y随x的增大而减小,那么它的图象经过+=kx(A)第一、二、三象限(B)第一、二、四象限(C)第一、三、四象限(D)第二、三、四象限【专题】函数及其图象.【分析】先根据一次函数的性质判断出k的取值范围,再根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+3,y随x的增大而减小,∴k<0,∵b=3>0,∴此函数的图象经过一、二、四象限.故选:B.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k<0,b>0时函数的图象在一、二、四象限是解答此题的关键.(6)已知四边形ABCD是平行四边形,下列结论中不正确的是(A)当AB=BC时,四边形ABCD是菱形(B)当AC⊥BD时,四边形ABCD是菱形(C)当∠ABC=90°时,四边形ABCD是矩形(D)当AC=BD时,四边形ABCD是正方形.【专题】多边形与平行四边形.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C 、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D 、根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D 选项; 故选:D .【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(7)如图,数轴上点A 表示的数是-1,原点O 是线段AB 的中点,∠BAC=30,∠ABC=90°,以点A 为圆心,AC 长为半径画弧,交数轴于点D,则点D 表示的数是 (A)1332- (B)332 (C)334 (D)1334-【分析】首先求得AB 的长,然后在直角△ABC 中利用三角函数即可求得AC 的长,则AD=AC 即可求得,然后求得OD 即可. 【解答】解:∵点A 表示-1,O 是AB 的中点, ∴OA=OB=1, ∴AB=2,故选:D .【点评】本题考查了三角函数,在直角三角形中利用三角函数求得AC 的长是关键.(8)已知,如图,菱形ABCD 中,对角线AC 、BD 相交于点O,OE ∥CD 交BC 于点E,AD=6cm,则OE 的长为(A)6cm (B) 4cm (C)3cm (D)2cm【分析】由菱形ABCD 中,OE ∥DC ,可得OE 是△BCD 的中位线,又由AD=6cm ,根据菱形的性质,可得CD=6cm ,再利用三角形中位线的性质,即可求得答案. 【解答】解:∵四边形ABCD 是菱形, ∴CD=AD=6cm ,OB=OD , ∵OE ∥DC ,∴BE :CE=BO :DO , ∴BE=CE ,即OE 是△BCD 的中位线,故选:C .【点评】此题考查了菱形的性质以及三角形中位线的性质.注意证得OE 是△BCD 的中位线是解此题的关键.(9)如图,在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于点M ,若CM=5,则22CF CE 等于(A)75 (B)100 (C)120 (D)125【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值. 【解答】解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴△EFC 为直角三角形,又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD , ∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF , ∴CM=EM=MF=5,EF=10,由勾股定理可知CE 2+CF 2=EF 2=100. 故选:B .【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形.(10)某农机厂四月份生产零件50万个,第二季度共生产182万个.设该厂五、六月份平均每月的增长率为x ,那么符合题意的方程是(A)()1821502=+x (B)()()182150150502=++++x x (C)()()182215015050=++++x x (D)()1822150=+x 【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x )、50(1+x )2, ∴50+50(1+x )+50(1+x )2=182. 故选:B .【点评】增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.(11)如图,在R △ABC 中,∠ACB=90°,D 为斜边AB 的中点,动点P 从点B 出发,沿B→C→A 运动,如图(1)所示,设y S DPB △,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则a 的值为(A)3 (B)4 (C)5 (D)6【分析】根据已知条件和图象可以得到BC 、AC 的长度,当x=4时,点P 与点C 重合,此时△DPC 的面积等于△ABC 面积的一半,从而可以求出y 的最大值,即为a 的值.【解答】解:根据题意可得,BC=4,AC=7-4=3,当x=4时,点P 与点C 重合, ∵∠ACB=90°,点D 为AB 的中点,即a 的值为3,故选:A .(12)在平面直角坐标系中,已知点A(O,1),B(1,2),点P 在x 轴上运动,当点P 到A 、B 两点的距离之差的绝对值最大时,该点记为点P 1,当点P 到A 、B 两点的距离之和最小时,该点记为点P 2,以P 1P 2为边长的正方形的面积为 (A)1 (B)34(C)916(D)5 【专题】一次函数及其应用.【分析】由三角形两边之差小于第三边可知,当A 、B 、P 三点不共线时,|PA-PB|<AB ,又因为A (0,1),B (1,2)两点都在x 轴同侧,则当A 、B 、P 三点共线时,|PA-PB|=AB ,即|PA-PB|≤AB ,所以当点P 到A 、B 两点距离之差的绝对值最大时,点P 在直线AB 上.先运用待定系数法求出直线AB 的解析式,再令y=0,求出x 的值即可得到点P 1的坐标;点A 关于x 轴的对称点为A',求得直线A'B 的解析式,令y=0,即可得到点P 2的坐标,进而得到以P 1P 2为边长的正方形的面积. 【解答】解:由题意可知,当点P 到A 、B 两点距离之差的绝对值最大时,点P 在直线AB 上.设直线AB 的解析式为y=kx+b ,∴y=x+1,令y=0,则0=x+1, 解得x=-1.∴点P 1的坐标是(-1,0).∵点A 关于x 轴的对称点A'的坐标为(0,-1),设直线A'B的解析式为y=k'x+b',∵A'(0,-1),B(1,2),∴故选:C.【点评】本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.第Ⅱ卷(非选择题共64分)(二)填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上)(13)已知,正比例函数经过点(-1,2),该函数解析式为________________.【专题】函数及其图象.【分析】把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式;【解答】解:设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x【点评】此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.(14)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是105,则较短的直角边的长为___________.【专题】几何图形.【分析】根据边之间的关系,运用勾股定理,列方程解答即可.【解答】解:由题意可设两条直角边长分别为x,2x,解得x1=10,x2=-10舍去),所以较短的直角边长为10.故答案为:10【点评】本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.(15)一组数据1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为__________.【分析】根据众数为1,求出a的值,然后根据平均数的概念求解.【解答】解:∵众数为1,∴a=1,【点评】本题考查了众数和平均数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.(16)关于x的方程()0-xk有实数根,则k的取值范围是_________.+x+2132=【专题】常规题型.【分析】当k-3=0时,解一元一次方程可得出方程有解;当k-3≠0时,利用根的判别式△=16-4k≥0,即可求出k的取值范围.综上即可得出结论.【解答】解:①当k-3=0,即k=3时,方程为2x+1=0,②当k-3≠0,即k≠3时,△=22-4(k-3)=16-4k≥0,解得:k≤4且k≠3.综上即可得出k的取值范围为k≤4.故答案为k≤4.【点评】本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.(17)已知,R△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF的最小值是___________.【分析】根据已知得出四边形CEPF是矩形,得出EF=CP,要使EF最小,只要CP 最小即可,根据垂线段最短得出即可.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,∴CP=2.4,即EF=2.4,故答案为:2.4.【点评】本题利用了矩形的性质和判定、勾股定理、垂线段最短的应用,解此题的关键是确定出何时,EF最短,题目比较好,难度适中.(18)如图,在平面直角坐标系xOy中,E(8,0),F(0,6)(Ⅰ)当G(4,8)时,∠FGE=_______度;(Ⅱ)在图中网格区域内找一点P,使∠FPE=90°,且四边形OEPF被过P点的一条直线PM分割成两部分后,可以拼成一个正方形,则P点坐标为________.(要求写出点P坐标,画出过点P的分割线PM,不必说明理由,不写画法)【分析】(1)先利用勾股定理分别计算三边长,再利用勾股定理的逆定理可得:∠FGE=90°;(2)构建全等三角形:△APF≌△MEP,构建P的位置,根据三角形全等得到正方形.【解答】解:(1)如图1,连接EF,由勾股定理得:FG2=22+42=20,GE2=42+82=80,EF2=62+82=100,∴FG2+GE2=EF2,∴∠FGE=90°,故答案为:90°;(2)如图2,过P作PM⊥x轴于M,当P(7,7),PM为分割线;根据格点的长度易得:△APF≌△MEP≌△BFP,∴∠APF=∠MEP,∵∠MEP+∠MPE=90°,∴∠APF+∠MPE=90°,即∠FPE=90°,四边形OEPF将△EPM剪下放在△BFP上,构建正方形BOMP;故答案为:(7,7).【点评】本题考查了三角形全等的性质和判定、勾股定理及其逆定理、正方形的判定,熟练掌握勾股定理及其逆定理是关键.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程(19)解方程(每小题4分,本题共8分)(Ⅰ)0122=--x x (Ⅱ)()041292=--x 【专题】方程与不等式.【分析】(Ⅰ)利用配方法即可解决问题; (Ⅱ)利用直接开方法即可解决问题;【点评】本题考查解一元二次方程,解题的关键是熟练掌握解二元一次方程的方法,属于中考常考题型. (20)(本题共7分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班学生捐款情况,并绘制了如下的统计表和统计图:求:(Ⅰ)m=______;n=______;(Ⅱ)求学生捐款数目的众数、中位数和平均数; (Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?【专题】常规题型.【分析】(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出m 、n 的数值即可; (Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可; (Ⅲ)利用求得的平均数乘总人数得出答案即可.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人. 12÷30=40%,9÷30=30%,所以扇形统计图中的m=40,n=30; 故答案为:40,30;(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多, ∴学生捐款数目的众数是50元;∵按照从小到大排列,处于中间位置的两个数据都是50, ∴中位数为50元;这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元). (Ⅲ)根据题意得: 2500×81=202500元答:估计该校学生共捐款202500元.【点评】此题考查扇形统计图,用样本估计总体,众数、中位数、平均数的意义与求法,理解题意,从图表中得出数据以及利用数据运算的方法是解决问题的关键. (21)(本题共7分)已知关于x 的一元二次方程()()01222=-++-m x m x (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若此方程的一个根是1,请求出方程的另一个根; (Ⅲ)求以(Ⅱ)中所得两根为边长的直角三角形的周长。
天津市和平区2018~2019学年度第二学期八年级数学学科期末质量调查试卷

和平区2018~2019学年度第二学期八年级数学学科期末质量调查试卷一. 选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若32+a 在实数范围内有意义,则a 的取值范围是 (A)a ≥23-(B) a ≤23- (C) a>23- (D) a<23- 2.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若OA=2,则BD 的长为(A)4 (B) 3 (C)2 (D) 13.已知直线y=2x-b 经过点(1,-1),则b 的值为 (A)3 (B)-3 (C) 0 (D) 64.设矩形的面积为S ,相邻两边的长分别为a,b ,已知S=23,b=10,则a 等于(A) 230 (B)530 (C) 630 (D) 53 5.下列说法正确的是(A)四个角都相等的四边形是正方形 (B )四条边都相等的四边形是正方形 (C)对角线相等的平行四边形是正方形 (D) 对角线互相垂直的矩形是正方形 6.若直角三角形两条直角边长分别为2和3,则该直角三角形斜边上的高为 (A) 13 (B)13133 (C) 13136 (D) 1313127.晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐三项体育成绩(百分制)依次95分、90分、86分,则小桐这学期的体育成绩是(A )88 (B )89分 (C )90分 (D )91分8.改革开40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,下图为北京市统计局发布的2017年和2018年北京市居民人均教育、文化和娱乐消费支出的折线图.第2题说明:在统计学中,同比..是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较:环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较. 根据上述信息,下列结论中错误的是(A)2017年第二季度环比有所提高 (B )2017年第三季度环比有所提高 (C)2018年第一季度同比有所提高 (D) 2018年第四季度同比有所提高 9.如图,直线y=kx+b 过A(-1,2),B(-2,0)两点,则0≤kx+b ≤-2x 的解集为 (A)x ≤-2或x ≥-1 (B) 0≤y ≤2 (C) -2≤x ≤0 (D) -2≤x ≤-110.某通讯公司推出三种上网月收费方式,这三种收费方式每月所收的费用y(元)与上网时间x(小时)的函数关系如图所示,则下列判断错误的是(A)每月上网不足25小时,选项A 方式最省钱 (B )每月上网为30小时,选项B 方式最省钱(C)每月上网费用为60元,选择B 方式比A 方式时间长 (D)每月上网时间超过70小时,选择C 方式最省钱11.已知直线 y=-x+6交x 轴于点A ,交y 轴于点B ,点P 在线段OA 上,将△PAB 沿BP 翻折,点A 的对应点A ′恰好落在y 轴上,则OPPA的值为 (A)22(B) 1 (C) 2 (D) 312.如图,边长为2的菱形ABCD 中,∠A=60º,点M 是边AB 上一点,点N 是边BC 上一点,且∠ADM=15º,∠MDN=90º,则点B 到DN 的距离为 (A)22(B) 2 (C) 3 (D)2 二.填空题(本大题共6小题,每小题3分,共18分)13.如图,在Rt △ABC 中,D 是斜边AB 的中点,AB=2,则CD 的长为_____.14.农科院对甲、乙两个品种甜玉米各用10块试验田进行试验,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为S 2甲=0.01,S 2乙=0.0002, 则产量较为稳定的品种为_______(填“甲”或“乙”) 15.计算(5+3)(5-3)的结果等于________.NMDCBA第12题DBCA 第13题16.已知一次函数y=x+b 的图象经过第一、二、三象限,写出一个符合条件的b 的值为_____. 17.一个装有进水管与出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟关停进水管,每分的进水量和出水量是两个常数,在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分)之间的函数关系如图所示,关停进水管后,经过_____分钟,容器中的水恰好放完18.图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形. (1)如图①,连接相邻两个小正三角形的顶点A ,B ,则AB 的长为_______(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为32的直角三角形,且它的顶点都在格点上.三.解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.(本小题8分)计算:(1)483316122+- (2) )52)(32(++20.(本小题8分)如图,在四边形ABCD 中,AB=AD=2,∠A=90º,∠CBD=30º,∠C=45º,求BD 及CD 的长.21.(本小题10分)①②某校九年级有1200名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次参加跳绳测试的学生人数为______,图①中m 的值为_______; (2) 求本次调查获取的样本数据的平均数、众数、中位数;(3) 根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?22.(本小题10分)在菱形ABCD 中,AC 是对角线.(1) 如图①,若AB=6,则菱形ABCD 的周长为______;若∠DAB=70º,则∠D 的度数是_____;∠DCA 的度数是____;(2) 如图②,P 是AB 上一点,连接DP 交对角线AC 于点E,连接EB,求证: ∠APD=∠EBC.23.现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x 千克. (1)根据题意,填写下表:图②图①图①图②(2)设甲快递公司收费y 1元,乙快递公司收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.24.(本小题10分)已知,在正方形ABCD 中,点E 在边AD 上,点F 在边BC 的延长线上,且AE=CF,连接AC ,EF. (1)如图①,求证:EF//AC ;(2)如图②,EF 与边CD 交于点G,连接BG,BE,①求证:△BAE ≌△BCG;②若BE=EG=4,求△BAE 的面积.25.(本小题10分)已知,直线y=2x-2与x 轴交于点A ,与y 轴交于点B. (1)如图①,点A 的坐标为_______,点B 的坐标为_______; (2)如图②,点C 是直线AB 上不同于点B 的点,且CA=AB. ①求点C 的坐标;②过动点P(m,0)且垂直与x 轴的直线与直线AB 交于点E ,若点E 不在线段BC 上,则m 的取值范围是_______;F E D C B A 图①B A图②(3)若∠ABN=45º,求直线BN的解析式.。
2018-2019学年天津市部分区八年级(下)期末数学试卷

2018-2019学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中) 1.(3分)如果√3a +5有意义,那么( ) A .a ≥53B .a ≤53C .a ≥−53D .a ≤−532.(3分)下列二次根式√1.2;5√x +y ;√4a3;√x 2−4;√15;√28.其中,是最简二次根式的有( ) A .2个B .3个C .4个D .5个3.(3分)计算√(−3)2的结果为( ) A .±3B .﹣3C .3D .94.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是( ) A .6,7,8B .5,6,8C .√3,√2,√5D .4,5,65.(3分)下列函数①y =5x ;②y =﹣2x ﹣1;③y =2x;④y =12x ﹣6;⑤y =x 2﹣1其中,是一次函数的有( ) A .1个B .2个C .3个D .4个6.(3分)直线y =﹣2x +5与x 轴、y 轴的交点坐标分别是( ) A .(52,0),(0,5)B .(−52,0),(0,5) C .(52,0),(0,﹣5)D .(−52,0),(0,﹣5)7.(3分)已知点A (x 1,y 1),B (x 2,y 2)是一次函数y =(m ﹣1)x +2﹣m 上任意两点,且当x 1<x 2时,y 1>y 2,则这个函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x 及方差S 2如下表所示:甲 乙 丙 丁 x 85 93 93 86 S 2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( )A.赵研B.钱进C.孙兰D.李丁9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4√2+√8)÷3√2的结果是.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式.16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x﹣2﹣10123y﹣101234那么,不等式mx+n<0的解集是.18.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3√5+2√3)(3√5−2√3)(Ⅱ)√25−√8−(√18−√9 3)20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.纸笔测试实践能力成长记录甲908395乙88909521.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表购买量/kg050100150200…付款金额/元0250700…(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.2017-2018学年天津市部分区八年级(下)期末数学试卷参考答案与试题解析一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中)1.(3分)如果√3a+5有意义,那么()A.a≥53B.a≤53C.a≥−53D.a≤−53【分析】被开方数为非负数,列不等式求解即可.【解答】解:根据题意得:3a+5≥0,解得a≥−5 3.故选:C.【点评】本题考查二次根式有意义的条件,二次根式的被开方数是非负数.2.(3分)下列二次根式√1.2;5√x+y;√4a3;√x2−4;√15;√28.其中,是最简二次根式的有()A.2个B.3个C.4个D.5个【分析】根据最简二次根式的定义即可判断.【解答】解:√1.2=√30 5,√4a 3=√12a3,√28=2√7∴5√x+y、√x2−4、√15是最简二次根式,故选:B.【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.3.(3分)计算√(−3)2的结果为()A.±3B.﹣3C.3D.9【分析】根据√a2=|a|进行计算即可.【解答】解:√(−3)2=3,故选:C.【点评】此题主要考查了二次根式的化简,关键是掌握√a2=|a|.4.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是( ) A .6,7,8B .5,6,8C .√3,√2,√5D .4,5,6【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形. 【解答】解:∵(√3)2+(√2)2=5、(√5)2=5, ∴(√3)2+(√2)2=(√5)2,∴能组成直角三角形的一组数是√3、√2、√5, 故选:C .【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.(3分)下列函数①y =5x ;②y =﹣2x ﹣1;③y =2x;④y =12x ﹣6;⑤y =x 2﹣1其中,是一次函数的有( ) A .1个B .2个C .3个D .4个【分析】直接利用一次函数的定义:一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,进而判断得出答案.【解答】解:①y =5x ;②y =﹣2x ﹣1;③y =2x ;④y =12x ﹣6;⑤y =x 2﹣1其中,是一次函数的有:①y =5x ;②y =﹣2x ﹣1;④y =12x ﹣6共3个. 故选:C .【点评】此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键. 6.(3分)直线y =﹣2x +5与x 轴、y 轴的交点坐标分别是( ) A .(52,0),(0,5)B .(−52,0),(0,5) C .(52,0),(0,﹣5)D .(−52,0),(0,﹣5)【分析】分别根据点在坐标轴上坐标的特点求出对应的x 、y 的值,即可求出直线y =﹣2x +5与x 轴、y 轴的交点坐标. 【解答】解:令y =0,则﹣2x +5=0, 解得x =52,故此直线与x 轴的交点的坐标为(52,0);令x =0,则y =5,故此直线与y 轴的交点的坐标为(0,5); 故选:A .【点评】本题考查的是坐标轴上点的坐标特点,一次函数y =kx +b ,(k ≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(−bk ,0);与y 轴的交点坐标是(0,b ). 7.(3分)已知点A (x 1,y 1),B (x 2,y 2)是一次函数y =(m ﹣1)x +2﹣m 上任意两点,且当x 1<x 2时,y 1>y 2,则这个函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】先根据x 1<x 2时,y 1>y 2,得到y 随x 的增大而减小,所以x 的比例系数小于0,那么m ﹣1<0,解不等式即可求解. 【解答】解:∵x 1<x 2时,y 1>y 2,∴y 随x 的增大而减小,函数图象从左往右下降, ∴m ﹣1<0, ∴m <1, ∴2﹣m >0,即函数图象与y 轴交于正半轴, ∴这个函数的图象不经过第三象限. 故选:C .【点评】本题考查一次函数的图象性质:当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x 及方差S 2如下表所示:甲 乙 丙 丁 x 85 93 93 86 S 2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( ) A .赵研B .钱进C .孙兰D .李丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进,故选:B.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°【分析】根据平行四边形的性质:对角相等即可求出∠A的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠C=32°,∴∠A=32°,故选:D.【点评】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°【分析】由等边三角形的性质可得∠DAE=60°,进而可得∠BAE=150°,又因为AB =AE,结合等腰三角形的性质,易得∠AEB的大小,进而可求出∠BED的度数.【解答】解:∵△ADE是等边三角形,∴∠DAE=60°,AD=AE=DE,∵四边形ABCD是正方形,∴∠EAB=90°,AD=AB∴∠BAE=90°+60°=150°,AE=AB∴∠AEB=30°÷2=15°,∴∠BED=60°﹣15°=45°,故选:A.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠AEB的度数,难度适中.12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个【分析】根据图象进行解答即可.【解答】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:A.【点评】本题考查了一次函数的应用、解题的关键是根据图象进行解答.二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4√2+√8)÷3√2的结果是2.【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:原式=(4√2+2√2)÷3√2=6√2÷3√2=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为24.【分析】设其余两边长分别为n、n+2,根据勾股定理列出方程,解方程求出n,计算即可.【解答】解:设其余两边长分别为n、n+2,由勾股定理得,n2+(n+2)2=102,整理得,n2+2n﹣48=0,解得,n1=﹣8(舍去),n2=6,则其余两边长分别为6、8,则这个三角形的周长=6+8+10=24,故答案为:24.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式h=0.62n.【分析】依据这些书摞在一起总厚度h(cm)与书的本数n成正比,即可得到函数解析式.【解答】解:∵每本书的厚度为0.62cm,∴这些书摞在一起总厚度h(cm)与书的本数n的函数解析式为h=0.62n,故答案为:h=0.62n【点评】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是5吨.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:表中数据为从小到大排列,5吨处在第10位、第11位,为中位数.故这组数据的中位数是5吨.故答案为:5吨.【点评】考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x﹣2﹣10123y﹣101234那么,不等式mx+n<0的解集是x<﹣1.【分析】由表格得到函数的增减性后,再得出y=0时,对应的x的值即可.【解答】解:当x=﹣1时,y=0,根据表可以知道函数值y随x的增大而增大,故不等式mx+n<0的解集是x<﹣1.故答案为:x<﹣1【点评】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.18.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为4.【分析】分别利用当点M与点A重合时,以及当点N与点C重合时,求出AH的值进而得出答案.【解答】解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,在Rt△HCB中,HC2=BC2+HB2,即132=(13﹣AH)2+52,解得:AH=1,所以点H在AB上可移动的最大距离为5﹣1=4.故答案为:4.【点评】本题主要考查的是折叠的性质、勾股定理的应用,注意利用翻折变换的性质得出对应线段之间的关系是解题关键.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I )(3√5+2√3)(3√5−2√3) (Ⅱ)√25−√8−(√18−√93)【分析】(Ⅰ)利用平方差公式计算可得;(Ⅱ)先化简二次根式,再合并同类二次根式即可得. 【解答】解:(Ⅰ)原式=(3√5)2﹣(2√3)2 =45﹣12 =33;(Ⅱ)原式=5﹣2√2−3√2+1=6﹣5√2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质与运算法则及平方差公式.20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.纸笔测试 实践能力 成长记录甲 90 83 95 乙889095【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀. 【解答】解:甲学生的学期总评成绩为90×5+83×2+95×35+2+3=90.1,乙学生的学期总评成绩为88×5+90×2+95×35+2+3=90.5,所以乙学生将被评为优秀的学生.【点评】本题考查了加权成绩的计算.加权成绩等于各项成绩乘以不同的权重的和. 21.(6分)如图,在▱ABCD 中,点M ,N 分别是边AB ,CD 的中点. 求证:AN =CM .【分析】根据平行四边形的性质:平行四边的对边相等,可得AB∥CD,AB=CD;根据一组对边平行且相等的四边形是平行四边形,可得AN=CM.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=12CD,AM=12AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.【点评】本题考查了平行四边形的判定与性质,根据条件选择适当的判定方法是解题关键.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.【分析】(Ⅰ)根据A、B的坐标求出线段AB的长度,由于菱形的四条边都相等,C点位于y轴上,即可得到C点坐标,(Ⅱ)根据菱形四条边相等且对边平行,求出D的坐标,在用待定系数法即可得到答案.【解答】解(Ⅰ)∵四边形ABCD为菱形,∴AB=BC,∵A (3,0),B (0,4), ∴AB =√32+42=5, ∴BC =5, ∴OC =1,∴点C 的坐标为(0,﹣1); (Ⅱ)∵四边形ABCD 为菱形, ∴AD =AB =5,AD ∥CB , ∴点D 的坐标为(3,﹣5),设经过点C ,D 两点的一次函数的解析式为y =kx +b , 把(0,﹣1),(3,﹣5)代入得:{b =−13k +b =−5,解得:{k =−43b =−1,∴经过点C ,D 两点的一次函数的解析式为y =−43x ﹣1.【点评】本题考查菱形的性质和待定系数法求一次函数解析式,正确观察和分析图象和掌握待定系数法求一次函数解析式是解决本题的关键.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I )本次接受随机抽样调查的学生人数为 40 ; (Ⅱ)在条形统计图中,请把空缺部分补充完整; (Ⅲ)求本次调查获取的样本数据的众数与中位数. 【分析】(Ⅰ)用38号人数除以其所占百分比可得总人数;(Ⅱ)根据各鞋号人数之和等于总人数求得37号的人数即可补全图形;(Ⅲ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40, 故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人, 补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多, ∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36, ∴中位数为36+362=36;【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg (包括100kg ),批发价为5元,如果一次购买100kg 以上苹果,超过100kg 的部分苹果价格打8折. (I )请填写下表购买量/kg 0 50 100150200 … 付款金额/元250500 700900…(Ⅱ)写出付款金额关于购买量的函数解析式; (Ⅲ)如果某人付款2100元,求其购买苹果的数量. 【分析】(Ⅰ)根据图表的规律解答即可; (Ⅱ)根据图表得出函数解析式即可; (Ⅲ)把y =2100代入解析式解答即可.【解答】解:(Ⅰ)由图表可得苹果100kg 时,付款金额为500元,苹果200kg 时,付款金额为500+100×5×0.8=900元;(Ⅱ)设购买量为xkg,付款金额为y元,当0≤x≤100时,y=5x;当x>100时,y=100×5+(x﹣100)×5×0.8=4x+100;(Ⅲ)把y=2100代入y=4x+100得:2100=4x+100,解得:x=500,答:如果某人付款2100元,其购买苹果的数量为500kg.故答案为:500;900.【点评】此题主要考查了一次函数解析式的求法,以及一次函数的最值的求法,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.【分析】(I)连接AC,由菱形的性质结合∠B=∠EAF=60°,可得出∠B=∠ACD,∠BAE=∠CAF和AB=BC,进而可得出△ABE≌△ACF(ASA),根据全等三角形的性质可得出AE=AF,由等边三角形的性质可得出∠AEF=60°,由邻补角互补及三角形内角和定理,可得出∠CEF+∠AEB=120°=∠BAE+∠AEB,进而可证出∠BAE=∠CEF;(II)由(I)的结论可得出∠ABE=∠ACF,∠BAE=∠CAF,AB=AC,进而可证出△ABE≌△ACF(AAS),根据全等三角形的性质可得出AE=AF,利用等边三角形的性质可得出∠AEF=60°,由∠AEB+∠CEF=60°=∠AEB+∠BAE可得出∠BAE=∠CEF.【解答】(I)证明:在图(1)中,连接AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD,CA平分∠BCD.∵∠B=60°,∴△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.∵AB∥CD,∴∠ACD=∠BAC=60°,∴∠B=∠ACD=60°.∵∠EAF=60°,∴∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF.在△ABE和△ACF中,{∠B=∠ACFAB=AC∠BAE=∠CAF,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠CEF+∠AEB=120°.∵∠BAE+∠AEB=120°,∴∠BAE=∠CEF.(II)解:∠BAE=∠CEF.在图(2)中,连接AC,由(I)知:∠ABC=∠ACD=60°,∠EAF=∠BAC=60°,AB=AC,∴∠ABE=∠ACF=120°,∠BAE=∠CAF.在△ABE和△ACF中,{∠ABE=∠ACF AB=AC∠BAE=∠CAF,∴△ABE≌△ACF(AAS),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°.∵∠AEB+∠BAE=∠ABC=60°,∴∠BAE=∠CEF.【点评】本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质以及角的计算,解题的关键是:(1)利用全等三角形的判定定理ASA证出△ABE≌△ACF;(2)利用全等三角形的性质结合角的计算找出∠AEB+∠CEF=∠AEB+∠BAE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市部分区2018-2019学年八年级(下)期末数学试卷一.选择題[本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中1.(3分)要使有意义,x必须满足()A.x≥﹣B.x≤﹣C.x为任何实数D.x为非负数2.(3分)下列二次根式化成最简二次根式后不能与合并的是()A.B.C.D.3.(3分)一组数据11,9,11,12,9,13,9的中位数是()A.9B.10C.11D.124.(3分)下列函数中,一定是一次函数的是()A.y=2x﹣1B.y=C.y=3x2+2D.y=(m﹣3)x+35.(3分)某班5名同学的数学竞赛成绩(单位:分)如下:76,80,73,92,a,如果这组数据的平均数是79,则a的值为()A.68B.70C.72D.746.(3分)在下列各组数中,能作为直角三角形的三边长的是()A.3,4,2B.8,12,13C.,3,4D.1.5,2.5,3.57.(3分)一次函数y=3x﹣5的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限8.(3分)点(x1,y1),(x2,y2)都在直线y=﹣4x+5上,若x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1≥y29.(3分)顺次连结四边形四条边的中点,所得的四边形是矩形,则原四边形一定是()A.平行四边形B.对角线互相垂直的四边形C.菱形D.对角线相等的四边形10.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.511.(3分)如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB 的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)12.(3分)如图①,在矩形ABCD中,动点P从点A出发,沿AD、DC、CB运动至点B停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,则△APB的最大面积是()A.8B.40C.18D.144二.填空題(本題包括6小题,每题3分,共18分,请将答案直接填在题中横线上)13.(3分)若将直线y=﹣2x+1向上平移3个单位,则所得直线的表达式为.14.(3分)已知一次函数y=kx+b(≠0)的图象经过(6,0)和(0,﹣3),则kx+b≥0的解集为.15.(3分)在▱ABCD中,若∠B+∠D=260°,则∠A的大小为(度).16.(3分)某中学为了选拔一名运动员参加区运会100m短跑比赛,有甲、乙、丙3名运动员备选,他们100m短跑的平均成绩和方差如下表所示甲乙丙12.83秒12.85秒12.83s2 2.1 1.1 1.1如果要选择一名成续优秀且稳定的人去参赛,应派去.17.(3分)如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为(m).18.(3分)如图,已知正方形ABCD,对角线AC的中点为O,点O同时是正方形A1B1C1O的一个顶点,A1O交AB于点E,C1O交BC于点F.若这两个正方形的边长都是3,将正方形A1B1C1O 绕点O转动.(1)两个正方形重叠部分的面积改变(填“会”或“不会”).(2)两个正方形重叠部分的面积若改变,说明理由;若不改变,直接写出重叠部分的面积.请将答案写在横线上.三.解答题(本題包括7小题,共46分解答应写出文字说明、演算步骤或证明过程)19.(6分)计算(1)(2)20.(5分)某公司欲招聘两名技术员,对甲、乙、丙三位候选人进行了笔试和面试,他们的成绩如下表所示:候选人甲乙丙测试成绩(百分制)笔试869290面试908384如果公司认为,作为技术人员笔试的成绩应该比面试的成绩更重要,并分别赋子它们7和3的权.根据三人各自的平均成绩,谁不能被录取?21.(7分)如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.22.(6分)已知在平面直角坐标系xOy中,一次函数的图象经过(3,2)与(﹣1,﹣6)两点.(1)求这个一次函数解析式;(2)若此一次函数图象与x轴交于点A,与y轴交于点B,求△AOB的面积.23.(6分)为了解某校八年级学生参加体育锻炼的情况,随机调查了该校部分学生每周参加体育锻炼的时间,并进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次共调查学生人;(2)这组数据的众数是;(3)请你将图2的统计图补充完整;(4)若该校八年级共有650人,请根据样本数据,估计每周参加体育锻炼时间为6小时的人数.24.(8分)如图,在矩形纸片ABCD中,AB=6,AD=8,点E在BC边上,将△DCE沿DE折叠,使点C恰好落在对角线BD上的点F处,求DE的长.25.(8分)某学校举行数学竞赛,需购买A、B两种奖品共160件,其中A种奖品的单价为12元,B种奖品的单价为8元,且购买B种奖品的数量不大于A种奖品数量的3倍,假设购买A种奖品的数量为x件.(1)根据题意填空:购买A种奖品的费用为(元);购买B种奖品的费用为(元);(2)若购买两种奖品所需的总费用为y元,试求y与x的函数关系式,并求出x的取值范围;(3)问A,B两种奖品各购买多少件时所需的总费用最少,并求出最少费用.参考答案一.选择題[本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中1.解:要使有意义,则2x+5≥0,解得:x≥﹣.故选:A.2.解:A、原式=3,不符合题意;B、原式=,不符合题意;C、原式=3,符合题意;D、原式=,不符合题意,故选:C.3.解:将这组数据排序得:9,9,9,11,11,12,13,处在第4位的数是11,因此中位数是11,故选:C.4.解:A、该函数符合一次函数的定义,故本选项正确;B、该函数是反比例函数,故本选项错误;C、该函数是二次函数,故本选项错误;D、当m=3时,该函数不是一次函数,故本选项错误.故选:A.5.解:∵这组数据的平均数是79,∴(76+80+73+92+a)=79,解得:a=74;故选:D.6.解:A、32+22≠42,故不是直角三角形,故不符合题意;B、82+122≠132,故不是直角三角形,故不符合题意;C、()2+32=42,故是直角三角形,故符合题意;D、1.52+2.52≠3.52,故不是直角三角形,故不符合题意.故选:C.7.解:∵k=3>0,b=﹣5<0,∴图象经过一、三、四象限.故选:D.8.解:∵k=﹣4<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故选:A.9.解:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD,故原图形一定是:对角线垂直的四边形.故选:B.10.解:AB==13,故选:A.11.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO==3∴点C坐标(6,3)故选:D.12.解:∵动点P从点A出发,沿AD、DC、CB运动至点B停止,而当点P运动到点D,C之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=8时,y开始不变,说明AD=8,x=18时,接着变化,说明CD=18﹣8=10,∴AB=10,AD=8,则△APB的最大面积是:×10×8=40.故选:B.二.填空題(本題包括6小题,每题3分,共18分,请将答案直接填在题中横线上)13.解:∵y=﹣2x+1,∴向上平移3个单位可得到y=﹣2x+1+3=﹣2x+4,故答案为:y=﹣2x+4.14.解:∵一次函数y=kx+b(≠0)的图象经过(6,0)和(0,﹣3),∴y随着x的增大而增大,∴kx+b≥0的解集为x≥6,故答案为:x≥6.15.解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∠B=∠D,∴∠A+∠B=180°,∵∠B+∠D=260°,∴∠B=130°,∴∠A=180°﹣∠B=50°.故答案为:50.16.解:观察表格可知,甲、丙的平均数小于乙的平均数,即甲、丙的100m 短跑的平均成绩较好, ∴只要比较甲、丙的方差就可得出正确结果, ∵甲的方差大于丙的方差, ∴丙的成绩优秀且稳定. 故答案为丙.17.解:∵一木杆在离地面1.5m 处折断,木杆顶端落在离木杆底端2m 处, ∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m ). 故答案为:4. 18.解:(1)连接BO ,在正方形ABCD 中,AO =BO ,∠AOB =90°,∠OAB =∠OBC =45°, ∵∠AOE +∠EOB =90°,∠BOF +∠EOB =90°, ∴∠AOE =∠BOF ,且OA =OB ,∠OAE =∠OBF =45° ∴△AOE ≌△BOF (ASA ). ∴S △AOE =S △BOF ,∴S 四边形OEBF =S △EOB +S △OBF =S △EOB +S △AOE =S △AOB =S 正方形ABCD , 故答案为:不会(2)∵两个正方形的边长都是3, ∴重叠部分的面积=×9=故答案为:三.解答题(本題包括7小题,共46分解答应写出文字说明、演算步骤或证明过程)19.解:(1)原式==6﹣3=3;(2)原式===﹣1.20.解:甲的平均成绩为,乙的平均成绩为,丙的平均成绩为,由于87.2<88.2<89.3,所以甲不能被录取.21.证明:(1)∵四边形AECF是平行四边形∴∠AEC=∠AFC,AE=CF,AF=CE,∵∠AEC+∠AEB=180°,∠AFC+∠CFD=180°,∴∠AEB=∠CFD,∵∠B=∠D,∴△ABE≌△CDF(AAS);(2)由(1)知△ABE≌△CDF可得:AB=CD,BE=DF,∵AF=CE,∴AF+DF=CE+BE,∴AF+DF=CE+BE即AD=BC,∴四边形ABCD是平行四边形.22.解:(1)设这个一次函数解析式为y=kx+b(k≠0),∵y=kx+b的图象过点(3,2)与(﹣1,﹣6),∴,解得,,∴这个一次函数解析式为y=2x﹣4;(2)令x=0,则y=﹣4∴点B坐标为(0,﹣4)令y=0,则2x﹣4=0,得x=2,∴点A坐标为(2,0),∴.23.解:(1)20÷20%=100人,故答案为:100.(2)每周锻炼5小时的人数:100﹣8﹣20﹣28﹣12=32人,因此众数是5小时,故答案为:5.(3)补全条形统计图如图所示:(4)人,答:估计每周参加体育锻炼时间为6小时的有182人.24.解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,∠DCB=90°,∵AB=CD=6,AD=BC=8,在Rt△BCD中,,由于折叠∠DFE=∠DCB=90°,DF=DC=6,EF=EC,∴∠BFE=180°﹣∠DFE=90°,设EC=x,则BE=8﹣x,在Rt△BEF中,由勾股定理得:BE2=EF2+BF2,∴(8﹣x)2=x2+42,解得:x=3,即:EC=3,在Rt△DEC中,由勾股定理得:DE2=CE2+DC2,∴,答:AD的长为:.25.解:(1)根据题意,得购买A种奖品的费用为12x(元).购买B种奖品的费用为8(160﹣x)(元).故答案是:12x;8(160﹣x);(2)根据题意得,y=12x+8(160﹣x)∴y=4x+1280.又160﹣x≤3x,解得:x≥40.由题意得:x≤160∴40≤x≤160.综上所述,y=4x+1280(40≤x≤160);(3)∵4>0∴y随x的增大而增大∵40≤x≤160∴当x=40时,y=4×40+1280=1440(元)最小值此时,160﹣x=120.∴当购买A种奖品40件,B种奖品120件时,所需费用最少,最少费用为1440元.。