磁共振成像(MRI)的基本原理

合集下载

核磁共振成像技术原理

核磁共振成像技术原理

核磁共振成像(MRI,磁共振影像)是一种利用原子核在外磁场中的行为来生成高分辨率影像的医学成像技术。

以下是核磁共振成像技术的基本原理:
1. 核磁共振基础:
-原子核中的带电粒子,例如氢原子核(质子),具有自旋。

当这些原子核置于外部磁场中时,它们会产生磁矩,即一个磁场。

在医学成像中,常用的是质子的核磁共振。

2. 激发:
-当磁共振体(通常是人体组织中的水分子)置于强大的外部磁场中时,核磁矩会在外部磁场的作用下产生预cession运动,这是一种旋转运动。

通过应用额外的无线电频率(射频脉冲)来激发这些核磁共振体,使其离开平衡态。

3. 驰豫:
-一旦停止射频激发,核磁矩将重新恢复到平衡态。

这个过程称为核磁共振驰豫。

在这个过程中,核磁矩会释放出能量,产生一个旋转磁场。

4. 信号检测:
-放射出的能量产生的旋转磁场可以被检测。

在MRI中,探测器
会测量这个信号并传递给计算机。

5. 空间编码:
-为了获得空间信息,外加一组梯度磁场。

这些梯度场使得不同位置的核磁体经历不同的共振频率。

通过测量这些频率差异,可以获取关于空间位置的信息。

6. 图像重建:
-计算机将从探测器接收到的信号转换为二维或三维图像。

这涉及到使用数学算法对信号进行处理和图像重建。

总体而言,核磁共振成像技术利用核磁共振现象,通过对核磁体的激发、驰豫和信号检测,结合梯度磁场和计算机处理,实现对人体组织的高分辨率成像。

MRI对软组织有很好的分辨率,而且不涉及使用放射线。

磁共振成像(MRI)

磁共振成像(MRI)

这是第几肋?
右第一肋哪 去了?怎么 还有软组织
影?
MRI?
肺上沟瘤
分析病变
病变部位分布 大小、数目 形态 边缘 密度、信号 邻近器官、组织变化 器官功能改变 动态变化
结合临床
骨折
病理骨折? 原因?
问病史: 鼻塞鼻血涕数月
还有骨破坏
综合诊断
最后诊断: 鼻咽癌、股 骨大粗隆转 移致病理性
骨折
NMR现象: 1946年
Bloch(斯坦福大学) Purcell(哈佛大学) 1952年:诺贝尔物理学奖
Bloch(1905~1983)
Purcell(1912~)
1950‘s NMR已成为研究物质分子结构的一项重要的化 学分析技术
1960‘s 用于生物组织化学分析,检测生物体内H、P、 N的NMR信号
第三章 磁共振成像(MRI)
中山大学中山医学院医学影像学系 中大一院放射科 孟悛非
第一节 磁共振成像(MRI)的基本原理 The basic principle of MRI
磁共振成像显示的是物质的化学成分和分子的结 构及状态,而不是显示物质的密度
磁共振是利用电磁波成像,而不是利用电离辐射 (如X线、γ射线)或机械波(超声波)
铁流出,分布不均匀→ 均匀 3,血肿内的水 由于红细胞破裂、血红蛋白流
出血肿内渗压增高,水分增加
急性血肿(<3d)
T1WI 等信号 T2WI 低信号 亚急性(3~15d)慢性(>15d)
T1WI 高信号 T2WI 高信号
亚急性出血, RBC未破裂
亚急性出血, RBC基本上已完全破裂
脑出血的结局:脑软化灶+亚铁血黄素沉着
由于血流的流空效应,一般表现为无信 号或极低信号,但应用顺磁性对比剂或用

磁共振成像的基本原理

磁共振成像的基本原理

磁共振成像的基本原理随着科学技术的不断进步,医学成像技术也在不断发展。

其中,磁共振成像(Magnetic Resonance Imaging,MRI)作为一种高清晰度、非侵入性的成像技术,被广泛应用于医学领域。

那么,磁共振成像的基本原理是什么呢?磁共振成像技术是利用核磁共振现象进行成像的一种技术。

核磁共振现象是指在外加磁场作用下,原子核会发生共振现象,产生特定的信号。

这种信号可以被接收器接收,并通过计算机处理后转化成图像。

首先,我们需要了解磁场对原子核的影响。

在一个强磁场中,原子核会分裂为两个能级,一个低能级和一个高能级。

这个能级差距被称为共振频率。

如果我们向这个原子核施加一个与共振频率相同的射频脉冲,这个原子核就会从低能级跃迁到高能级。

当射频脉冲停止时,原子核会重新回到低能级,释放出能量。

这个释放能量的过程就是核磁共振现象。

在磁共振成像中,我们需要产生一个强磁场,使得人体内的原子核能够产生核磁共振现象。

通常使用的是超导磁体,它能够产生极强的磁场,达到几特斯拉的强度。

这个强磁场可以使得人体内的原子核分裂为两个能级,产生共振频率。

接下来,我们需要向人体内的原子核施加一个射频脉冲,使得原子核跃迁到高能级。

这个射频脉冲需要精确控制,其频率应该与人体内的原子核的共振频率相同。

一旦原子核跃迁到高能级,它就会开始释放能量。

这个释放能量的过程会产生一个特定的信号,这个信号可以被接收器接收。

最后,我们需要将接收到的信号进行处理,将其转化成图像。

这个过程需要使用计算机进行处理。

计算机会根据接收到的信号的强度和位置,生成一个图像。

这个图像可以显示人体内部的结构,例如骨骼、肌肉、器官等。

总的来说,磁共振成像技术是一种利用核磁共振现象进行成像的技术。

它能够产生高清晰度、非侵入性的图像,被广泛应用于医学领域。

了解磁共振成像的基本原理,有助于我们更好地理解这种技术,为医学诊断提供更好的帮助。

磁共振成像(MRI)的基本原理

磁共振成像(MRI)的基本原理
• MZ = M0(1-e-t/T1) • T1的物理学意义:弛豫周期。
47
纵向磁化对比
由于各种组织的T1不同,在纵向弛豫过程中,不同时 刻各种组织在纵向磁化中的比例不同,因而产生了不 同组织间的纵向磁化对比。也称为T1对比。
48
T1加权图像
T1 weighted image
图像的对比主要依赖T1对比称为T1加权(权重) 图像。
80
傅立叶变换
• 将时间——强度的信号关系变换为频率——强度的信号关系。这 种数学变换模式称为傅立叶(Fourier transform)变换。
81
1DFT重建
• 梯度与梯度磁场 • 层面选择及相关因素Δω=γGz·ΔD • 体素的频率编码及投影
82
1
2
3
4
5
6
7
8
9
83
84
空间频率与K-空间
93
磁共振各种特殊成像技术
• 磁共振血管造影技术(MRA) • 时间飞跃法 (Time of flight) • 相位对比法(Phase contrast) • 幅度对比法(Magnitude contrast) • 对比剂增强法(Contrast enhance)
的磁共振靶核。
13
第二节:磁场
• 磁场的概念 • 均匀磁场 • 稳定磁场 • 交变磁场
14
磁场
• 物质场 • 对磁性物质的力效应 • 磁场的强度
15
均匀磁场
大小方向恒定不变的磁场.
16
交变磁场
大小或方向呈规律性变化的磁场
17
Y BX=Bsina
B(RF) a
X BY=Bcosa
18
第三节:磁场对样体的作用

磁共振知识点总结

磁共振知识点总结

磁共振知识点总结一、磁共振成像(MRI)基本原理。

1. 原子核特性。

- 许多原子核都具有自旋特性,例如氢原子核(单个质子)。

当置于外磁场中时,这些自旋的原子核会发生能级分裂,产生两种不同的能量状态(平行和反平行于外磁场方向)。

- 两种状态的能量差与外磁场强度成正比,公式为Δ E = γℏ B_0,其中γ是旋磁比(不同原子核有不同的旋磁比),ℏ是约化普朗克常数,B_0是外磁场强度。

2. 射频脉冲(RF)的作用。

- 当施加一个频率与原子核进动频率相同(拉莫尔频率,ω_0=γ B_0)的射频脉冲时,原子核会吸收能量,从低能级跃迁到高能级,处于激发态。

- 射频脉冲停止后,原子核会释放能量回到低能级,这个过程产生磁共振信号。

3. 弛豫过程。

- 纵向弛豫(T1弛豫)- 也称为自旋 - 晶格弛豫。

是指处于激发态的原子核将能量传递给周围晶格(分子环境),恢复到纵向平衡状态的过程。

- T1值反映了组织纵向弛豫的快慢,不同组织的T1值不同。

例如,脂肪组织的T1值较短,水的T1值较长。

- 横向弛豫(T2弛豫)- 也称为自旋 - 自旋弛豫。

是指激发态的原子核之间相互作用,导致横向磁化矢量衰减的过程。

- T2值反映了组织横向弛豫的快慢,一般来说,纯水的T2值较长,固体组织的T2值较短。

二、MRI设备组成。

1. 磁体系统。

- 主磁体。

- 产生强大而均匀的外磁场B_0,是MRI设备的核心部件。

常见的磁体类型有永磁体、常导磁体和超导磁体。

- 永磁体:不需要电源,磁场强度相对较低(一般小于0.5T),维护成本低,但重量大。

- 常导磁体:通过电流产生磁场,磁场强度一般在0.2 - 0.5T,需要大量电力供应,产生热量多。

- 超导磁体:利用超导材料在超导状态下的零电阻特性,通过强大电流产生高磁场(1.5T、3.0T甚至更高),磁场均匀性好,但需要液氦冷却,设备成本和维护成本高。

- 梯度磁场系统。

- 由X、Y、Z三个方向的梯度线圈组成,用于在主磁场基础上产生线性变化的梯度磁场。

mri磁共振成像原理

mri磁共振成像原理

mri磁共振成像原理
MRI成像是利用核磁共振现象的原理,通过对人体组织内的
水分子进行扫描和观察,得到高清晰度的图像。

具体原理如下:
1. 磁性原子核存在自旋,即核具有旋转的特性。

2. 在外加磁场的作用下,核会以不同的方式排列。

正常情况下,核自旋会沿着磁场方向对齐。

3. 在MRI中,通过在病人身上施加一个强大的磁场,使得人
体内的大部分水分子的核自旋方向与磁场方向一致。

4. 随后,施加一系列的辅助磁场,这些磁场的方向会短暂扰乱水分子自旋的排列。

5. 辅助磁场停止后,水分子的自旋会重新按照其能量状态重新排列。

6. 在此过程中,水分子释放出的能量会被探测器捕捉并转换为电信号。

7. 根据这些电信号的不同,MRI系统可以重建出人体内不同
组织的图像。

此外,MRI还可以通过改变辅助磁场的频率和强度,来获取
不同组织的信号。

这样就可以得到不同的对比度,进一步分辨不同组织的结构和功能。

实用磁共振成像原理与技术解读

实用磁共振成像原理与技术解读

实用磁共振成像原理与技术解读随着医学技术的不断进步,磁共振成像(Magnetic Resonance Imaging,MRI)作为一种无创、无辐射的医学影像学检查方法,已经在临床诊断中发挥着越来越重要的作用。

在本文中,我将从实用磁共振成像的原理和技术入手,深入探讨其在医学领域中的应用,帮助我们更加全面、深入地理解这一主题。

一、磁共振成像的基本原理1.1 核磁共振现象在磁共振成像中,利用的是核磁共振现象。

当人体组织置于较强的静磁场中时,原子核会发生共振吸收和发射电磁波的现象,这一现象被称为核磁共振。

1.2 磁共振成像的成像原理在静磁场的作用下,利用射频脉冲对人体组织进行激发,然后测量组织中核磁共振信号的强度和位置分布,从而获得人体组织的高清影像。

二、实用磁共振成像技术的发展2.1 高场磁共振成像技术随着超导技术的不断发展,高场磁共振成像技术已经成为当今磁共振成像领域的热点之一。

高场磁共振成像可以提高信噪比,提高成像分辨率,对于小病灶的检测有着更好的效果。

2.2 动态磁共振成像技术动态磁共振成像技术可以实时观察人体器官的生理活动和代谢过程,对于心脏、血管等的疾病诊断有着重要的临床意义。

在手术前后的评估中也发挥着重要作用。

三、磁共振成像在临床中的应用3.1 脑部疾病的诊断在脑部疾病的诊断中,磁共振成像能够清晰展现脑部结构和病变,对于脑梗死、脑肿瘤等的早期发现和定位有着重要作用。

3.2 心脏病的检测磁共振成像技术可以观察到心脏的运动情况、心脏壁运动的异常和心肌灌注情况,对于心脏病的诊断和治疗提供了重要的依据。

四、个人理解与观点磁共振成像作为一种无创、无辐射的医学影像学检查方法,其在临床诊断以及研究中的应用前景不可限量。

随着技术的不断发展和进步,磁共振成像技术将会变得更加精准、高效,为医学领域的发展带来更大的助力。

总结通过了解磁共振成像的原理和技术,我们可以更好地理解其在临床中的应用,意识到其对于医学领域的重要意义。

MRI

MRI

磁共振成像(MRI)知识讲座引言我们将磁共振成像(MRI)的基本知识向大家略做介绍,希望能有所帮助。

第一章磁共振成像(MRI)基础知识一、磁共振成像(MRI)基本原理1、人体组织的化学特性人体内最多的分子是水,约占人体重量的65%,其次为脂肪成份。

此外,还有大量有机分子,如蛋白质、酶、磷酯等。

这些物质中都含有大量的氢原子。

因此,氢原子是人体中含量最多的原子。

2、磁共振成像(MRI)原理目前的磁共振成像是氢原子的成像,实际上是脂肪和水为主的软组组成像,或者说磁共振成像(MRI)是利用身体细胞中的氢原子在磁场内共振产生信号,通过精密的电脑系统重建而获得高清晰的影像,以达到诊断目的的一种技术。

二、磁共振成像(MRI)技术的发展概况1、1977年:初期MRI全身图像产生;2、1980年:首台商品磁共振成像系统问世;3、1981年:首台超导全身磁共振成像系统建立;4、1983年:获准进入市场;5、1989年:我国0.15T永磁型磁共振成像系统(ASM-015P)问世;6、1992年:我国0.60T超导型磁共振成像系统(ASM-060S)问世;7、1999年:我国0.35T永磁型磁共振成像系统(NOVUS系列)开发成功;8、2000年:我国1.5T超导型磁共振成像系统(NOVUS系列)开发成功;9、目前: 3.0T超导磁共振应用于临床;10、目前:7.0T、10.0T磁共振进入临床前研究;三、磁共振成像(MRI)的一些基本概念1. 什么是Tesla?Tesla(T)是一个磁场强度单位,中文译为特斯拉,一单位T等于10000Gause,Gause中文译为高斯,地球的自然磁场强度为0.3~0.7Gs,南北极有所不同。

2. 什么是共振?共振是一种自然界普遍存在的物理现象,物质是永恒运动着的,物体的运动在重力作用下将会有自身的运动频率。

当某一外力作用在某一物体上时,而且有固定的频率,如果这个频率恰好与物体自身运动频率相同,物体将不断吸收外力,转变为自身运动的能量,随时间的积累,能量不断被吸收,最终导致物体的颠覆而失去共振状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
49
50
T1图像 T1 Image
• 每一个像素的亮度表示其所对应的构成体素的组织的T1值,这种 图像称为T1图像。
51
人体正常组织的T1值
磁共振成像(MRI)的基本原理 Magnetic Resonance Imaging
同济医科大学附属协和医院MR室 刘定西
1
磁共振现象的发现及发展
1924年pauli在进行电在子波谱试验中发现了许多 原子核象带电的自旋粒子一样具有角动量和磁动量。
1946年美国物理学家Block和Purcell分别测出了在 均匀物质中磁共振的能量吸收,进一步证实了核自旋 的存在,并为此获得了1952年诺贝尔物理学奖。
数)。 • 纵向磁化:平行于磁场方向的磁化矢量 • 横向磁化:垂直于磁场方向的磁化矢量
30
31
磁共振成像中的坐标系统
Z X
Y
32
第四节 核磁共振现象
• 单摆共振 • 核磁共振
33
单摆共振的条件
• 系统与激发源的固有频率相同 • 系统吸收能量内能增加
F
34
核磁共振的条件
• 激发磁场的频率与自旋系统的进动频率相等。 • 自旋系统吸收激发磁场能量内能增加
• 纵向弛豫(自旋晶格弛豫、T1弛豫):纵向磁化逐渐恢复的过 程。
• 横向弛豫(自旋自旋弛豫、T2弛豫):横向磁化逐渐消失的过 程
43
44
纵向弛豫的机理
波动的晶格磁场是一个连续频率的波动磁场,Lamor 频 率的晶格磁场可以吸收激发态自旋所释放的量子化能量,恢 复其平衡态。晶格磁场的频率越接近 Lamor 频率,纵向弛豫 的速度越快。人体各种不同类型组织的晶格磁场频率有差异。 纵向弛豫速度不同。
• 磁化 :磁场对样体作用的过程。 • 磁化强度m:样体经过磁化而产生的磁矩的大小。 • 磁化率:单位磁场强度的磁化强度 X= m/B。顺磁性物质的磁化
率为正值,抗磁性物质的磁化率为负值。 • 影响磁化率的因素:
1、外层电子;2、原子核结构。
19
N
M:
S
20
磁场对磁矩的作用
垂直于磁场的磁矩,磁场对其以磁转矩形式产生 作用,即以磁场为轴垂直于磁场转动。
的磁共振靶核。
13
第二节:磁场
• 磁场的概念 • 均匀磁场 • 稳定磁场 • 交变磁场
14
磁场
• 物质场 • 对磁性物质的力效应 • 磁场的强度
15
均匀磁场
大小方向恒定不变的磁场.
16
交变磁场
大小或方向呈规律性变化的磁场
17
Y BX=Bsina
B(RF) a
X BY=Bcosa
18
第三节:磁场对样体的作用
• 量子化遵循波兹定律E(1/2)/E(-1/2)=exp(rhI/kT) • 平衡态:在磁场和温度的作用下,样体达到稳定磁化的状态。是
一种动态平衡。
28
29
剩余自旋与净磁化
• 剩余自旋:平衡态时,上旋态与下态自旋差。 • 净磁化M(宏观磁化):自旋系统在磁场作用下产生的磁化总量。
是所有自旋磁矩的矢量和 。M=ΔB0·N/T • 影响M的因素:静磁场强度、温度、自旋密度(单位体积的自旋
45
影响纵向弛豫的因素
• 组织特异性:中等大小分子快,小分子及大分子慢 • 晶格的物理状态:液态快、固态慢。 • 晶格的温度:低快,高慢。 • 周围大分子结构:加快。 • 磁场强度:低场快,高强慢
46
纵向弛豫特征时间常数T1
• T1:射频激发停止后,纵向磁化弛豫至其平衡态值的63%时所经 历的时间。
MXY
射频激发使自旋的横向磁矩相位一致
(相位相干),产生一个大的横向磁
化矢量MXY。相位是矢量与参照轴间
的夹角
40
横向磁矩的相位
X
MXY
m1
a m2 m3
Y
41
M0
MXY Y
B1
X
横向磁化的检测
42
自旋弛豫
• 自旋弛豫:自旋系统由激发态恢复到其平衡态的过程。可分为 纵向弛豫和横向弛豫两个过程。
10
3
11
净自旋
• 原子核的运动:自旋 • 净自旋:具有自旋磁动量的自旋。 • 零自旋/非零自旋:净自旋为零/净自旋不为零 • 净自旋产生的条件:奇数质子和/或奇数中子 • 净自旋的意义:是磁共振信号来源的基础。 • 自旋系统:磁场中所有自旋的集合。
12
1H的原子核结构及特性
1H原子核仅有一个质子,无中子。 其磁化敏感度高,在人体的自然 丰富度很高,是很好
• MZ = M0(1-e-t/T1) • T1的物理学意义:弛豫周期。
47
纵向磁化对比
由于各种组织的T1不同,在纵向弛豫过程中,不同时 刻各种组织在纵向磁化中的比例不同,因而产生了不 同组织间的纵向磁化对比。也称为T1对比。
48
T1加权图像
T1 weighted image
图像的对比主要依赖T1对比称为T1加权(权重) 图像。
2
N RF
S
3
T
射 频 强 度
:
射频频率 F
4
磁共振的应用
• 物理化学|:利用磁共振波谱测定物质的化学结构。 • 医学影象:磁共振成像及化学物质含量测定。
5
第一节:原子及其磁特性
• 原子的构成 • 自旋 • 自旋磁矩 • 净自旋
6
原子的构成
• 原子核
• 核外电子
• 质子(+) • 中子
• 核外电子(-)
35
射频
• 射频及磁特性 • 射频的空间效应 • 射频激发与核磁共振 • 章动与翻转角θ= rB1t • 90°、180°脉冲,α脉冲 • 射频对自旋磁矩的相位相干效应
36
Y BX=Bsina
B(RF) a
X BY=Bcosa
37
Z
M0
Y B1
X
射频磁场对磁矩的激发
38
39
横向磁化的相位相干进动
21
M1 M2
22ZM0 Fra bibliotek1 XY
23
24
自旋在磁场中的运动
• 进动(旋进):自旋轴绕磁场方向的圆周运动。遵循 lamor 定理,w=rB0
• 影响进动频率的因素:磁场强度。 • 进动的方向:上旋态与下旋态。
25
26
27
量子化与平衡态
• 量子化概念:在磁场的作用下,自旋只能处于两种能级状态,低 能态(上旋态)与高能态(下旋态)自旋只有吸收或释放一个特 定能量值( E)时才相互转化。
7
原子核的运动特性
• 自旋:物体沿一定方向绕自身某一轴的转动 • 自旋角动量 I:由于自旋运动的矢量性,自旋具有一定的角动量,
自旋角动量I通常也称为自旋I。I为矢量。
8
9
自旋磁矩
• 自旋粒子的磁性:带电粒子的自旋都可产生磁矩。 • 原子核运动的自旋磁矩:每一个自旋I对应于一个磁动μ, μ=гhI:
相关文档
最新文档