高考物理电磁大题(含答案)

合集下载

高考物理电磁场经典练习题(含答案详解)

高考物理电磁场经典练习题(含答案详解)

高三物理第一轮专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd为一正方形区域,正离子束从a点沿ad方向以=80m/s 的初速度射入,若在该区域中加上一个沿ab方向的匀强电场,电场强度为E,则离子束刚好从c点射出;若撒去电场,在该区域中加上一个垂直于abcd平面的匀强磁砀,磁感应强度为B,则离子束刚好从bc的中点e射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E与B的比值BE/为多少?制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。

两个D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。

已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。

每次加速的时间很短,可以忽略不计。

正离子从离子源出发时的初速度为零。

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。

4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。

4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。

五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。

2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。

3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。

4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。

5. 请简述电阻、电容和电感的区别与联系。

答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。

2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题1.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m。

质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场。

现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心。

小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。

取g=10m/s2,sin37°=0.6,cos37°=0.8。

(1)求撤去该恒力瞬间滑块的速度大小v以及匀强电场的电场强度大小E;(2)求小球到达P点时的速度大小v P和B、C两点间的距离x。

【答案】(1) 6m/s;7.5×104N/C (2) 2.5m/s ;0.85m【解析】【详解】(1)对滑块从A点运动到B点的过程,根据动能定理有:解得:v=6m/s小球到达P点时,受力如图所示:则有:qE=m2g tanθ,解得:E=7.5×104N/C(2)小球所受重力与电场力的合力大小为:小球到达P点时,由牛顿第二定律有:解得:v P=2.5m/s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v1、v2,则有:m1v=m1v1+m2v2解得:v1=-2m/s(“-”表示v1的方向水平向左),v2=4m/s对小球碰后运动到P点的过程,根据动能定理有:解得:x=0.85m2.如图甲所示,绝缘的水平桌面上铺有两根不计电阻的足够长光滑金属轨道AB、CD,轨道间距为d,其左端接一阻值为R的电阻。

一长为L且与导轨垂直的金属棒置于两导轨上,单位长度的电阻为r。

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。

金属棒的质量为m,棒的左端与导轨相接,右端自由。

设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。

2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。

答案】(1) v=B1d/2m。

I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。

ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。

金属棒始终与导轨相互垂直并接触良好。

问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。

解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。

根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。

因此,我们需要求出这段时间内的电流强度。

根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。

高考物理电磁学专项历年真题2024

高考物理电磁学专项历年真题2024

高考物理电磁学专项历年真题2024高考对于学生来说是人生中的重要关卡,而物理作为高考科目之一,电磁学是其中的重要内容。

为了帮助同学们更好地备考电磁学,本文将为大家整理总结高考物理电磁学专项历年真题。

通过学习这些历年真题,同学们可以了解考试的命题特点,掌握解题技巧,提高应试能力。

1. 2019年高考物理电磁学选择题1) 电磁铁能够产生强大的磁场,这是由于电磁铁中的A. 磁感应强度B. 磁通量C. 磁场强度D. 磁介质的磁化强度解析:答案为C。

电磁铁是通过电流在导线中产生磁场,而磁场强度是衡量磁场强弱的物理量。

2) 如图所示,一电磁铁所产生的磁场垂直纸面向内,其状态变化如下:则一个小金属环穿过电磁铁的子午线方向下降。

解析:根据法拉第电磁感应定律,磁场磁通量改变时会在导体中产生感应电动势。

当金属环下降时,穿过导线的磁通量在减小,从而产生的感应电动势方向与电磁铁内部磁场相反,导致金属环向下受力。

3) 在相距很远的两个点A、B之间,由一根长直导线的电流产生的磁感应强度大小与出发点与点A的距离的关系是A. 成反比关系B. 成正比关系C. 正弦关系D. 无关。

解析:答案为A。

根据毕奥-萨伐尔定律,长直导线产生的磁场强度与距离的平方成反比。

2. 2020年高考物理电磁学解答题1) 一根长直导线中通有电流I,每单位长度的电流强度为i。

若将这根导线从绝缘材料中拉出,形成一个半径为R的圆环,其截面上的总电荷量Q为多少?解析:由电流强度i的定义可知,i = I/πR²,通过整个圆环的电荷量为Q = Q0 = idl = I/πR² × 2πR = 2IR。

2) 光与电磁波属于同一现象,但光在波动和光子两种观点下有不同的解释。

试从波动和光子观点解释光的偏振现象。

解析:从波动观点看,光是电磁波,偏振是光波在传播方向上的振动方向。

光的偏振现象可以通过介质的吸收或者使用偏振片等方式实现。

从光子观点看,光可以看作是由一束以光子为单位的粒子组成的。

高考物理电磁大题(含答案)

高考物理电磁大题(含答案)

高考电磁大题(含答案)1.(09年全国卷Ⅰ)26(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。

P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。

A 是一块平行于x 轴的挡板,与x 轴的距离为,A 的中点在y 轴上,长度略小于。

带点粒子与挡板碰撞前后,x 方向的分速度不变,y 方向的分速度反向、大小不变。

质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。

不计重力。

求粒子入射速度的所有可能值。

解析:设粒子的入射速度为v,第一次射出磁场的点为'O N ,与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有qBmvR =…⑴ 粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有=1x θsin 2R N N O O ='…⑵粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1N N O '相等.由图可以看出a x =2……⑶设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()a nx x n 2121=-+……⑷由⑶⑷两式得a n n x 121++=……⑸ 若粒子与挡板发生碰撞,有421ax x >-……⑹ 联立⑶⑷⑹得n<3………⑺ 联立⑴⑵⑸得a n n m qB v 12sin 2++⋅=θ………⑻把22sin ha h +=θ代入⑻中得0,22=+=n mh h a qBa v o …………⑼1,43221=+=n mh h a qBa v …………⑾2,32222=+=n mhh a qBa v …………⑿2.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为1l 和2l 的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。

近6年全国各地高考物理真题汇编:电磁感应(Word版含答案)

近6年全国各地高考物理真题汇编:电磁感应(Word版含答案)

2017-2022年全国各地高考物理真题汇编:电磁感应学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共12题)1.(2022·全国·高考真题)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示。

把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为12I I 、和3I 。

则( )A .132I I I <<B .132I I I >>C .123I I I =>D .123I I I ==2.(2017·天津·高考真题)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R 。

金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。

现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小3.(2021·北京·高考真题)如图所示,在竖直向下的匀强磁场中,水平U 型导体框左端连接一阻值为R 的电阻,质量为m 、电阻为r 的导体棒ab 置于导体框上。

不计导体框的电阻、导体棒与框间的摩擦。

ab 以水平向右的初速度v 0开始运动,最终停在导体框上。

在此过程中 ( )A .导体棒做匀减速直线运动B .导体棒中感应电流的方向为a b →C .电阻R 消耗的总电能为202()mv R R r +D .导体棒克服安培力做的总功小于2012mv 4.(2020·江苏·高考真题)如图所示,两匀强磁场的磁感应强度1B 和2B 大小相等、方向相反。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理电磁大题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考电磁大题(含答案)1.(09年全国卷Ⅰ)26(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于x y 平面向外。

P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。

A 是一块平行于x 轴的挡板,与x 轴的距离为,A 的中点在y 轴上,长度略小于。

带点粒子与挡板碰撞前后,x方向的分速度不变,y 方向的分速度反向、大小不变。

质量为m ,电荷量为q (q>0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。

不计重力。

求粒子入射速度的所有可能值。

解析:设粒子的入射速度为v,第一次射出磁场的点为'O N ,与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有qBmvR =…⑴ 粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有=1x θsin 2R N N O O ='…⑵粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1N N O '相等.由图可以看出a x =2……⑶设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()a nx x n 2121=-+……⑷由⑶⑷两式得a n n x 121++=……⑸ 若粒子与挡板发生碰撞,有421ax x >-……⑹ 联立⑶⑷⑹得n<3………⑺ 联立⑴⑵⑸得a n n m qB v 12sin 2++⋅=θ………⑻把22sin ha h +=θ代入⑻中得0,22=+=n mh h a qBa v o …………⑼1,43221=+=n mh h a qBa v …………⑾2,32222=+=n mhh a qBa v …………⑿2.(09年全国卷Ⅱ)25.(18分)如图,在宽度分别为1l 和2l 的两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。

一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。

已知PQ 垂直于电场方向,粒子轨迹与电、磁场分界线的交点到PQ 的距离为d 。

不计重力,求电场强度与磁感应强度大小之比及粒子在磁场与电场中运动时间之比。

答案:221122212arcsin()2l d dldl l d++解析:本题考查带电粒子在有界磁场中的运动。

粒子在磁场中做匀速圆周运动,如图所示.由于粒子在分界线处的速度与分界线垂直,圆心O 应在分界线上,OP 长度即为粒子运动的圆弧的半径R.由几何关系得2212)(d R l R -+=………①设粒子的质量和所带正电荷分别为m 和q,由洛仑兹力公式和牛顿第二定律得……………②设P '为虚线与分界线的交点,α='∠P PO ,则粒子在磁场中的运动时间为vR t α=1……③ Rv mqvB 2=式中有Rl 1sin =α………④粒子进入电场后做类平抛运动,其初速度为v,方向垂直于电场.设粒子的加速度大小为a,由牛顿第二定律得ma qE =…………⑤由运动学公式有221at d =……⑥ 22vt l =………⑦ 由①②⑤⑥⑦式得v l d l B E 22221+=…………⑧ 由①③④⑦式得)2arcsin(22211222121dl dldl d l t t ++=3.(09年天津卷)11.(18分)如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴。

一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L,小球过M 点时的速度方向与x 轴的方向夹角为θ.不计空气阻力,重力加速度为g,求(1) 电场强度E 的大小和方向; (2) 小球从A 点抛出时初速度v 0的大小; (3)A 点到x 轴的高度h.答案:(1)q mg ,方向竖直向上 (2)θcot 2mqBL(3)g m L B q 22228 解析:本题考查平抛运动和带电小球在复合场中的运动。

(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有mg qE = ①qmgE =② 重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。

(2)小球做匀速圆周运动,O ′为圆心,MN 为弦长,θ='∠P O M ,如图所示。

设半径为r ,由几何关系知θsin =r2L③ 小球做匀速圆周运动的向心力由洛仑兹力白日提供,设小球做圆周运动的速率为v ,有rmv qvB 2= ④由速度的合成与分解知 θcos 0=vv ⑤ 由③④⑤式得θcot 20mqBLv =⑥ (3)设小球到M 点时的竖直分速度为v y ,它与水平分速度的关系为 θtan 0v v y = ⑦ 由匀变速直线运动规律gh v 22= ⑧ 由⑥⑦⑧式得gm L B q h 22228=⑨4.(09年山东卷)25.(18分)如图甲所示,建立Oxy 坐标系,两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极板长度和板间距均为l ,第一四象限有磁场,方向垂直于Oxy 平面向里。

位于极板左侧的粒子源沿x 轴间右连接发射质量为m 、电量为+q 、速度相同、重力不计的带电粒子在0~3t 时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t 0时,刻经极板边缘射入磁场。

上述m 、q 、l 、l 0、B 为已知量。

(不 考虑粒子间相互影响及返回板间的情况)(1)求电压U 的大小。

(2)求12时进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

解析:(1)0t =时刻进入两极板的带电粒子在电场中做匀变速曲线运动,0t 时刻刚好从极板边缘射出,在y轴负方向偏移的距离为12l ,则有0U E l=①Eq ma =②201122l at =③ 0v 图甲图乙联立以上三式,解得两极板间偏转电压为2020ml U qt =④。

(2)012t 时刻进入两极板的带电粒子,前012t 时间在电场中偏转,后012t 时间两极板没有电场,带电粒子做匀速直线运动。

带电粒子沿x 轴方向的分速度大小为00l v t =⑤ 带电粒子离开电场时沿y 轴负方向的分速度大小为012y v at =⑥ 带电粒子离开电场时的速度大小为22x yv v v =+ 设带电粒子离开电场进入磁场做匀速圆周运动的半径为R ,则有2v Bvq m R=⑧联立③⑤⑥⑦⑧式解得05mlR =(3)02t 时刻进入两极板的带电粒子在磁场中运动时间最短。

带电粒子离开磁场时沿y 轴正方向的分速度为'0y v at =⑩,设带电粒子离开电场时速度方向与y 轴正方向的夹角为α,则0'tan y v v α=,联立③⑤⑩式解得4πα=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为22πα=,所求最短时间为min 14t T =,带电粒子在磁场中运动的周期为2m T Bq π=,联立以上两式解得min 2mt Bqπ=。

考点:带电粒子在匀强电场、匀强磁场中的运动。

5.(09年福建卷)22.(20分)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X 轴上距坐标原点L=0.50m 的P 处为离子的入射口,在Y 上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L=0.50m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。

(1)求上述粒子的比荷q m; (2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场; (3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。

答案(1)mq=4.9×710C/kg (或5.0×710C/kg );(2)s t 6109.7-⨯= ; (3)225.0m S =解析:第(1)问本题考查带电粒子在磁场中的运动。

第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。

(1)设粒子在磁场中的运动半径为r 。

如图甲,依题意M 、P 连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得 22Lr = ①由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得rv m qvB 2= ②联立①②并代入数据得mq=4.9×710C/kg (或5.0×710C/kg ) ③ (2)设所加电场的场强大小为E 。

如图乙,当粒子子经过Q 点时,速度沿y 轴正方向,依题意,在此时加入沿x 轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有 qvB qE = ④ 代入数据得C N E /70= ⑤所加电场的长枪方向沿x 轴正方向。

由几何关系可知,圆弧PQ 所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T ,所求时间为t ,则有T t 036045=⑥ vrT π2=⑦联立①⑥⑦并代入数据得 s t 6109.7-⨯= ⑧(3)如图丙,所求的最小矩形是P P MM 11,该区域面积22rS=⑨联立①⑨并代入数据得225.0mS=矩形如图丙中PPMM11(虚线)6.(09年浙江卷)25.(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。

在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。

在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。

发射时,这束带电微粒分布在0<y<2R的区间内。

已知重力加速度大小为g。

(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求点场强度和磁感应强度的大小和方向。

相关文档
最新文档