换热器设计开题报告
换热器设计开题报告

换热器设计开题报告一、项目背景换热器是一种用于将热量从一个媒介传递到另一个媒介的设备。
在化工、石油、电力、食品等众多领域中都有广泛的应用。
由于换热器的设计直接影响到传热效率和能源利用效率,因此对换热器的设计进行优化研究具有重要的意义。
二、项目目标本项目旨在设计一种高效、节能且符合工艺要求的换热器。
三、内容和方法1.热力计算:首先需要进行热力计算,根据工艺流程确定换热器的热负荷、传热介质和流量,以及换热传递的温度差。
2.换热器选型:根据热力计算结果,选择合适的换热器类型,例如壳管式换热器、板式换热器、管束式换热器等。
3.换热器结构设计:根据选定的换热器类型,进行具体的结构设计。
主要包括换热面积的确定、管束布局的优化、流体通道的设计等。
4.材料选择:根据工艺要求和介质特性,选择合适的材料来制作换热器。
需要考虑材料的热传导性能、耐腐蚀性以及成本等因素。
5.流体分配:设计合理的流体分配系统,确保流体能够均匀地通过换热器,充分利用换热器的传热面积。
6.附件设计:包括防腐层的设计、支撑结构的设计、清洗排污装置的设计等。
7.换热器容量计算:根据换热器的设计参数,进行容量计算,确保换热器在工作条件下能够满足热负荷要求。
8.性能预测:利用计算机辅助仿真软件对换热器的传热效率、压力损失等性能进行预测和优化。
四、预期成果1.具备基本理论知识的掌握:通过对换热器原理、传热机制和流体力学的学习,掌握换热器设计的基本理论和方法。
2.具备热力计算和选型的能力:能够根据工艺要求进行热力计算,并根据计算结果选取合适的换热器类型。
3.具备换热器结构设计的能力:能够根据工艺要求和换热器类型,进行换热器的结构设计。
4.具备换热器容量计算和性能预测的能力:能够根据设计参数进行换热器容量计算,以及利用计算机辅助仿真软件进行性能预测和优化。
五、项目计划1.研究文献资料,了解换热器的基本原理和设计方法。
预计完成时间:1个月。
2.学习热力学和流体力学相关知识,掌握热力计算和流体分配的方法。
换热器设计开题报告

.XX大学本科毕业设计(论文)开题报告课题名称:X XXX换热器设计学院:X XX XXX学院年级专业:2015级过程装备与控制工程学生姓名:XX指导教师:XXX填写日期:2019年2月28日一、综述本课题国内外研究动态,说明选题的依据和意义据相关统计指出,目前石油化工行业中换热器占整个设备投资的35%,在我国2015年换热器设备产业规模已经达到769亿元,并且这一数值每年都在上升,因此,换热器设备在石油化工行业的作用至关重要[1-2]。
随着这些行业的发展换热器的种类也层出不穷,有板式换热器,螺旋折流板式换热器,管壳式换热器,薄膜蒸发器,高效板式换热器,板翅式换热器,新型螺旋绕丝管壳式换热器, 矩形自支撑缩放管换热器, 振荡流热管换热器, 高通量换热器, 管程强化换热器, 扭曲椭圆管换热器等[3]。
但是当前换热器仍然存在许多的问题亟待改善与解决。
如易激发流体诱导振动而导致换热管束松动,折流板与壳体间的焊接产生裂缝;壳程流体流动阻力较大,壳侧压降较大,动力耗损严重;壳程流体存在流动“死区”,死区内局部换热效果差,导致换热器整体换热率低,同时涡流内容易积垢,影响换热器的寿命[4]。
针对这些问题我们正努力去完善和解决。
对于传热效率方面,国内外做了大量研究与努力。
目前我国主要分为管程传热强化和壳程传热强化,管程强化传热主要采用螺旋槽纹管,缩放管,横纹管,螺旋扁管,内插物管等不同形式的换热管来改变传热[4-7]。
壳程传热目前主要采用改变壳程管子的支撑结构来改变壳程流体的流向强化传热。
如螺旋折流板换热器[8],折流杆换热器[9],射流式换热器等。
就目前来看,虽然我国近些年工业得到快速的发展,但是就换热器方面来说我国依旧落后于国外,美国的传热研究公司,英国传热及流体服务中心他们一直致力于换热器研究,现在他们已经从对换热器的工艺研究转变为一些换热器相关软件的开发研究,通过这些软件我们可以进行动态的物性模拟,材料分析等工作,大大提高了工作效率。
换热器开题报告范文

换热器开题报告范文开题报告一、选题背景与意义换热器是一种用于在流体之间传递热量的设备,广泛应用于化工、电力、石油等工业领域。
在能源消耗日益增加和环境保护意识提高的背景下,高效节能的换热器成为各行各业关注的焦点。
因此,本次课题的选题背景建立在对换热器性能优化和节能减排的需求之上。
目前,一次能源的高效利用一直是国家和社会关注的重要课题。
换热器作为能源系统中的重要组成部分,其热传导效率直接影响到能源的利用效率。
因此,通过改进换热器的结构和优化传热工艺,可以提高能源利用效率,降低能源消耗,实现绿色环保的目标。
二、研究目标和内容本次课题的研究目标是设计和制造一种高效节能的换热器,并通过实验和数值模拟的方法对其性能进行评估和优化。
具体而言,本研究将重点从以下几个方面展开:1.设计一种新型的换热器结构:通过改变传热面积、流体流动方式等参数,设计一种能够提高传热效率的换热器结构。
2.优化热交换流程:通过数值模拟和实验,研究流体在换热器中的流动特性,优化热交换流程,提高传热效率。
3.对比实验和数值模拟结果:通过对比实验和数值模拟结果,验证设计的换热器结构的性能,并对其进行优化。
三、研究方法和步骤本次研究将综合运用实验和数值模拟的方法,通过仿真分析和实际试验,系统地研究和分析新型换热器的性能。
具体的研究步骤如下:1.查阅文献和资料,了解目前换热器研究的最新进展,为研究工作奠定理论基础。
2.设计和制造新型换热器,考虑其结构、尺寸、材料等因素,并进行必要的模拟和优化设计。
3.进行实验,通过改变操作条件、记录和分析实验数据,评估换热器的性能。
4.运用数值模拟软件,建立数学模型,模拟新型换热器的传热特性。
5.对比实验结果和数值模拟结果,分析其差异,并对模型进行优化。
6.对优化后的换热器性能进行评估,给出相应的结论和建议。
四、预期结果和意义通过本次研究,预期可以设计和制造出一种高效节能的换热器,并通过数值模拟和实验验证其性能。
热管式换热器毕业设计开题报告

热管式换热器毕业设计开题报告《热管式换热器毕业设计开题报告》一、选题背景随着工业技术的不断发展和进步,热管式换热器作为一种高效换热装置逐渐受到广泛关注和应用。
热管式换热器以其高效的传热性能、紧凑的结构设计和广泛适用的换热介质等特点,在航天、船舶、军工等领域得到广泛应用。
然而,热管式换热器在实际应用中还存在着一些问题,如传热性能的提升、运行稳定性的改善等方面仍有待解决。
因此,通过对热管式换热器进行深入研究,对其性能进行优化和改进,具有重要的现实意义和理论价值。
二、选题目的和意义本课题旨在通过对热管式换热器进行理论研究和实验探究,揭示其传热机理,深入了解其性能特点,进一步优化其传热性能和流动性能。
通过研究热管式换热器的工作原理和性能特点,可以为热管式换热器的设计、制造和应用提供重要的理论和实验基础。
此外,研究热管式换热器的传热特性和流动特性,对于提高工业过程中的热能利用效率、降低能源消耗,具有重要的经济和环境效益。
研究成果还可为热管式换热器的新型结构设计和优化提供理论指导,为工程应用提供技术支持。
三、选题内容和研究方法本课题主要研究热管式换热器的传热机理、性能特点和流动性能。
具体内容包括:1.研究热管式换热器的工作原理和传热机理,探究其传热性能及影响因素;2.搭建热管式换热器的实验平台,进行温度场和流动场的测试;3.通过实验,对比不同参数下的热管式换热器的传热效果,得出结论;4.基于实验数据,建立数值模型,对热管式换热器进行模拟计算,验证实验结果;5.提出优化方案并进行实验验证,改善热管式换热器的传热性能和流动性能。
研究方法主要包括文献调研、理论分析、实验研究和数值计算等。
通过文献调研,了解热管式换热器的研究现状和发展趋势;通过理论分析,推导热管式换热器的传热机理和性能特点;通过实验研究,搭建实验平台,进行传热性能和流动性能的测试;通过数值计算,建立数学模型,模拟热管式换热器的工作过程,验证实验结果。
换热器设计开题报告

换热器设计开题报告
中国海洋大学
小组成员:xxx,xxx,xxx
引言
本报告是基于中国海洋大学的换热器设计课题的开题报告。
本报告首
先对换热器的概念和术语进行简要介绍,然后讨论换热器设计的必要性,
强调换热器设计的重要性,最后给出本课题的具体内容和实施方案。
1.介绍
换热器是一种装置,它能有效地传输热量,使流体在两个循环系统中
的温度不相同的情况下之间进行能量交换。
热传递机制可分为涡流、对流
和辐射三种。
换热器的构建分为内侧封闭层、换热层和外侧封闭层,并由换热模块、管层、温度计、模块间回流系统和接管等组成。
换热器的选型根据流体物
理性质和工况条件决定,它们可以进行预热、冷却、凝结、蒸发和蒸馏等
工艺过程。
2.需要
随着科技的发展,越来越多的工业部门和个人投入大量的资源来研发
新型的换热器。
由于换热技术发挥着良好的作用,换热器的应用越来越广泛,为满足各行各业的需求,换热器的设计也更加复杂多样了。
开题报告(换热器)

四、论文的创新之处(设计类不需填写)
2
五、主要参考文献(不少于 6 个)
[1] GB150-2012《压力容器》 ; [2] GB151-1999《管壳式换热器》 [3] SH3074-2007《石油化工钢制压力容器》 [4] SH3075-2009《石油化工钢制压力容器材料选用标准》 [5] R0004-2009《固定式压力容器安全技术监察规程》 [6] JB4700~4707-2000《压力容器法兰》 [7]郑津洋.《过程设备设计》 (第三版)化学工业出版社
固定管板式换热器具有结构简单紧凑能承受较高的压力可靠性高易于制造处理能力大造价低选用的材料范围广管程清洗方便能承受较高的操作压力和温度管子损坏时易于堵管或更换等优点在高温高压和大型换热器中管壳式换热器占有绝对优势研究与开发此类新型的换热器对工业发展与经济增长具有重大意义
辽 宁 石 油 化 工 大 学
指导教师意见:
指导教师签名: 所属系(部)意见:
20 年
月
日
主任签字:
20 计(论文)开题报告
题 目 :
学 班 姓 学
院 : 级 : 名 : 号 :
指 导 教 师 :
2013 年 3 月
一、选题背景(含题目来源、选题目的、应用性及国内外研究现状)
二、设计(研究)方案简述
1
三、进程安排
第 1,2 周:结合课题或者所学专业查阅和收集有关英文资料,查阅设计参考文献;结合课 题或者所学专业选择英文资料并进行翻译,撰写开题报告; 第 3 周:了解和掌握毕业设计课题内容及要求,初步确定设备的结构形式,确定设计方案; 完成开题报告和英文资料翻译; 第 4—8 周:确定设备各元件的基本尺寸、强度计算方法,确定各元件强度设计参数及设计 数据;确定设备结构尺寸和设备的强度计算;确定设备的最终尺寸; 第 9—12 周:计算机绘制总装配图、零件图; 第 13、14 周:修改、整理基本完成设计说明书、设计图纸,交指导教师初步审查;打印图 纸、设计说明书,撰写答辩自述材料;准备答辩; 第 15 周:答辩,整理全部设计文件。
过程装备与控制工程换热器毕业设计开题报告

过程装备与控制工程换热器毕业设计开题报告本科毕业设计(论文)开题报告课题名称:石化常压塔原油预热热交换器(E1001)设计学院(系):年级专业:学生姓名:指导教师:完成日期:一、综述本课题国内外研究动态,说明选题的依据和意义随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。
世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。
强化传热技术的应用,不但能节约能源、保护环境,而且能大大节约投资成本。
换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。
我国是世界最重要换热、散热、冷却设备市场,据统计,在现代化学工业中所用换热器的投资大约占设备总投资的30%,在炼油厂中换热器约占全部工艺设备的40%,海水淡化工艺装置则几乎全部是由换热器组成的。
目前世界各国在换热器理论研究、新技术和新产品开发方面已经进入高层次的探索阶段,涉及领域很广,虽然近年来我国加大了对各种换热器的研发,但在一些高效换热器领域方面与发达国家还存在一定差距。
因此,我国应借鉴国外先进换热器技术,努力赶上国际先进水平。
近期国内外对于换热器的研究又加入了非金属材料的应用、计算流体力学和模型化设计的应用,加强试验和理论研究,采用先进的测量一起来精确测量换热器的流场分布和温度场分布,并结合分析计算,进一步摸清不同结构的强化换热机理。
利用震动、电场方法强化传热的机理研究、试验研究,给出对比试验数据,提出理论计算模型。
同时,为了达到管壳程同时强化的目的,强化结构组合研究将成为近期传热强化技术研究的发展方向。
二、研究的基本内容,拟解决的主要问题在工业生产中,为了实现物料之间的热量传递过程的一类设备,统称为换热器,它是化工、能源、动力、医药和其他许多工业部门广泛应用的一种通用工艺设备。
通常在化工厂的建设中,换热器约占总投资的10%-20%。
在炼油厂中,换热器占全部工艺设备投资的35%-40%。
列管式换热器设计的开题报告

列管式换热器设计的开题报告开题报告一、选题背景和意义:列管式换热器是一种常用的传热设备,广泛应用于化工、石油、制药、食品等工业领域。
其主要作用是将热量从一个介质转移到另一个介质中。
然而,现有的列管式换热器设计存在一些问题,如传热效率低、压力损失大等。
因此,通过对列管式换热器的设计进行研究,可以进一步提高其传热效率和节约能源。
二、研究目标:本研究的目标是设计一种优化的列管式换热器,使其具有较高的传热效率和较低的压力损失。
具体目标包括:1.通过改变列管式换热器的结构参数,提高其传热效率;2.设计一种新的流体流动方式,减小流体的压力损失;3.借助计算机仿真和实验验证,对设计方案进行有效性验证。
三、研究内容和方法:1.研究内容:本研究将重点研究列管式换热器的结构参数对传热效率的影响,包括管道间距、列管数目等。
此外,还将研究流体流动方式对压力损失的影响,包括并行流、逆流等。
2.研究方法:a.文献调研:对列管式换热器的设计原理、结构参数、流体流动方式等进行系统的文献调研和阅读,了解已有的研究成果和方法。
b.数值模拟:借助计算机软件,对列管式换热器的传热特性进行模拟分析。
通过改变结构参数和流体流动方式,得出不同设计方案的传热效率和压力损失。
c.实验验证:设计并制作实验装置,用于验证数值模拟结果的准确性。
通过测量不同设计方案下的传热效率和压力损失,对比实验结果与模拟结果的一致性。
四、预期成果和创新点:1.预期成果:本研究将通过改进列管式换热器的设计方案,提高其传热效率和节约能源。
设计出的列管式换热器将具有较高的传热效率和较低的压力损失。
2.创新点:本研究的创新点在于对列管式换热器设计进行优化,提出一种新的流体流动方式,以及借助实验验证优化设计方案的可行性。
五、进度安排:1.第一阶段:完成文献调研,了解列管式换热器的基本原理和已有的研究成果,并确定研究方法和计划。
2.第二阶段:进行数值模拟,利用计算机仿真软件,对列管式换热器的传热特性进行模拟分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换热器设计开题报告LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】理工学院毕业设计(论文)开题报告题目:气-液介质专用换热器设计学生姓名:石静学号:09L*******专业:过程装备与控制工程指导教师:郭彦书(教授)2013 年 4月 8 日1文献综述绪论换热设备是化工、炼油、动力、能源、冶金、食品、机械、建筑工业中普遍应用的典型设备。
一般换热设备在化工、炼油装置中的建设费用比例达20%~50%因此无论从能源利用,还是从工业的投资来看,合理地选择和设计换热器,都具有重要意义。
在各种换热器中,由于管壳式换热器具有单位体积内能够提供较大的传热面积、传热效果好、适应性强、操作弹性大、易制造、成本低、易于检修和清洗等特点,因此应用最广泛。
管壳式换热器按结构特点分为固定管板式、U型管式、浮头式、双重管式、填涵式和双管板等几种形式。
不同的结构各有优缺点,适用于不同的场合。
本文介绍的是板式换热器[1]。
管壳式换热器的特点管壳式换热器是由一系列具有一定波纹形状的的金属片叠装而成的一种高效换热器。
换热器的各板片之间形成许多小流通断面的流道,通过板片进行热量交换,它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多。
板式换热器的广泛应用,加速了我国板式换热器行业的迅速发展,但我国板式换热器设计与发达国家之间仍存在着不小的差距。
板式换热器是以波纹为传热面,在流道中布满网状触电,流体沿着板间狭窄弯曲、犹如迷宫式的通道流动,其速度大小和方向不断改变,形成强烈的湍流,从而破坏边界层,减少界面膜热阻,并使固体颗粒悬浮,不易沉积,有效地强化了传热,因此,它比管壳式等其他类型换热器具有很多独特的优点。
第一,传热系数高,由于换热器的特殊结构及组装方式,使介质在流经相邻两板片间的流道时,流动方向和流速不断变化,在低流速下,形成急剧湍流,强化换热;第二,温差小,由于板式换热器具有较高的传热系数及强烈的湍流,可使热交换器的一、二次流体温度十分接近,温差趋近1~3℃;第三,热损失小,由于板片边缘及密封垫暴露在大气中,所以热损失极小,一般为1%左右,不需采取保护措施。
在相同换热面积情况下,板式换热器的热损失仅为管壳式换热器的五分之一,而重量则不到管壳式的一半;第四,结构紧凑,换热板片由薄的不透钢板压制而成,板片间距一般为4mm,板片表面的波纹大大增加了有效换热面积,这样单位容积中可容纳很大的传热面积(每立方米体积可布置250㎡的传热面积),占地面积仅为管壳式的五分之一到十分之一。
因此,体积小,节省安装空间。
第五,适应性强,可根据产量及工艺要求,方便地增加或减少传热板片,亦可将板片重新排列,改变流程组合;第六,用途广泛,目前已广泛应用于化工、石油、机械、冶金、电力、食品、热水供应、集中供暖等工程领域,完成加热、冷却、蒸发、冷凝、余热回收等工艺过程中截止间的热交换;第七,操作灵活,维修方便,传热板片及活动压紧板均悬挂在机器的横梁上,压紧板上方设有滚动装置,可方便地打开设备,进行清洗,并能取出一板片,进行检查或更换垫片[2]。
一般来说,人字形波纹板片的传热效率高、流体阻力大、承压能力好。
人字形波纹片之所以换热效率高,流体阻力降大,其原因是板间流道截面变化十分复杂,易诱发湍流,同时流体在这种多变得流道中流动会更多地消耗能量;而水平平直波纹板片的流道变化则类似于正玄曲线,所以传热系数和流体阻力降都较低[3]。
管壳式换热器的发展及现状国内情况尽管我国在部分重要换热器产品领域获得了突破,但我国换热器技术基础研究仍然薄弱。
与国外先进水平相比较,我国换热产业最大的技术差距在于换热器产品的基础研究和原理研究,尤其是缺乏介质物性数据,对于流场、温度场、流动状态等工作原理研究不足。
在换热器制造上。
我国目前还以仿制为主,虽然在整体制造水平上差距不大,但是在模具加工水平和板片压制方面与发达国家还有一定的差距。
在设计标准上,我国换热器设计标准和技术较为滞后。
目前,我国的管壳式换热器便准的最大产品直径还仅停留在米,而随着石油化工领域的大型化要求,目前对管壳式换热器直径已经达到米甚至5米,超出了我国换热器设计标准范围,使得我国换热器设计企业不得不按照美国TEMA标准设计[4]。
板式换热器的优化选型是根据换热器的用途和工艺过程中的参数和传热单元数NTU、温差比、选择板片形状、板式换热器的类型和结构。
换热器中常使用换热器的“传热面积”和“传热系数”术语,这是一种习惯的有特定含义的名称。
因为换热器间壁两侧的表面积可能不同,所谓“换热器的传热面积”实际上是指约定的某一侧的表面积,习惯上一般把换热系数较小的一侧的流体所接触的壁面表面积称为该换热器的传热面积,相对于该传热面积,单位时间、单位面积、在单位温差下所传递的热流量,称为该换热器的传热系数,因此传热系数也是相对于约定的某一侧的表面积而言的[5]。
目前板式换热器生产厂家均未提供凝结换热和沸腾换热的准则式,在进行板式换热器的设计选型计算时应注意以下一些问题:一般冷凝和沸腾均可在一个流程中完成,因此,相变一侧经常布置成单流程,液体侧可根据需要布置成单程或多程。
在暖通空调制冷领域,水侧一般也是单流程为多。
对板式冷凝器,设计时一般不要使冷凝段与过冷段并存,因为过冷段的换热效率低,如果需要过冷,原则上应单独设过冷器。
板式冷凝器及蒸发器设计同样存在一个允许压降问题。
冷凝器内压降大,会使蒸汽的冷凝温度降低,造成对数平均温差小;蒸发器内压降大,会造成出口蒸汽过热度加大,两者都会使换热器面积加大,对换热是不利的。
因此,在选择板式蒸发器时,应尽量选阻力较小的板片,且每台板片数不宜过多;尽量使供液分配均匀。
板式冷凝器应采用中间隔板向两边分液的方法。
在选型时,在无合适型号时可选常用的一般板式换热器。
对使用在制冷空调设备上的板式换热器,由于制冷剂压力高,渗透能力强,宜采用钎焊板式换热器。
对于可拆卸板式换热器,垫片的密封性决定了整个换热器的性能。
垫片经多次松开和压紧容易破坏,需要更换。
板式换热器属于压力容器,必须定期检查,检查腐蚀状态,如有腐蚀,一经发现,必须修理;当腐蚀严重,不可能修复,必须更换新件。
板件拆装时顺序不要搞错。
此外,板式换热器应定期清洗[6]。
一般情况下,两侧流体的流量及四个进、出口温度中的任意三个已给定,板式换热器的设计包括确定板型、板片尺寸、流程与通道的组合、传热面积等。
在作设计计算时,设计者应具备以下资料;选范围以内的各种板片的主要几何参数,如单板有效换热面积、当量直径或板间距、通道横截面以及通道长度等;适用介质种类与使用温度,压力范围;传热及压降关联式或以图形式提供的板片性能资料;所用流体在平均工作温度下的有关物性数据,主要包括密度、比热容、导热系数及粘度[7]。
国外情况近年来,国外板式换热器发展的趋势是向大型化和多品种方向发展,如最大单片换热面积达㎡;单台最大换热面积已达2500㎡;最多板数700片/台,最大单台处理能力为3635m3/h;最高使用压力为;最高工作温度为250℃;最低工作温度采用合成橡胶为-25℃,采用压缩石棉纤维垫片为-40℃,最高传热系数为7500W/㎡.K。
板式换热器有效传热的关键是板片和通道的设计。
阿法拉伐公司采用GDA/CAM和数学模型,提供了新的板片技术。
导流区位于板片顶部和底部,新设计的导流区保证了流体均匀分布通过板片整个宽度,没有死点。
对板片结构如通道的深度和形状、板厚和强度的改进,在板片主要传热区采用新设计的波形,使冲压均匀,且允许采用较薄的板材,同时在要求的压力降下产生最大的湍流,从而提高了传热效果。
由于板面积极利用率高,所需板片数量减少,以及板片的减薄,显然降低了换热器的成本[8]。
Muley和Manglik通过实验分析了多种板式换热器的数据,得到了一系列传热及流阻的综合关系式[9]。
Mir-AkbarHesami通过两种板片从层流到紊流区的实验,在不改变波纹高度和波纹距离的条件下,比较60°和45°的波纹,指出对于60°波纹人字形板片的努谢尔数和摩擦系数是45°的2倍左右[10]。
板式换热器中流体的分布不均匀是影响板式换热器性能的一个主要因素。
B Prabhakara Rao等人对板式换热器中不均匀流动做了分析研究。
研究表明,在板式换热器流道中流速相等的假设与实验情况有很大出入。
他们在实验基础上考虑了非均匀流动分布因素,建立了新的传热与流动阻力公式,其结果与实验吻合较好[11]。
管壳式换热器的发展方向近些年板式换热器主要研究方向之一是创新板型以及研究板的几何参数对流换热及流动的影响。
板式换热器的板片结构千差万别,其设计的最终目的是要强化板片的换热效果、增加板面刚度、提高板式换热器的承压能力。
理想的板型设计,不仅具有较大的传热面积、较低的压力降、较高的传热系数,而且还应具有较好的刚性,以使很薄的板片在固定压紧板和活动压紧板夹紧力的作用下相互支承,以抵抗通道内不平衡压力对其产生冲击。
为此,在板型设计中还要考虑支承点的合理分布以及加强筋的布置等。
一块管板按功能可以分成导流部分、换热部分、密封部分、边缘支承以及悬挂定位等五个部分,其中换热部分是板片结构的核心,其结构形式主要取决于换热介质的性质,要根据传热学和流体力学设计确定[12]。
目前,板式换热器设计、运行还是主要依靠实验研究。
早在132年前,德国发明了板式换热器,直到1932年才开始成批生产铸铜沟道板片的板式换热器。
1930年,研究出不锈钢波纹板型板式换热器,从此为现代板式换热器奠定了基础。
通过实验研究和应用实验表明,人字形的传热性和流阻特性效果优良,人字形的传热性和流阻特性效果优良,所以近几十年板式换热器大都采用人字形板片。
板式换热器实物实验投资大,时间长,花费大量的人力,一些大型换热器及复杂工况条件下的换热器难以进行实验。
故近年来,人们越来越热衷于采用计算流体力学手段对板式换热器进行数值模拟,而将CDF(计算流体力学)与实验有机结合在一起研究板式换热器是一种高效、经济的研究手段[13]。
结语作为一种高效紧凑式换热器,在加热、冷却、冷凝、蒸发和热回收过程中,除了高温、高压和特殊介质条件外,板式换热器均已替代管壳式换热器。
经试验证明在板式换热器使用范围内,绝大多数工况时,用不锈钢板式换热器与管壳式换热器的竞争会更加激烈。
此外,我国板式换热器在实验研究和理论研究方面与国外先进水平相比仍然存在较大差距,所以仍需进一步加强板式换热器的研究。
目前,我国换热器产业的市场规模大概360亿人民币。
基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。