RC一阶电路的响应测试实验报告

合集下载

RC一阶电路的响应测试实验报告

RC一阶电路的响应测试实验报告

RC一阶电路的响应测试实验报告实验报告:RC一阶电路的响应测试一、实验目的:1.掌握RC一阶电路的响应特性;2.了解RC一阶电路的时间常数对电路响应的影响;3.学会使用示波器观察电路的动态响应。

二、实验原理:由于充电或放电需要一定的时间,电路的响应是有延迟的。

根据电容充电时间常数τ的不同,可以将RC电路分为快速响应和慢速响应两种情况。

电容C的充电或放电方程为:i(t) = C * dV(t) / dt根据Ohm's Law,电路中的电流和电压之间的关系为:V(t) = VR(t) + VC(t) = i(t) * R + V0 * exp(-t/τ)其中,VR(t)是电阻R上的电压,VC(t)是电容C上的电压,V0是电路初始电压,τ=C*R是电路的时间常数。

当输入信号为直流电压时,电路将会处于稳态,电容将保持充电或放电状态,直到与电源电压相等。

当输入信号为瞬态电压时,电路将会发生响应,电容充放电的过程导致电压变化。

三、实验器材和仪器:1.RC电路板;2.直流电源;3.示波器;4.电阻和电容。

四、实验步骤:1.将示波器的地线和信号触发线接地。

2.按照实际电路中的元件数值,在RC电路板上连接电阻和电容。

3.将示波器的一个探头连接到电阻两端,另一个探头连接到电容的一端。

4.打开直流电源,设定合适的电压大小,使电路处于稳定状态。

5.调整示波器的触发模式和触发电平,保证波形稳定可观察。

6.增加或减小直流电压,观察电路响应,并记录波形。

7.改变电阻或电容的数值,重复步骤6,观察并记录不同响应特性。

8.关闭直流电源和示波器,取下电路连接。

五、实验数据及结果:实验中,我们首先建立了一个由1000Ω电阻和0.1μF电容串联组成的RC电路。

然后,我们分别给电路输入不同幅值和时间常数的矩形波信号,观察电路的响应。

1.输入直流电压的稳态响应:当输入直流电压时,电路处于稳态,电容已经充电到与电源电压相等的电压值。

一阶电路的响应测试实验报告

一阶电路的响应测试实验报告

一阶电路的响应测试实验报告一、实验目的本次实验的主要目的是深入理解一阶电路的响应特性,包括零输入响应、零状态响应和全响应,并通过实际测量和数据分析来验证相关理论知识。

二、实验原理一阶电路是指只含有一个储能元件(电感或电容)的线性电路。

在一阶电路中,根据电路的初始状态和外加激励的不同,可以产生不同的响应。

零输入响应是指在没有外加激励的情况下,仅由电路的初始储能所引起的响应。

对于由电阻和电容组成的一阶 RC 电路,当电容初始电压为\(U_0\),放电过程中电容电压\(u_C(t)\)随时间的变化规律为\(u_C(t) = U_0 e^{\frac{t}{RC}}\)。

零状态响应是指在电路初始储能为零的情况下,仅由外加激励所引起的响应。

对于一阶 RC 电路,在充电过程中,电容电压\(u_C(t)\)随时间的变化规律为\(u_C(t) = U(1 e^{\frac{t}{RC}})\),其中\(U\)为外加电源的电压。

全响应则是电路的初始储能和外加激励共同作用所产生的响应,可以看作零输入响应和零状态响应的叠加。

三、实验设备与器材1、示波器2、信号发生器3、电阻、电容4、实验面包板5、导线若干四、实验步骤1、按照实验电路图在面包板上搭建一阶 RC 电路,选择合适的电阻值\(R\)和电容值\(C\)。

2、首先进行零输入响应测试。

给电容充电至一定电压\(U_0\),然后断开电源,用示波器观察并记录电容电压\(u_C(t)\)随时间的变化曲线。

3、接着进行零状态响应测试。

将电容放电至零初始状态,然后接通电源,用示波器观察并记录电容电压\(u_C(t)\)随时间的上升曲线。

4、最后进行全响应测试。

给电容充电至某一初始电压,然后接通电源,观察并记录电容电压\(u_C(t)\)的变化曲线。

五、实验数据记录与处理1、零输入响应记录的电容电压下降曲线显示,在初始时刻电容电压为\(U_0 = 5V\),经过一段时间后,电压逐渐下降。

实验十 RC一阶电路的响应测试

实验十  RC一阶电路的响应测试

实验十 RC 一阶电路的响应测试一.实验目的1.研究RC 一阶电路的零输入响应、零状态响应和全响应的规律和特点。

2.学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响。

3.掌握微分电路和积分电路的基本概念。

二.原理说明1.RC 一阶电路的零状态响应RC 一阶电路如图12-1所示,开关S 在…1‟的位置,uC =0,处于零状态,当开关S 合向…2‟的位置时,电源通过R 向电容C 充电,uC (t)称为零状态响应,τtU U u -S S c e -=变化曲线如图12-2所示,当uC 上升到S 632.0U 所需要的时间称为时间常数τ,RC τ=。

2.RC一阶电路的零输入响应在图12-1中,开关S 在…2‟的位置电路稳定后,再合向…1‟的位置时,电容C 通过R 放电,uC (t)称为零输入响应,τtU u -S c e =变化曲线如图12-3所示,当uC 下降到S 368.0U 所需要的时间称为时间常数τ,RC τ=。

3.测量RC一阶电路时间常数τ图12-1电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图12-4所示的周期性方波uS 作为电路的激励信号,方波信号的周期为T ,只要满足τ52≥T,便可在示波器的荧光屏上形成稳定的响应波形。

电阻R 、电容C 串联与方波发生器的输出端连接,用双踪示波器观察电容电压uC ,便可观察到稳定的指数曲线,如图12-5所示,在荧光屏上测得电容电压最大值(cm)a Cm =U ,S U c u 图 12-1S U U 632 . 0 图 12-2S U U 368 . 0 图12-3S U T2图 12-4图 12-5a)(T2SU Su 0R uC u 图 12-6b)(取 (c m )0.632a b =,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间cm t ),该电路的时间常数cm(cm)x t ⨯=τ。

RC一阶电路的响应测试 实验报告

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试一、实验目的1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用虚拟示波器观测波形。

二、原理说明1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图6-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法用示波器测量零输入响应的波形如图6-1(a)所示。

根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。

当t=τ时,Uc(τ)=0.368U m。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632U m所对应的时间测得,如图6-1(c)所示。

(a) 零输入响应(b) RC一阶电路(c) 零状态响应图6-14. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<<2T时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,这就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图6-2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

(a) 微分电路 (b) 积分电路图6-2若将图6-2(a)中的R 与C 位置调换一下,如图6-2(b)所示,由 C 两端的电压作为响应输出。

RC一阶电路的响应测量

RC一阶电路的响应测量

受控源的研究一、实验目的1.测定RC一阶电路的零输入响应、零状态响应及完全响应。

2.学习电路时间常数的测量方法。

3.掌握有关微分电路和积分电路的概念。

4.进一步学会用虚拟示波器观测波形。

二、实验仪器数字万用表、模拟电路实验箱(AEDK-AEC)、导线、电容、电阻、面包板、示波器(DS1052E)、信号发生器(EE1641D)等。

三、实验概述1.实验原理1.动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数, 就必须使这种单次变化的过程重复出现。

为此, 我们利用信号发生器输出的方波来模拟阶跃激励信号, 即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ, 那么电路在这样的方波序列脉冲信号的激励下, 它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长, 其变化的快慢决定于电路的时间常数τ。

3.时间常数τ的测定方法用示波器测量零输入响应的波形如图6-1(a)所示。

根据一阶微分方程的求解得知uc =Ume-t/RC =Ume-t/τ。

当t =τ时, Uc(τ)=0.368Um 。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632 Um 所对应的时间测得, 如图6-1(c)所示。

(a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应图 6-14.微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当满足τ=RC<< 时(T 为方波脉冲的重复周期), 且由R 两端的电压作为响应输出, 这就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

RC一阶电路地响应测试实验报告材料

RC一阶电路地响应测试实验报告材料

RC一阶电路地响应测试实验报告材料实验报告:RC一阶电路的阶跃响应测试
一、实验目的:
1.了解RC一阶电路的结构和工作原理;
2.学习如何测量RC一阶电路的阶跃响应;
3.研究RC一阶电路的频率特性。

二、实验仪器与设备:
示波器、信号发生器、电阻箱、电容、电连接线等。

三、实验原理:
四、实验步骤:
1.将电容C和电阻R依次连接到电路板上;
2.将信号发生器的正弦波输出信号连接到电路的输入端,调节信号发生器的频率为100Hz;
3.用示波器的探头将示波器的CH1通道与电路的输入端相连,观察输入信号的示波图像;
4.用示波器的探头将示波器的CH2通道与电路的输出端相连,观察输出信号的示波图像;
5.记录信号发生器输出信号的幅度和频率;
6.调节信号发生器的频率为1kHz,重复步骤3-5;
7.调节信号发生器的频率为10kHz,重复步骤3-5;
8.记录不同频率下RC一阶电路的输入信号与输出信号的幅度变化。

五、实验数据处理与分析:
1.根据示波器上观察到的输入信号与输出信号的波形,计算输入信号的幅度;
2.根据示波器上观察到的输出信号的波形,计算输出信号的幅度;
3.绘制RC一阶电路的输入信号与输出信号的幅频特性曲线,并进行分析和讨论。

六、实验结论:
1.通过实验观察到的输入信号与输出信号的波形,可以验证RC一阶电路对于阶跃输入信号的响应;
2.RC一阶电路的阶跃响应曲线可以表示电路的时间特性;
3.RC一阶电路在不同频率下的幅频特性曲线可以表示电路的频率特性;
4.实验数据分析表明,RC一阶电路的截止频率与电阻值和电容值有关;。

rc一阶电路的响应测试实验报告

rc一阶电路的响应测试实验报告

rc一阶电路的响应测试实验报告实验目的,通过实验,了解RC一阶电路对直流电压和交流电压的响应特性,掌握RC一阶电路的响应测试方法及实验步骤。

实验仪器与设备,示波器、信号发生器、电阻箱、电容器、万用表、直流稳压电源、导线等。

实验原理,RC一阶电路是由电阻和电容串联而成的电路。

在实验中,我们将通过对RC电路施加不同的输入信号,观察电路的响应情况,了解电路的频率特性和相位特性。

实验步骤:1. 搭建RC一阶电路。

将电阻和电容串联连接,接入示波器和信号发生器。

调节信号发生器的频率和幅值,使其输出正弦波信号。

2. 测量直流电压响应。

将信号发生器输出直流电压信号,通过示波器观察电路的响应情况。

记录电路的电压响应曲线,并测量电路的时间常数。

3. 测量交流电压响应。

将信号发生器输出交流电压信号,通过示波器观察电路的响应情况。

记录电路的电压响应曲线,并测量电路的频率特性和相位特性。

实验数据与分析:1. 直流电压响应曲线如图所示。

根据实验数据,我们可以得到电路的时间常数τ=RC,其中R为电阻值,C为电容值。

时间常数τ描述了电路对直流信号的响应速度,τ越小,电路的响应速度越快。

2. 交流电压响应曲线如图所示。

根据实验数据,我们可以得到电路的频率特性和相位特性。

当输入信号的频率接近电路的截止频率时,电路的响应幅值将下降,相位延迟将增加。

这表明电路对高频信号的响应能力较弱。

实验结论,通过本次实验,我们深入了解了RC一阶电路对直流电压和交流电压的响应特性。

我们掌握了RC一阶电路的响应测试方法,并通过实验数据分析了电路的时间常数、频率特性和相位特性。

这些知识对于我们理解电路的响应特性,设计滤波器和信号处理器等具有重要的意义。

实验注意事项:1. 在搭建电路时,务必注意电路连接的正确性,避免出现短路或断路等情况。

2. 在测量电路响应时,要注意调节信号发生器的频率和幅值,确保输出信号符合实验要求。

3. 实验过程中要注意安全,避免触电和短路等危险情况的发生。

一阶rc电路的响应实验报告

一阶rc电路的响应实验报告

一阶rc电路的响应实验报告一阶RC电路的响应实验报告引言:电路是电子学中最基本的研究对象之一,而RC电路是最简单的电路之一。

本次实验主要研究一阶RC电路的响应特性,通过测量电路的时间响应曲线,分析电路的充电和放电过程,以及RC电路对输入信号的频率响应。

实验目的:1. 理解一阶RC电路的基本原理和性质;2. 掌握测量电路的时间响应曲线的方法;3. 研究RC电路对不同频率输入信号的响应特性。

实验仪器和材料:1. 信号发生器2. 示波器3. 电阻箱4. 电容器5. 电压表6. 连接线实验原理:一阶RC电路由电阻R和电容C组成,其输入信号为电压源V(t),输出信号为电容器两端的电压Vc(t)。

根据基尔霍夫电压定律和电容器的充放电特性,可以得到一阶RC电路的微分方程:RC * dVc(t)/dt + Vc(t) = V(t)其中,RC为电路的时间常数,决定了电路的响应速度。

当输入信号为脉冲信号时,可以通过测量电容器两端的电压响应曲线,来研究RC电路的响应特性。

实验步骤:1. 搭建一阶RC电路,将电阻R和电容C连接起来;2. 连接信号发生器的输出端和电路的输入端,调节信号发生器的频率和幅度;3. 连接示波器的输入端和电路的输出端,调节示波器的时间基和垂直放大倍数;4. 开始测量,记录电容器两端的电压随时间的变化曲线;5. 改变输入信号的频率,重复步骤4。

实验结果与分析:在实验中,我们分别测量了RC电路对不同频率输入信号的响应曲线。

根据实验数据和曲线图,我们可以得出以下结论:1. 充电过程:当输入信号为正脉冲时,电容器开始充电。

在电容器充电过程中,电压逐渐增加,直到达到输入信号的幅度。

充电过程的时间常数由RC决定,即RC越大,充电时间越长。

2. 放电过程:当输入信号为负脉冲或零信号时,电容器开始放电。

在电容器放电过程中,电压逐渐减小,直到达到零电压。

放电过程的时间常数同样由RC决定。

3. 频率响应:当输入信号的频率增大时,电路的响应速度也会增加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

➢ 实验七 RC 一阶电路的响应测试
一、实验目的
1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。

2. 学习电路时间常数的测量方法。

3. 掌握有关微分电路和积分电路的概念。

4. 进一步学会用示波器观测波形。

二、原理说明
1. 动态网络的过渡过程是十分短暂的单次变化过程。

要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。

为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。

只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。

2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。

3. 时间常数τ的测定方法:
用示波器测量零输入响应的波形如图7-1(a)所示。

根据一阶微分方程的求解得知u c =U m e
-t/RC
=U m e
-t/τ。

当t =τ时,Uc(τ)=0.368U m 。

此时所对应的时间就等于τ。

亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。

a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应
图 7-1
4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。

一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当
满足τ=RC<<
2
T
时(T
为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。

因为此时电路的输出信号电压与输入信号电压的微分成正比。

如图
0.368t
t
t
t
0.6320
000c u
u
U m c u
c u
u
U m U m U m
7-2(a)所示。

利用微分电路可以将方波转变成尖脉冲。

(a)微分电路 (b) 积分电路
图7-2
若将图7-2(a)中的R 与C 位置调换一下,如图13-2(b)所示,由 C 两端的电压作为响应输出,且当电路的参数满足τ=RC>>
2
T
,则该RC 电路称为积分电路。

因为此时电路的输出信号电压与输入信号电压的积分成正比。

利用积分电路可以将方波转变成三角波。

从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。

四、实验容
实验线路板的器件组件,如图7-3所示,请认清
R 、C 元件的布局及其标称值,各开关的通断位置等。

1. 从电路板上选R =10K Ω,C =6800pF 组成如图13-1(b)所示的RC 充放电电路。

u i
为脉冲信号发生器输出的U m =3V 、f =1KHz 的方波电压信号,并通过两根同轴电缆线,将激励源u i 和响应u C 的信号分别连至示波器的两个输入口Y A 和Y B 。

这时可在示波器的屏幕上观察到激励与响应的变化规律,请测算出时间常数τ,并用方格纸按1:1 的比例描绘波形。

少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。

R=10K Ω,C=6800pF 时,激励与响应的变化规律:
C
(积分电路)
(图a 变化规律)
电容先充电,为零状态响应。

后放电,为零输入响应时间常数τ=6.8×10-5 s
●电阻R不变,减少电容C至3000pF,响应的图像变陡,如下图(b)
(图b)
●电阻R不变,增大电容C至8000pF,响应的图像变平缓,如下图
(c)
(图c)
电容C不变,电阻R减小至5KΩ,响应的曲线变陡峭,如下图(d)
(图d)
电容C不变,电阻R增大至20KΩ,响应的曲线变平缓,如下图(e)
(图e)
2. 令R=10KΩ,C=0.1μF,观察并描绘响应的波形,继续增大C 之值,定性地观察对响应的影响。

令R=10KΩ,C=0.1μF, 激励与响应的变化规律:
R=10KΩ不变,C=0.1μF,继续增大C值,响应曲线变平缓,当电容C大到一定值时候,响应曲线变成直线(如下图)。

3. 令C=0.01μF,R=100Ω,组成
如图7-2(a)所示的微分电路。

在同样的方
波激励信号(Um=3V,f=1KHz)作用下,
观测并描绘激励与响应的波形。

令C=0.01μF,R=100Ω,激励与响应的变化规律如下:
(微分电路)
(激励与响应的变化规律)
增减R之值,定性地观察对响应的影响,
并作记录。

当R增至1MΩ时,输入输出波
形有何本质上的区别?
当C=0.01μF不变时,增大R值至200Ω,响应曲线变化不明显,如下图:
●当C=0.01μF不变时,减小R值至20Ω,响应曲线变化不明
显。

●R增至1MΩ时,激励与响应的变化规律如下图:
输入波形为方波信号,输出波形接近方波信号。

五、实验注意事项
1. 调节电子仪器各旋钮时,动作不要过快、
过猛。

实验前,需熟读双踪示波器的使用说明
书。

观察双踪时,要特别注意相应开关、旋钮图7-3 动态电路、选频电路实验板
的操作与调节。

2. 信号源的接地端与示波器的接地端要连在一起(称共地),以防外界干扰而影响测量的准确性。

3. 示波器的辉度不应过亮,尤其是光点长期停留在荧光屏上不动时,应将辉度调暗,以延长示波管的使用寿命。

六、预习思考题
1. 什么样的电信号可作为RC一阶电路零输入响应、零状态响应和完全响应的激励源?
2. 已知RC一阶电路R=10KΩ,C=0.1μF,试计算时间常数τ,并根据τ值的物理意义,拟定测量τ的方案。

3. 何谓积分电路和微分电路,它们必须具备什么条件?它们在方波序列脉冲的激励下,其输出信号波形的变化规律如何?这两种电路有何功用?
4. 预习要求:熟读仪器使用说明,回答上述问题,准备方格纸。

七、实验报告
1. 根据实验观测结果,在方格纸上绘出RC一阶电路充放电时u C的变
化曲线,由曲线测得τ值,并与参数值的计算结果作比较,分析误差原因。

2. 根据实验观测结果,归纳、总结积分电路和微分电路的形成条件,阐明波形变换的特征。

3. 心得体会及其他。

相关文档
最新文档