选修3-2.3-3.3-5笔记(1)
选修3-3 3-5知识点

分子动理论内能知识点梳理一、分子动理论1.物体是由大量分子组成的(1)分子的大小①分子的直径(视为球模型):数量级为10-10 m;②分子的质量:数量级为10-26 kg.(2)阿伏加德罗常数①1 mol的任何物质都含有相同的粒子数.通常可取N A=6.02×1023 mol-1;②阿伏加德罗常数是联系宏观物理量和微观物理量的桥梁.2.分子永不停息地做无规则运动(1)扩散现象①定义:不同物质能够彼此进入对方的现象;②实质:扩散现象并不是外界作用引起的,也不是化学反应的结果,而是由分子的无规则运动产生的物质迁移现象,温度越高,扩散现象越明显.(2)布朗运动①定义:悬浮在液体或气体中的小颗粒的无规则运动;②实质:布朗运动反映了液体或气体分子的无规则运动;③特点:颗粒越小,运动越明显;温度越高,运动越剧烈.(3)热运动①分子的永不停息的无规则运动叫做热运动;②特点:分子的无规则运动和温度有关,温度越高,分子运动越激烈.3.分子间同时存在引力和斥力(1)物质分子间存在空隙,分子间的引力和斥力是同时存在的,实际表现出的分子力是引力和斥力的合力;(2)分子力随分子间距离变化的关系:分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力比引力变化得快;(3)分子力与分子间距离的关系图线(如图1所示)图1由分子间的作用力与分子间距离的关系图线可知:①当r=r0时,F引=F斥,分子力为零;②当r>r0时,F引>F斥,分子力表现为引力;③当r<r0时,F引<F斥,分子力表现为斥力;④当分子间距离大于10r0(约为10-9 m)时,分子力很弱,可以忽略不计.二、温度和内能1.温度一切达到热平衡的系统都具有相同的温度.2.两种温标摄氏温标和热力学温标.关系:T=t+273.15 K.3.分子的动能(1)分子动能是分子热运动所具有的动能;(2)分子热运动的平均动能是所有分子热运动动能的平均值,温度是分子热运动的平均动能的标志;(3)分子热运动的总动能是物体内所有分子热运动动能的总和.4.分子的势能(1)意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能.(2)分子势能的决定因素①微观上:决定于分子间距离和分子排列情况;②宏观上:决定于体积和状态.5.物体的内能(1)概念理解:物体中所有分子热运动的动能和分子势能的总和,是状态量;(2)决定因素:对于给定的物体,其内能大小由物体的温度和体积决定,即由物体内部状态决定;(3)影响因素:物体的内能与物体的位置高低、运动速度大小无关;(4)改变物体内能的两种方式:做功和热传递.命题点微观量估算的“两种建模方法”1.求解分子直径时的两种模型(对于固体和液体) (1)把分子看成球形,d =36V 0π. (2)把分子看成小立方体,d =3V 0.提醒:对于气体,利用d =3V 0算出的不是分子直径,而是气体分子间的平均距离. 2.宏观量与微观量的相互关系(1)微观量:分子体积V 0、分子直径d 、分子质量m 0.(2)宏观量:物体的体积V 、摩尔体积V mol 、物体的质量m 、摩尔质量M 、物体的密度ρ. (3)相互关系①一个分子的质量:m 0=M N A=ρV molN A.②一个分子的体积:V 0=V mol N A=MρN A(注:对气体,V 0为分子所占空间体积);③物体所含的分子数:N =V V mol ·N A =m ρV mol ·N A 或N =m M ·N A =ρV M ·N A. 命题点 布朗运动与热运动1.布朗运动(1)研究对象:悬浮在液体或气体中的小颗粒; (2)运动特点:无规则、永不停息; (3)相关因素:颗粒大小、温度;(4)物理意义:说明液体或气体分子做永不停息的无规则的热运动. 2.扩散现象:相互接触的物体分子彼此进入对方的现象. 产生原因:分子永不停息地做无规则运动. 3.扩散现象、布朗运动与热运动的比较1.分子力、分子势能与分子间距离的关系分子力F、分子势能E p与分子间距离r的关系图线如图5所示(取无穷远处分子势能E p =0).图5(1)当r>r0时,分子力表现为引力,当r增大时,分子力做负功,分子势能增加.(2)当r<r0时,分子力表现为斥力,当r减小时,分子力做负功,分子势能增加.(3)当r=r0时,分子势能最小.2.内能和机械能的区别能量定义决定因素量值测量转化内能物体内所有分子的动能和势能的总和由物体内部分子微观运动状态决定,与物体整体运动情况无关任何物体都具有内能,恒不为零无法测量,其变化量可由做功和热传递来量度在一定条件下可相互转化机械能物体的动能及重力势能和弹性势能的总和与物体宏观运动状态、参考系和零势能面的选取有关,和物体内部分子运动情况无关可以为零可以测量固体、液体和气体知识点梳理一、固体和液体1.固体(1)固体分为晶体和非晶体两类.石英、云母、明矾、食盐、味精、蔗糖等是晶体.玻璃、蜂蜡、松香、沥青、橡胶等是非晶体.(2)单晶体具有规则的几何形状,多晶体和非晶体没有规则的几何形状;晶体有确定的熔点,非晶体没有确定的熔点.(3)有些晶体沿不同方向的导热或导电性能不同,有些晶体沿不同方向的光学性质不同,这类现象称为各向异性.非晶体和多晶体在各个方向的物理性质都是一样的,这叫做各向同性.2.液体(1)液体的表面张力①作用:液体的表面张力使液面具有收缩的趋势.②方向:表面张力跟液面相切,跟这部分液面的分界线垂直.(2)毛细现象:指浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,毛细管越细,毛细现象越明显.3.液晶(1)具有液体的流动性.(2)具有晶体的光学各向异性.(3)从某个方向看其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.二、气体1.气体压强(1)产生的原因由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.(2)决定因素①宏观上:决定于气体的温度和体积.②微观上:决定于分子的平均动能和分子的密集程度.2.理想气体(1)宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲,理想气体的分子间除碰撞外无其他作用力,即分子间无分子势能.3.气体实验定律表达式 p1V 1=p 2V 2p 1T 1=p 2T 2或 p 1p 2=T 1T 2V 1T 1=V 2T 2或 V 1V 2=T 1T 2图象4.理想气体的状态方程一定质量的理想气体的状态方程:p 1V 1T 1=p 2V 2T 2或pVT =C .命题点 固体和液体性质的理解1.晶体和非晶体(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性; (2)只要具有确定熔点的物体必定是晶体,反之,必是非晶体;(3)单晶体具有天然规则的几何外形,而多晶体和非晶体没有天然规则的几何外形,所以不能从形状上区分晶体与非晶体;(4)晶体和非晶体不是绝对的,在某些条件下可以相互转化; (5)液晶既不是晶体也不是液体. 2.液体表面张力(1)形成原因:表面层中分子间距离比液体内部分子间距离大,分子间作用力表现为引力; (2)表面特征:表面层中分子间的引力使液面产生了表面张力,使液体表面好像一层张紧的弹性薄膜;(3)表面张力的方向:和液面相切,垂直于液面上的各条分界线;(4)表面张力的效果:使液体表面具有收缩的趋势,使液体表面积趋于最小,而在体积相同的条件下,球形表面积最小.命题点 气体压强求解的“两类模型”1.活塞模型如图2所示是最常见的封闭气体的两种方式.图2对“活塞模型”类求压强的问题,其基本的方法就是先对活塞进行受力分析,然后根据平衡条件或牛顿第二定律列方程.图甲中活塞的质量为m ,活塞横截面积为S ,外界大气压强为p 0.由于活塞处于平衡状态,所以p 0S +mg =pS .则气体的压强为p =p 0+mgS . 图乙中的液柱也可以看成“活塞”,由于液柱处于平衡状态,所以pS +mg =p 0S . 则气体压强为p =p 0-mgS =p 0-ρ液gh . 2.连通器模型如图3所示,U 形管竖直放置.同一液体中的相同高度处压强一定相等,所以气体B 和A 的压强关系可由图中虚线联系起来.图3则有p B +ρgh 2=p A .而p A =p 0+ρgh 1,所以气体B 的压强为p B =p 0+ρg (h 1-h 2).命题点 气体状态变化的图像问题1.四种图象的比较类别 特点(其中C 为常量)举例p -VpV =CT ,即pV 之积越大的等温线温度越高,线离原点越远p -1Vp =CT 1V ,斜率k =CT ,即斜率越大,温度越高p -Tp =C V T ,斜率k =CV ,即斜率越大,体积越小V -TV =C p T ,斜率k =Cp ,即斜率越大,压强越小2.分析技巧利用垂直于坐标轴的线作辅助线去分析不同温度的两条等温线、不同体积的两条等容线、不同压强的两条等压线的关系.例如:(1)在图甲中,V 1对应虚线为等容线,A 、B 分别是虚线与T 2、T 1两线的交点,可以认为从B 状态通过等容升压到A 状态,温度必然升高,所以T 2>T 1.(2)如图乙所示,A、B两点的温度相等,从B状态到A状态压强增大,体积一定减小,所以V2<V1.知识点梳理一、热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递.2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做功的和.(2)表达式:ΔU=Q+W.(3)ΔU=Q+W中正、负号法则:物理量意义W Q ΔU符号+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少二、热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.2.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行.3.第二类永动机不可能制成的原因是违背了热力学第二定律.三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的.3.第一类永动机是不可能制成的,它违背了能量守恒定律.命题点热力学第一定律的理解和应用1.热力学第一定律的理解(1)内能的变化都要用热力学第一定律进行综合分析.(2)做功情况看气体的体积:体积增大,气体对外做功,W为负;体积缩小,外界对气体做功,W为正.(3)与外界绝热,则不发生热传递,此时Q=0.(4)如果研究对象是理想气体,因理想气体忽略分子势能,所以当它的内能变化时,主要体现在分子动能的变化上,从宏观上看就是温度发生了变化.2.三种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加;(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加;(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.命题点热力学第一定律与气体实验定律的综合应用命题点热力学第二定律1.热力学第二定律的含义(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响,如吸热、放热、做功等.在产生其他影响的条件下内能可以全部转化为机械能,如气体的等温膨胀过程.2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与的宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.3.热力学过程的方向性实例(1)高温物体热量Q能自发传给热量Q不能自发传给低温物体.(2)功能自发地完全转化为不能自发地转化为热.(3)气体体积V 1能自发膨胀到不能自发收缩到气体体积V2(较大).(4)不同气体A和B能自发混合成不能自发分离成混合气体AB.4.两类永动机的比较第一类永动机第二类永动机设计要求不需要任何动力或燃料,却能不断地对外做功的机器从单一热源吸收热量,使之完全变成功,而不产生其他影响的机器不可能制成的原因违背能量守恒定律不违背能量守恒定律,违背热力学第二定律光电效应波粒二象性知识点梳理一、光电效应及其规律1.光电效应现象在光的照射下,金属中的电子从表面逸出的现象,发射出来的电子叫光电子.2.光电效应的产生条件入射光的频率大于等于金属的极限频率.3.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于等于这个极限频率才能产生光电效应.(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.(3)光电效应的发生几乎是瞬时的,一般不超过10-9 s.(4)当入射光的频率大于极限频率时,饱和光电流的大小与入射光的强度成正比.二、爱因斯坦光电效应方程1.光子说:在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε=hν.2.逸出功W0:电子从金属中逸出所需做功的最小值.3.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.4.光电效应方程(1)表达式:hν=E k+W0或E k=hν-W0.(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.三、光的波粒二象性与物质波1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性.(2)光电效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.2.物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波:任何一个运动着的物体,小到微观粒子,大到宏观物体,都有一种波与它对应,其波长λ=hp ,p 为运动物体的动量,h 为普朗克常量.命题点 光电效应电路和光电效应方程的应用1.四点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率. (2)光电效应中的“光”不是特指可见光,也包括不可见光. (3)逸出功的大小由金属本身决定,与入射光无关. (4)光电子不是光子,而是电子. 2.两条对应关系(1)光照强度大→光子数目多→发射光电子多→光电流大; (2)光子频率高→光子能量大→光电子的最大初动能大. 3.三个关系式(1)爱因斯坦光电效应方程:E k =hν-W 0. (2)最大初动能与遏止电压的关系:E k =eU c . (3)逸出功与极限频率的关系W 0=hνc .命题点 光电效应图像图象名称 图线形状由图线直接(间接)得到的物理量 最大初动能E k 与入射光频率ν的关系图线①极限频率:图线与ν轴交点的横坐标νc ②逸出功:图线与E k 轴交点的纵坐标的值的绝对值W 0=|-E |=E③普朗克常量:图线的斜率k =h颜色相同、强度不同的光,光电流与电压的关系 ①遏止电压U c :图线与横轴的交点的横坐标 ②饱和光电流I m1、I m2:光电流的最大值 ③最大初动能:E k =eU c 颜色不同时,光电流与电压的关系①遏止电压U c1、U c2 ②饱和光电流③最大初动能E k1=eU c1,E k2=eU c2 遏止电压U c 与入射光频率ν的关系图线①极限频率νc :图线与横轴的交点的横坐标②遏止电压U c :随入射光频率的增大而增大 ③普朗克常量h :等于图线的斜率与电子电荷量的乘积,即h =ke (注:此时两极之间接反向电压)命题点 光的波粒二象性和物质波1.从数量上看:个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性. 2.从频率上看:频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,贯穿本领越强,越不容易看到光的干涉和衍射现象. 3.从传播与作用上看:光在传播过程中往往表现出波动性;在与物质发生作用时往往表现出粒子性. 4.波动性与粒子性的统一:由光子的能量E =hν、光子的动量表达式p =hλ也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的能量和动量的计算式中都含有描述波动性的物理量——频率ν和波长λ.原子和原子核知识点梳理一、原子物理 1.原子的核式结构(1)1909~1911年,英籍物理学家卢瑟福进行了α粒子散射实验,提出了原子核式结构模型.(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞了回来”,如图1所示.图1(3)原子的核式结构模型:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动. 2.氢原子光谱(1)光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.(2)光谱分类(3)氢原子光谱的实验规律:巴耳末系是氢原子光谱在可见光区的谱线,其波长公式1λ=R(122-1n2)(n=3,4,5,…,R是里德伯常量,R=1.10×107 m-1).(4)光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.(2)跃迁:电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=E m-E n.(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.4.氢原子的能量和能级变迁(1)能级和半径公式:①能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.②半径公式:r n=n2r1(n=1,2,3,…),其中r1为基态轨道半径,又称玻尔半径,其数值为r1=0.53×10-10 m.(2)氢原子的能级图,如图2所示二、天然放射现象和原子核1.天然放射现象(1)天然放射现象元素自发地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.(2)放射性同位素的应用与防护①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.②应用:消除静电、工业探伤、做示踪原子等.③防护:防止放射性对人体组织的伤害.2.原子核的组成(1)原子核由质子和中子组成,质子和中子统称为核子.质子带正电,中子不带电.(2)基本关系①核电荷数(Z)=质子数=元素的原子序数=原子的核外电子数.②质量数(A)=核子数=质子数+中子数.(3)X元素的原子核的符号为A Z X,其中A表示质量数,Z表示核电荷数.3.原子核的衰变、半衰期(1)原子核的衰变①原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变.②分类α衰变:A Z X→A-4Y+42HeZ-2β衰变:A Z X→A Z+1Y+0-1e当放射性物质连续发生衰变时,原子核中有的发生α衰变,有的发生β衰变,同时伴随着γ辐射.③两个典型的衰变方程α衰变:238 92U→234 90Th+42Heβ衰变:234 90Th→234 91Pa+0-1e.(2)半衰期①定义:放射性元素的原子核有半数发生衰变所需的时间.②影响因素:放射性元素衰变的快慢是由核内部自身的因素决定的,跟原子所处的化学状态和外部条件没有关系.(3)公式:N 余=N 原·12t τ⎛⎫⎪⎝⎭,m 余=m 原·12t τ⎛⎫ ⎪⎝⎭. 4.核力和核能(1)核力:原子核内部,核子间所特有的相互作用力.(2)核子在结合成原子核时出现质量亏损Δm ,其对应的能量ΔE =Δmc 2.(3)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm ,吸收的能量为ΔE =Δmc 2.命题点 玻尔理论和能级跃迁1.定态间的跃迁——满足能级差(1)从低能级(n )――→跃迁高能级(m )→吸收能量. hν=E m -E n(2)从高能级(m )――→跃迁低能级(n )→放出能量. hν=E m -E n . 2.电离 电离态与电离能 电离态:n =∞,E =0基态→电离态:E 吸>0-(-13.6 eV)=13.6 eV . 激发态→电离态:E 吸>0-E n =|E n |.若吸收能量足够大,克服电离能后,获得自由的电子还携带动能.命题点 原子核的衰变及半衰期1.衰变规律及实质 (1)α衰变、β衰变的比较衰变类型 α衰变β衰变衰变过程A Z X →A -4Z -2Y +42HeA Z X → A Z +1Y + 0-1e衰变实质2个质子和2个中子结合成一个整体射出1个中子转化为1个质子和1个电子211H +210n →42He10n →11H + 0-1e匀强磁场中轨迹形状(2)γ射线:γ射线经常伴随着α衰变或β衰变同时产生.其实质是放射性原子核在发生α衰变或β衰变的过程中,产生的新核由于具有过多的能量(原子核处于激发态)而辐射出光子.2.确定衰变次数的方法因为β衰变对质量数无影响,所以先由质量数的改变确定α衰变的次数,然后再根据衰变规律确定β衰变的次数.3.半衰期(1)公式:N余=N原12tτ⎛⎫⎪⎝⎭,m余=m原12tτ⎛⎫⎪⎝⎭.(2)影响因素:放射性元素衰变的快慢是由原子核内部自身因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关.命题点核反应及核反应类型1.核反应的四种类型2.核反应方程式的书写(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础.如质子(11H)、中子(10n)、α粒子(42He)、β粒子( 0-1e)、正电子(_x001F_ 0+1e)、氘核(21H)、氚核(31H)等.(2)掌握核反应方程遵守的规律,是正确书写核反应方程或判断某个核反应方程是否正确的依据,由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向.(3)核反应过程中质量数守恒,电荷数守恒.命题点质量亏损及核能的计算1.利用质能方程计算核能(1)根据核反应方程,计算出核反应前与核反应后的质量亏损Δm.(2)根据爱因斯坦质能方程ΔE=Δmc2计算核能.质能方程ΔE=Δmc2中Δm的单位用“kg”,c的单位用“m/s”,则ΔE的单位为“J”.(3)ΔE=Δmc2中,若Δm的单位用“u”,则可直接利用ΔE=Δm×931.5 MeV计算ΔE,此时ΔE的单位为“MeV”,即1 u=1.660 6×10-27 kg,相当于931.5 MeV,这个结论可在计算中直接应用.2.利用比结合能计算核能原子核的结合能=核子的比结合能×核子数.核反应中反应前系统内所有原子核的总结合能与反应后生成的所有新核的总结合能的差值,就是该核反应所释放(或吸收)的核能.。
高中物理选修3-3-3-5知识点整理

选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 ;(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N =b.分子体积:mol AVv N = c.分子数量:A A A A mol mol mol molM v M vn N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 `(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。
当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度 ,宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
高中物理选修3-3-3-5知识点整理复习进程

选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:molA M m N =b.分子体积:mol AV v N = c.分子数量:A A A A mol mol mol molM v M vn N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。
当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
(完整)高中物理选修3-3、3-4、3-5知识点整理,推荐文档

位置叫做平衡位置。
当分子距离的数量级大于m时,图1-1波的衍射振动减弱区域相互间隔的现象。
产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。
稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。
判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。
二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。
干涉和衍射是波所特有的现象。
七、多普勒效应Ⅰ1.多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。
是奥地利物理学家多普勒在1842年发现的。
2.多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。
3.多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。
4.多普勒效应的应用: ①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。
②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。
③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红移现象”,所谓“红移现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。
科学家从红移的大小还可以算出这种远离运动的速度。
这种现象,是证明宇宙在膨胀的一个有力证据。
八、电磁波谱电磁波及其应用Ⅰ一、麦克斯韦电磁场理论1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:①均匀变化的磁场产生稳定电场②非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场◎理解:①均匀变化的电场产生稳定磁场;②非均匀变化的电场产生变化磁场〖规律总结〗1、麦克斯韦电磁场理论的理解:恒定的电场不产生磁场恒定的磁场不产生电场均匀变化的电场在周围空间产生恒定的磁场均匀变化的磁场在周围空间产生恒定的电场振荡电场产生同频率的振荡磁场振荡磁场产生同频率的振荡电场2、电场和磁场的变化关系B按正弦规律变化,二者相互垂直,均与波的传播射电磁波,与周围环境交换信息。
选修3-4、3-5知识点归纳

选修3-4知识点归纳一、简谐运动1.机械振动:机械振动是指物体在所做的往复运动.2.回复力:回复力是指振动物体所受到的的力,是由来命名的.回复力的作用效果总是将物体。
3.平衡位置:平衡位置是指物体在振动中所受的的位置,此时振子状态.比如单摆经过平衡位置时,虽然回复力为零,但合外力并不为零,还有向心力.4.描述振动的物理量:①位移总是相对于平衡位置而言的,方向总是由平衡位置指向振子所在的位置。
总是背离平衡位置;②振幅是物体离开平衡位置的最大距离,它描述的是振动的,振幅是标量;③频率是单位时间内完成全振动的次数;④相位用来描述振子振动的。
如果振动的振动情况完全相反,则振动步调相反,为反相位.5.简谐运动:A、简谐运动的回复力和位移的变化规律;B、单摆的周期。
由本身性质决定的周期叫 ,与无关。
6.简谐运动的表达式和图象:x= 简谐运动的图象描述的是做简谐运动时,在,因而振动图象反映了振子的运动规律(注意:振动图象不是)。
由振动图象还可以确定振子某时刻的振动方向.7.简谐运动的能量:不计摩擦和空气阻力的振动是理想化的振动,此时系统只有重力或弹力做功,机械能守恒。
振动的能量和振幅有关,振幅越大,振动的能量越大。
二、受迫振动和共振:物体在驱动力(周期性外力)作用下的振动叫受迫振动,做受迫振动的其振动频率总等于...,与物体的固有频率无关。
当驱动力的频率跟物体的固有频率时,受迫振幅的振幅最大,这种现象叫共振。
驱动力的频率与振动物体的固有频率,受迫振动的振幅.反之,越接近,受迫振动的振幅.(P18 图共振实验;P19 图共振曲线)三、机械波1.波的特征量及其关系(1)波长:波动过程中,对平衡位置的的两质点的距离叫波长;(2)频率:波的频率由的振动频率决定,在任何介质中,频率;(3)机械振动在介质中的传播的距离和所用时间的比值叫波速,波速由本身的性质所决定,在不同介质中波速是不同的。
(v =△x/△t )2.介质中质点运动的特征:(1)每个质点都在自己平衡位置附近作振动,并;(2)后振动的质点振动情况总是相邻的先振动的质点的振动3.波动图象(1)横波的形成过程P24 图(2)规定用横坐标x表示在波的传播方向上各个质点的平衡位置,纵坐标y表示某一时刻偏离平衡位置的位移,连结各质点位移量末端得到的曲线叫做该时刻波的图象(3)横波图象的作用:①可知波动中质点的振幅和波长;②若已知波的传播方向,可知介质质点的方向,反之亦然;③相邻的波峰波谷点间的质点振动方向;④若知波速v,可求此时刻以后的波形图,方法是把波形图平移Δx= 的距离。
人教版_高中物理选修3-33-43-5知识点整理

人教版_高中物理选修3-3、3-4、3-5知识点整理选修3―3考点汇编1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol任何物质含有的微粒数相同NA 6.02 10mol(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:m231MmolNAVmolNAb.分子体积:vc.分子数量:nM vMvNA NA NA NA MmolMmol VmolVmol2、分子永不停息的做无规则的热运动(布朗运动扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
当两个分子间距在图象横坐标r0距离时,分子间的引力与斥力平衡,分子间作用力为零,r0的数量级为10位置叫做平衡位置。
当分子距离的数量级大于10m,相当于r0m时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)

选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯ (3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:molAM m N = b.分子体积:molAV v N = c.分子数量:A A A A mol mol mol molM v M vn N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。
当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
(完整版)高中物理选修3-5知识点汇总.docx

高中物理 3-5 知识点汇编第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft ;单位是N· s。
2.动量物体的质量与速度的乘积;矢量;状态量; p=mv;单位是 kg ·m/s;1kg ·m/s=1 N ·s。
3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
(内力:系统内物体之间的相互作用;外力:系统外物体对系统内物体的作用力)4.动量守恒定律成立的条件①系统不受外力或者所受外力的矢量和为零;②内力远大于外力;③如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5.动量定理物体所受合外力的冲量等于动量的变化;I=mv 末-mv 初。
6.反冲:在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
物体 m1以速度 v0与静止的物体m2发生弹性碰撞,碰撞后两物体的速度分别为v1m1m2v0v22m1v0m1m2m1 m29.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。
2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。
3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。
4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。
5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量的整数倍,这个不可再分的最小能量值叫做能量子;并且=h,是电磁波的频率,h为普朗克常量,h=6.63 10 34 J· s;光子的能量为h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 电磁感应一、奥斯特发现电流的磁效应(电生磁) 法拉第发现电磁感应(磁生电) 二、产生感应电流的条件 1.电路闭合2.磁通量Φ发生变化注意:Φ发生变化肯定会有感应电动势,但不一定有感应电流。
1.阻碍的方式:①增反减同(感应磁场与原磁场) ②来拒去留(相对运动) ③面积变化2.右手定则:右手定则是楞次定律的一种特例。
①磁场穿过掌心 ②大拇指=运动方向 ③四指=感应电流的方向四、电磁感应定律(用于计算感应电动势) 1.大小tn E ∆∆=φ(平均电动势,用于所有磁生电现象)θsin BLv E =(平均、瞬时电动势,只用于切割磁感线)2.电动势的方向:由楞次定律或右手定则判断。
五、电磁感应的两种方式电磁感应:动生:指切割磁感线 感生 互感:变压器自感:感应电流阻碍原电流的变化,增反减同。
第五章 交变电流一、交变电流1.定义:方向和大小都做周期性变化的电流。
2.正弦(余弦式)交变电流的产生:线圈在匀强磁场中绕垂直于磁场方向的轴做匀速圆周运动。
3.中性面:S ⊥B ①磁通量Φ最大 ②电动势E=0③每经过一次中性面,电流方向改变一次。
所以一个周期内,电流方向改变两次。
4.当S//B①磁通量Φ=0②电动势E 最大 ωnBS E m = 二、描述交变电流的物理量:1.周期T 、频率f :用于描述变化的快慢。
ωπ21==T fT2.峰值:总R E I nBS E mm m ==ω 3.瞬时值:tI i tI i t E e t E e m m m m ωωωωcos sin cos sin ====4.有效值:当交流电和直流电通过相同的电阻,经过相同的时间,产生的热量相等,该直流电就称为交流电的有效值。
(三同原则)22m m I I E E ==(只能用于正弦、余弦交变电流)三、电感和电容对交变电流的影响1.电感:就是一个线圈,通直流阻交流,频率越高,阻碍越大。
2.电容:通交流阻直流,频率越高,阻碍越小。
四、变压器 1.构造:与电源连接的叫原线圈,与用电器连接的叫副线圈。
2.原理:互感。
3.公式:两改变,两不改变两改变12212121n n I I n n U U == 两不改变2121f f P P ==4.决定关系:U 1决定U 2, I 2决定I 1, P 2决定P 1 五、电能的输送电压:R U U U n n U U n n U U +===3243432121电流:3234431221I I n n I I n n I I ===功率:R P P P P P P P +===324321选修3-3 第七章 分子动理论一、实验:油膜法估测分子大小 1.水面洒痱子粉2.配油酸溶液,测量n 滴溶液的体积V3.滴一滴在水面,测量油膜面积S4.计算分子直径注意:固体分子、液体分子看成球体;气体分子看成立方体。
二、分子热运动1.扩散现象:直接证明物体分子运动;2.布朗运动:①不是分子在动,而是固体颗粒被撞动 ②间接说明分子热运动③布朗运动与颗粒大小、液体的温度有关 ④观察到的图像不是颗粒运动的轨迹 三、分子间的作用力1.分子间同时存在引力和斥力 2.r=r 0时,引力=斥力,合力为03.引力和斥力都随距离变大而减小,斥力变化更快。
r<r 0时,表现为斥力;r>r 0时,表现为引力;r>10r 0时,引力、斥力都为04.固体和液体难以压缩,是因为分子间有斥力;气体难压缩,是因为气体有压强。
四、内能:所有分子的动能与分子势能之和。
1.分子动能:由于分子热运动而具有的能量。
①分子平均动能只与物体温度有关 ②分子动能与分子数量、物体温度有关 2.分子势能:由于分子间相互作用而具有的能量。
☆分子势能与分子数量、分子间的距离有关。
3.内能与分子数量、物体温度、分子间距离有关。
第八章 气体一、理想气体:分子间没有相互作用。
所以理想气体没有分子势能。
二、理想气体状态方程:222111T V P T V P =三、气体压强:①原因:气体分子对容器壁撞击 ②与撞击的力度(温度)有关③与单位时间撞击的次数(密度)有关第九章 固体、液体和物态变化一、固体1.单晶体:排列整齐,外观规则,有固定熔点,各向异性。
2.多晶体:由单晶体杂乱无章的结合而成,有固定熔点,各项同性。
3.非晶体:排列混乱,无固定熔点,各向同性。
4.液晶:特定方向上排列整齐,各向异性。
☆排列整齐=各向异性;排列混乱=各向同性。
二、液体的表面张力 1.原因:液体表面层分子稀疏,分子间表现为引力,液体表面具有收缩的趋势。
2.应用:露珠,昆虫停在水面。
三、饱和汽与饱和汽压 1.饱和汽:与液体达到动态平衡的蒸汽叫饱和汽 2.饱和汽压:只与温度有关。
3.相对湿度:同温度下的饱和汽压蒸汽的实际压强相对湿度=第十章 热力学定律一、热力学第一定律:1.做功和热传递都能改变内能。
2. Q W U +=∆物体对外做功,W<0;外界对物体做功,W>0; 物体吸热,Q>0;物体放热,Q<0; 内能减少,△U<0;内能增加,△U>0 3.第一类永动机违反能量守恒定律 二、热力学第二定律:1.热量不能自发的从低温物体传到高温物体。
2.不可能把吸收的热量全部用来做功而不产生其他影响。
(第二类永动机违反热力学第二定律)选修3-5 第十六章 动量守恒定律一、动量:质量与速度的乘积。
矢量,与速度同向。
二、动量守恒定律:用于系统,而不是用于单个物体。
注意:所谓系统就是把多个物体看成一个整体1.公式:'22'112211v m v m v m v m +=+ 2.条件:①系统不受外力 ②系统所受合力为0③系统内力远大于外力,如碰撞、爆炸 三、碰撞1.弹性碰撞:动量守恒,机械能守恒。
'22'1111v m v m v m += 2'2'2211211212121v m v m v m += 2.非弹性碰撞:动量守恒,机械能有损失,损失的机械能转化为内能。
3.完全非弹性碰撞:碰撞后粘在一起。
动量守恒,机械能损失最多。
注意:无论哪一种碰撞,动量守恒,能量守恒。
第十七章 波粒二象性一、光既是粒子又是波。
1.证明光是粒子的现象:反射、折射、光电效应。
2.证明光是波的现象:衍射、干涉、偏振。
3.光的能量由频率决定:υh E =4.光的强度有光子的数量决定。
二、光电效应:用光照射金属,有电子从金属表面逸出的现象。
1.爱因斯坦的光电效应方程:0W h E k -=υ ①0W 为金属的逸出功,是电子挣脱金属束缚所需的能量。
②hW 00=υ为截止频率。
2.光电效应的条件:0υυ>第十八章 原子结构一、汤姆生发现电子,提出西瓜模型(枣糕模型)。
注意:测定电子电荷量的是密立根。
二、原子的核式结构 1.实验依据:卢瑟福的α粒子散射实验。
该实验是用α粒子(氦核He 42)轰击金箔。
2.实验现象:①绝大多数α粒子沿原来方向前进 ②少数发生大角度偏转 ③极少数被弹回 3.原子的核式结构:①原子核带正电,电子绕核转动②原子核体积很小,但几乎集中了原子的全部质量。
三、氢原子光谱光谱:光按频率的排列顺序就叫做光谱。
①原子光谱都属于不连续的线状谱。
②炽热物体发出的光是连续谱,如太阳光谱。
四、玻尔理论(完美解释了氢原子光谱) 1.轨道量子化:核外电子的轨道不连续。
12R n R n =2.能量量子化:21nE E n =最低轨道(能级)叫基态,其他轨道(能级)叫激发态。
3.频率条件:只有特定频率的光才能被发出或被吸收。
n m E E h -=υ①从高能级到低能级,发光 ②从低能级到高能级,吸收光第十九章 原子核一、原子核的组成1.卢瑟福发现质子,并预言存在中子;2.查德威克发现中子。
二、放射性元素的衰变 1. α衰变:①现象:从原子核里发出α粒子(氦核He 42); ②本质:从原子核里抛出2个中子和2个质子。
2.β衰变:①现象:从原子核里发出β粒子(电子); ②本质:原子核里1个中子变成1个质子和1个电子,电子被抛出。
3.半衰期T :①定义:半数原子核发生衰变所需的时间 ②意义:描述原子核衰变的快慢 ③公式:Tt Tt n n m m ⎪⎭⎫⎝⎛∙=⎪⎭⎫⎝⎛∙=212100④半衰期只由核内部自身因素决定,与原子所处的化学状态和外部条件无关。
三、几种射线1. α射线:是高速氦核流,v=0.1C ,穿透能力最弱,电离能力最强。
2. β射线:是高速电子流,v=0.9C ,穿透能力较强,电离能力较强。
3.γ射线:伴随着α衰变或β衰变产生,是高频电磁波,v=C ,穿透能力最强,电离能力最弱。
四、核力与结合能1.核力:把核子聚集在一起的力 ①强相互作用:比库仑力大得多 ②短程力 ③饱和性2.结合能:把核子分开所需的能量叫做结合能。
3.质量亏损:2mc E =(爱因斯坦的质能方程) ①减少的质量变成了能量②当m 的单位为kg 时,c 的单位为m/s ,E 单位为J③当m 的单位为u 时:Mev m E 5.931⨯=,E 的单位为Mev 。
五、裂变和聚变1.重核裂变:n Kr Ba n U 1089361445610235923++→+①裂变可控②核心部件是核反应堆③镉棒吸收中子,铀棒提供燃料,慢化剂降低中子速度。
2.轻核聚变:n He H H 10423121+→+①条件:高温高压 ②又叫热核反应六、衰变、核反应、人工转变的区别: 1.衰变是自发的,方程左边只有一个衰变元素。
2.核反应只有两种:裂变和聚变n Kr Ba n U 1089361445610235923++→+3.几个著名的核的人工转变方程: ①卢瑟福发现质子: ②查德威克发现中子:③约里奥-居里夫妇发现放射性同位素:nHe H H 10423121+→+。