生物化学第一章

合集下载

生物化学第一章的名词解释

生物化学第一章的名词解释

生物化学第一章的名词解释生物化学是研究生物体内化学成分及其相互作用的科学,它的研究对象包括生物大分子及其在生物体内的结构、功能和代谢等方面的相关过程。

在生物化学的学习过程中,有许多重要的名词需要我们进行深入的解释和理解。

在本文中,我们将会从不同的角度对这些重要名词进行解析。

1. 生物体:生物体是指生活在地球上,由细胞组成的独立生命体,可以是单细胞生物,也可以是由多个细胞组成的多细胞生物。

生物体是通过不同的器官和系统来完成各种生物功能的。

2. 生命大分子:生命大分子是构成生物体的基本分子单位。

包括核酸、蛋白质、多酶和多糖等。

核酸是生物体存储遗传信息的重要分子,包括DNA和RNA。

蛋白质是构成生物体各种生物化学反应和功能的重要分子,具有酶活性的蛋白质称为酶。

多酶是由蛋白质组成的具有多个酶活性的复合物。

多糖是由多个糖分子通过糖基键连接而成的生物大分子,包括淀粉、糖原和纤维素等。

3. 代谢:代谢是指生物体内发生的一系列化学反应,包括分解代谢和合成代谢两类。

分解代谢是指生物体通过将有机物降解为较小的化合物来释放能量的过程。

合成代谢是指生物体通过合成新的分子来构建细胞组分和维持生命活动的过程。

4. 酶:酶是生物体内催化化学反应的蛋白质,它能够加速并控制生物体内几乎所有生物化学反应的进行。

酶通过降低反应的活化能,使反应在生物体内的速率达到可接受的水平。

5. 光合作用:光合作用是光能转化为化学能的过程,是地球上生物体生存的重要基础之一。

在光合作用中,光能被植物中的叶绿素吸收,通过一系列化学反应将二氧化碳和水转化为有机物和氧气。

6. ATP:ATP(腺苷三磷酸)是生物体内能量转化的基本分子单位。

在细胞中,ATP通过供能的方式,将储存的能量释放出来,驱动各种生物化学反应的进行。

7. 基因:基因是DNA中携带遗传信息的特定片段,它是决定生物体遗传性状和调控生物体发育和功能的基本单位。

基因通过遗传方式传递给后代,决定了个体的遗传特征。

生物化学 第一章

生物化学  第一章
相溶的溶剂中分配系数的差异,经多 次转移而达到分离目的。基本原理是溶
剂度不同。
溶质在流动相中的浓度 分配系数=
溶质在固定相中的浓度
流动相:推动溶质向前移动的溶液;如正丁醇。 固定相:固定在纤维素上的溶液。如结合到滤纸上的水
下 行 法
上 行 法
2、离子交换层析法 原理:用离子交换树脂作支持物,分离离子状态
基 酸
(α-氨基β-巯基丙酸)
H– HO–CH2 –
Gln E 谷氨酰胺 (α-氨基-戊酰胺酸)
3
Asn N
天冬酰胺
( α-氨基丁酰胺酸)
Tyr Y
酪 氨 酸( α-氨
基β-对羟基苯丙酸)

正 Lys K ※赖 氨 酸
电 荷
( α,ω-二氨基己酸)
的 Arg R 精 氨 酸
极 ( α-氨基γ-胍基戊酸) 性
生物化学
概述
1、生物化学 是研究生命现象的化学,即用物理、化学方法, 从分子水平研究生物体的化学组成及各组成的性质功能,研究生物 体物质和能量的变化 过程及其变化规律的科学。
种瓜得瓜,种豆得豆。
DNA复制
亲代DNA作模板
新合成的子链 DNA片段
用15N-NH4Cl为唯 一氮源连续培养多 用含14N培
蛋白质含量=试样中氮的含量×6.25
6.25即16%的倒数是蛋白质系数,为1克氮所代表的蛋白质含量。
第二节 组成蛋白质的基本单位—氨基酸
蛋白质在酸碱作用下,或在酶的催化下逐步水解
成分子量越来越小的肽段,直到最后成为氨基酸
(Amino acid)的混合物。
蛋白质
盐酸(6mol/L),硫酸(4mol/L),回流煮沸 20h,完全水解

生物化学第一章

生物化学第一章

三、蛋白质的分类
* 根据蛋白质组成成分 单纯蛋白质 结合蛋白质 = 蛋白质部分 + 非蛋白质部分 * 根据蛋白质形状 纤维状蛋白质
球状蛋白质
第二节
蛋白质的分子结构
The Molecular Structure of Protein
蛋白质的分子结构包括
一级结构(primary structure)
第一章
蛋白质化学
Structure and Function of Protein
一、什么是蛋白质?
蛋 白 质 (protein) 是 由 许 多 氨 基 酸
(amino acids)通过肽键(peptide bond)相连 形成的高分子含氮化合物。
二、蛋白质的生物学重要性
1. 蛋白质是生物 体重要组成成分 分布广:所有器官、组织都含有蛋白质; 细胞的各个部分都含有蛋白质。
酰胺平面与α-碳原子的二面角( φ和ψ )
二面角
两相邻酰胺平面之间,能以共同的 Cα 为定点而旋转, 绕Cα-N键旋转的角度称φ角,绕C-Cα键旋转的角度称ψ角
。φ和ψ称作二面角,亦称构象角。当φ或ψ旋转健所处的
肽平面的取向而等分 H-Cα-R平面,且该旋转健两侧的主 链处于顺时针构型时,规定φ=0,同时ψ=0,从Cα沿健轴 的方向观察,顺时针旋转的φ和ψ角度为(+),逆时针时 旋转的为(-)。
* 多肽链(polypeptide chain)是指许多氨基 酸之间以肽键连接而成的一种结构。
多肽链有两端
N 末端:多肽链中有自由氨基的一端
C 末端:多肽链中有自由羧基的一端
N末端
C末端
牛核糖核酸酶
(二) 几种生物活性肽 1. 谷胱甘肽(glutathione, GSH)

生物化学

生物化学

生物化学重点第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

第一章 生物化学绪论

第一章 生物化学绪论
从广义的角度可将分子生物学视为生物化 学的重要组成部分。
第一节、生物化学发展简史
生物化学是在近代化学和生理学的基础上逐渐发展 起来的,故最初称为“生理化学”。直到 1903年才由 德国科学家C.A. Neuberg 提出“Biochemistry” 而成 为一门独立的学科。 纵观生物化学的发展史,可大致分为三个阶段,即 叙述生物化学、动态生物化学和分子生物学阶段。
第三节 生物化学与药学的关系
由生物化学、分子生物学、微生物学相结合而快速发展起
来的现代生物技术已有可能生产人体内几乎所有痕量、稀有 的多肽和蛋白质, 这些技术包括基因工程、酶工程、细胞工 程和发酵工程。生物技术制药从1982年重组人胰岛素上市至 今新批准用于治疗的生物技术药物已超百种,我国亦有包括 胰岛素、白细胞介素、干扰素、促红细胞生成素、粒细胞集 落刺激因子、胸苷激酶基因工程细胞制剂,乙肝疫苗共20多 种生物技术药物批准上市。 因此生物化学基本理论、方法和技术是药学专业学生 必备的理论知识和实践技能。
第一节、生物化学发展简史
20世纪70年代Berg成功地进行了DNA 体外重组, 标志现代基因工程的诞生。20世纪80年代后,分子 生物学和基因工程得以飞速发展,推动了医药工业 和农业的发展。20世纪末启动人类基因组计划,经 近10年努力,终于在2001年2月由人类基因组计划 和Cerela共同公布了人类基因组草图。这是人类认 识生命本质的又一重大突破。将为人类的健康和疾 病的研究带来根本性的变革。
第二节
生物化学研究的主要内容
二、物质代谢、能量代谢及代谢调节
组成生物体的物质不断地进行着复杂而有规律的化学 变化,即新陈代谢。新陈代谢是生命的基本特征之一。生 物经新陈代谢不断与外界环境进行物质交换,以维持生物 体的繁殖、生长、发育、修补和自我更新。 物质代谢 新陈代谢 能量代谢

生物化学

生物化学

第一章.生物化学绪论1.生命的生物化学定义:生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。

但是已知某种病毒生物却无核酸(朊病毒)。

2.生命(生物体)的基本特征:(1)细胞是生物的基本组成单位(病毒除外)。

( 2 ) 新陈代谢、生长和运动是生命的基本功能。

( 3 )生命通过繁殖而延续,DNA是生物遗传的基本物质。

(4)生物具有个体发育和系统进化的历史。

( 5 )生物对外界可产生应激反应和自我调节,对环境有适应性。

3.化学是在原子、分子水平上,研究物质的组成,结构、性质和变化规律的一门基础自然科学。

生物化学就是生命的化学。

4.生物化学:运用化学的原理和方法,研究生物体的物质组成和生命过程中的化学变化,进而深入揭示生命活动的化学本质的一门科学。

5.生命体的元素组成:在地球上存在的92种天然元素中,只有28种元素在生物体内被发现。

第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。

这四种元素约占了生物体总质量的99%以上。

第二类元素:包括S、P、Cl、Ca、K、Na和Mg。

这类元素也是组成生命体的基本元素。

第三类元素:包括Fe、Cu、Co、Mn和Zn。

是生物体内存在的主要少量元素。

第四类元素:包括Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si等。

偶然存在的元素。

6.生命分子是碳的化合物:生命有机体的化学是围绕着碳骨架组织起来的。

生物分子中共价连接的碳原子可以形成线状的、分支的或环状的结构。

7.生物(生命)分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。

生物分子的主要类型包括:多糖、聚脂、核酸和蛋白质等生物大分子。

维生素、辅酶、激素、核苷酸和氨基酸等小分子。

8 .生物大分子的结构与功能:研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。

9.生物化学的内容:静态生物化学:研究生物有机体的化学组成、结构、性质和功能。

动态生物化学:研究生命现象的物质代谢、能量代谢与代谢调节。

《生物化学》第一章

《生物化学》第一章
许多个核苷酸连续脱水缩合可形成一种线性大分子, 称为多核苷酸链。多核苷酸链两端的基团通常以游离的状 态存在,一端为游离的磷酸基,称为5′-末端,另一端为游 离的羟基,称为3′-末端。
核苷酸的连接方式
- 13 -
过渡页
Transition Page
第二节 DNA的分子结构
DNA的一级结构 DNA的二级结构 DNA的三级结构
核酸在核酸酶的作用下可水解为核苷酸,核苷酸进一步可 水解生成磷酸和核苷,核苷再进一步水解可生成碱基和戊糖。
DNA的结构示意图
-6-
第一节
核酸的分子组成 二、核酸的基本结构单位——核苷酸 1.碱基
碱基是嘌呤和嘧啶的衍生物,包括 嘌呤类碱基 和 嘧啶类碱基 两种类型。
常见的嘌呤碱基
常见的嘧啶呤碱基
-7-
第二节
DNA的分子结构 一、DNA的一级结构
DNA的一级结构是指4种脱氧核苷酸的链接及排列顺序,表示该 DNA分子的化学构成。
由于脱氧核苷酸之间的差异仅仅是碱基的不同,所以核酸的一级结构 即为碱基的排列顺序。
生物界物种的多样性即寓于DNA分子中4种脱氧核苷酸(A、T、C、G) 千变万化的不同排列组合之中。
✓ 大、小沟在DNA与蛋白质相互作用中起到了关键的作用, 如引发甲基化作用、结合转录因子等。
思考 大沟和小沟在行使其功能时,有什么差别?
✓ 二者内部蕴含的结合位点的差别,从而引发不同蛋白 的结合及不同的生化反应。
- 20 -
第二节 DNA的分子结构
三、DNA双螺旋结构与DNA复制
DNA双螺旋结构与DNA复制有什么关系?
核苷酸是由 核苷 或 脱氧核苷 与 磷酸 脱水缩合而成的, 其中的核苷则是由戊糖与含氮碱基通过脱水缩合形成的。

生物化学第一章绪论

生物化学第一章绪论
1953及 1975年, Sanger分别研究出蛋白质序列和 核酸序列的测定方法 1961年,Jacob & Monod 提出了操纵子学说
1965年, Holly 排出酵母tRNAAla 的一级结构 1966年,Nirenberg & Khorana 破译了遗传密码 1970 年, Temin和 Baltimore 几乎同时发现逆向转录酶,证 实了 Temin 1964 年提出的“前病毒假说”,阐明在劳氏肉 瘤病毒(RSV)感染以后,首先产生含RNA病毒基因组全部 遗传信息的 DNA 前病毒,而子代病毒的 RNA 则是以前病毒 的DNA为模板进行合成。 1972 年~1973年, Berg 等成功地进行了 DNA 体外重组; Cohen创建了分子克隆技术,在体外构建成具有生物学功能 的细菌质粒,开创了基因工程新纪元。在此同时,Boyer等 在 E.coli 中成功表达了人工合成的生长激素释放抑制因子基 因
后发现维生素
1926年,美国化学家J. B. Sumner首次得到脲酶结晶 1912-1933,生物氧化得到了卓有成效的研究
30 年代,陆续得到了胃蛋白酶、胰蛋白酶、胰凝乳 蛋白酶,从而进一步证明酶是蛋白质
30年代,英国生化学家A.Krebs提出尿素循环和三羧 酸循环 40年代,能量代谢的提出为生物能学的发展奠定了 基础 此外,糖酵解途径、光合碳代谢途径得到证明,发 现了维生素和激素、血红素、叶绿素等
第一代转基因食品,是以增加农作物抗性和耐贮 性的转基因植物源食品。
这一代的转基因食品研究起始于20世纪70年代末80年代 初,是以转入抗除草剂基因、抗虫基因增加农作物的抗逆性 以及延迟成熟基因等为主要特点。
转基因抗虫水稻
转黄瓜抗青枯病基因的甜椒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、蛋白质的一级结构、空间结构与功能的关系?
.蛋白质的一级结构与其构象及功能的关系
蛋白质的一级结构与蛋白质功能有相适应性和统一性1,蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能的变化。

如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分子中β-链第6位谷氨酸被缬氨酸取代。

这个一级结构上的细微差别使患者的血红蛋白分子容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。

2.一级结构与生物进化,研究发现,同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。

如比较不同生物的细胞色素C 的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越小,亲缘关系越远差异越大。

3生物体内,有些蛋白质常以前体的形式合成,只有按一定方式
裂解除去部分肽链之后才具有生物活性,如酶原的激活。

蛋白质空间橡象与功能活性的关系
蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。

如血红蛋白是一个四聚体蛋白质,具有氧合功能,可在血液中运输氧。

研究发现,脱氧血红蛋白与氧的亲和力很低,不易与氧结合。

一旦血红蛋白分子中的一个亚基与O2结合,就会引起该亚基构象发生改变,并引起其它三个亚基的构象相继发生变化,使它们易于和氧结合,说明变化后的构象最适合与氧结合。

2、糖、脂肪、蛋白质代谢相互关系?
糖类代谢和蛋白质代谢的关系
糖类和蛋白质在体内是可以相互转化的。

几乎所有组成蛋白质的天然氨基酸都可以通过脱氨基作用,形成的不含氮部分进而转变成糖类;糖类代谢的中间产物可以通过氨基酸转换作用形成非必需氨基酸。

注意:必需氨基酸在体内不能通过氨基转换作用形成。

(2)糖类代谢与脂质代谢的关系
糖类代谢的中间产物可以转化成脂肪,脂肪分解产生的甘油、脂肪酸也可以转化成糖类。

糖类可以大量转化成脂肪,而脂肪却不能大量转化成糖类。

(3)蛋白质代谢和脂质代谢的关系
一般情况下,动物体内的脂肪不能转化为氨基酸,但在一些植物和微生物体内可以转化;一些氨基酸可以通过不同的途径转变成甘油和脂肪酸进而合成脂肪。

(4)糖类、蛋白质和脂质的代谢之间相互制约
糖类可以大量转化成脂肪,而脂肪却不可以大量转化成糖类。

只有当糖类代谢发生障碍时才由脂肪和蛋白质来供能,当糖类和脂肪摄入量都不足时,蛋白质的分解才会增加。

例如糖尿病患者糖代谢发生障碍时,就由脂肪和蛋白质来分解供能,因此患者表现出消瘦。

3、维生素b6在氨基酸代谢中有哪些重要作用?
维生素B6的磷酸酯是氨基酸代谢中许多酶的辅酶。

重要作用有:
②是转氨酶的辅酶,参与体内氨基酸的分解代谢及体内非必需氨基酸的合成。

②磷酸吡哆醛又是氨基酸脱羧酶的辅酶,与体内许多重要的胺类物质的生成有关,如γ-氨基丁酸、组胺、5-羟色胺、儿茶酚胺类、牛磺酸、多胺等
4、prpp在核苷酸代谢中的重要性
在嘌呤核苷酸的从头合成途径中具有起始引物的作用;在补救途径中,可以 P RPP 和嘌呤碱基为原料合成嘌呤核苷酸。

(2)在嘧啶核苷酸的从头合成途径中,PRPP 虽然不具有引物作用,但作为中间反应原料参与嘧啶核苷酸的合成;补救途径中,可以 PRPP 和嘧啶碱基为原料合成嘧啶核苷酸。

5、试述体内清除血氨的机制
①主要是合成尿素,在肝经鸟氨酸循环将有毒的氨转变为无毒的尿素,通过肾随尿排出,这是机体清除氨的主要途径;②重新合成非必需氨基酸;③合成其它含氮化合物;④以铵盐形式排出。

6、四种血浆脂蛋白的主要生理功能
乳糜微粒(<0.95g/cm3),密度非常低,运输甘油三酯和胆固醇酯,从小肠到组织肌肉和adipose组织。

(2)极低密度脂蛋白VLDL(0.95-1.006g/cm3),在肝脏中生成,将脂类运输到组织中,当VLDL被运输到全身组织时,被分解为三酰甘油、脱辅基蛋白和磷脂,最后,VLDL被转变为低密度脂蛋白。

(3)低密度脂蛋白(LDL,1.006-1.063g/cm3),把胆固醇运输到组织,经过一系列复杂的过程,LDL与LDL受体结合并被细胞吞食。

(4)高密度脂蛋白(HDL,1.063-1.210g/cm3),也是在肝脏中生成,可能负责清除细胞膜上过量的胆固醇。

当血浆中的卵磷脂:胆固醇酰基转移酶(Lecithin cholesterol acyltransferase, LCAT)将卵磷脂上的脂肪酸残基转移到胆固醇上生成胆固醇脂时,HDL将这些胆固醇脂运输到肝。

肝脏将过量的胆固醇转化为胆汁酸。

7、嘌呤核苷酸的循环过程
循环是由三个酶促反应组成的。

第一阶段为嘌呤核苷酸腺苷酸(AMP)脱氨形成肌苷酸(IMP),此步骤由AMP脱氨酶催化:
AMP + H2O → IMP + NH4+
第二阶段为自IMP与氨基酸天冬氨酸形成腺苷酸基琥珀酸,这一步骤与GTP的水解相偶联,后者是一个在能量上有利的反应,催化这一阶段的酶为腺苷酸基琥珀酸合成酶:
天冬氨酸 + IMP + GTP →腺苷酸基琥珀酸 + GDP + Pi
最后,腺苷酸基琥珀酸被腺苷酸基琥珀酸裂解酶裂开形成延胡索酸并重新生成起始物质AMP:
腺苷酸基琥珀酸→ AMP + 延胡索酸
8、嘌呤核苷酸的从头合成:嘌呤核苷酸从头合成,指利用磷酸核糖、甘氨酸、天冬氨酸、谷氨酰胺、一碳单位及CO 2 等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸的过程。

嘧啶核苷酸的补救合成:嘧啶核苷酸的补救合成,指利用体内游离的嘧啶碱基或嘧啶核苷为原料,经过嘧啶磷酸核糖转移酶或嘧啶核苷激酶等催化的简单反应合成嘧啶核苷酸的过程。

9、简述核苷酸的主要生物学作用。

答:核苷酸的生物学作用:① 作为核酸合成的原料,这是核苷酸最主要的功能。

② 体内能量的利用形式。

ATP 是细胞的主要能量形式。

③ 参与代谢和生理调节。

某些核苷酸或其衍生物是重要的调节分子。

④ 组成辅酶。

例如腺苷酸可作为多种辅酶( NAD 、 FAD 、辅酶 A 等)的组成成分。

⑤ 活化中间代谢物。

核苷酸可以作为多种活化中间代谢物的载体。

例如 UDP 葡萄糖是合成糖原、糖蛋白的活性原料等。

10、比较嘌呤核苷酸和嘧啶核苷酸从头合成的异同点
答:相同点:① 合成部位:都在肝细胞的胞液中进行;② 由 PRPP 、 CO 2 、谷氨酰胺和天冬氨酸参与;③ 先生成 IMP 或 OMP ;④ 催化第一、二步反应的酶是关键酶。

不同点:① 合成原料不同。

嘌呤核苷酸的合成所需要的原料有天冬氨酸、谷氨酰胺、甘氨酸、 CO 2 、一碳单位、 PRPP ;嘧啶核苷酸合成的原料有天冬氨酸、谷氨酰胺、 CO2 、一碳单位(仅胸苷酸合成需要)、 PRPP ;
② 合成程序不同。

嘌呤核苷酸的合成是在磷酸核糖分子上逐步合成嘌呤环,从而形成嘌呤核苷酸;嘧啶核苷酸的合成是首先合成嘧啶环,再与磷酸核糖结合形成核苷酸,最后合成的核苷酸是 OMP ;③ 反馈调节不同。

嘌呤核苷酸产物反馈抑制 PRPP 合成酶、酰胺转移酶等起始反应的酶;嘧啶核苷酸产物反馈抑制PRPP 合成酶、氨基甲酰磷酸合成酶 II 、天冬氨酸氨基甲酰转移酶等起始反应的酶;④ 生成的核苷酸前体物不同。

嘌呤核苷酸最先合成的核苷酸是 IMP ;嘧啶核苷酸最先合成的核苷酸是 OMP 。

11、肝昏迷氨中毒机制
关于氨中毒的机制,据认为是由于肝功能不全情况下,血氨的来源增多或去路减少,引起血氨升高,脑组织对氨毒性极为敏感,因而出现脑功能障碍而导致昏迷。

正常血氨来自肠菌产氨(每日约4g)、肾泌氨、肌肉组织产氨等,而解除氨毒性的机制主要靠肝内的尿素合成。

由于肝严重病变导致肝功能不全,清除氨的能力大为降低,加之门腔静脉短路,使由肠管回血液的氨不经肝解毒而直接进入体循环,造成高氨血症与肝昏迷。

饮食蛋白过多、消化道出血、摄入铵盐、放腹水以及应用利尿剂等均可引起血氨的升高或氨毒性增加,从而能诱发肝昏迷。

氨对脑组织的毒性作用在于氨主要是干扰了脑的能量代谢,使高能磷酸化合物(ATP等)浓度降低。

氨对脑细胞代谢的干扰有下述几方面:①氨能抑制丙酮酸脱氢酶的活性,影响乙酰辅酶A的生成,既干扰了三羧酸循环的起始步骤,又影响了神经递质乙酰胆碱的生成;②氨中毒时,脑内以形成谷氨酰胺的方式解毒,从而消耗了较多的NADH(α-酮戊二酸经还原性氨基化而生成谷氨酸),影响线粒体氧化磷酸化的正常进行,妨碍ATP生成;③大量氨与α-酮戊二酸结合生成谷氨酸,可使三羧酸循环中的α-酮戊二酸耗竭,妨碍了供能物质在脑细胞中能量的释放与转换。

由于α-酮戊二酸及草酰乙酸难于通过血脑屏障,脑内转氨酶活性低,难于使α-酮戊二酸等得到补充,因此氨中毒使脑细胞三羧酸循环发生障碍,ATP的生成减少;④氨和谷氨酸合成谷氨酰胺时增加ATP消耗;⑤氨能激活神经细胞膜上的Na+、K+-ATP酶,并和K+有竞争作用,影响离子分布和神经传导的正常进行。

相关文档
最新文档