统计学第6章统计量及其抽样分布
概率论与数理统计(06)第6章 统计量及其抽样分布

σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X
独
2
立
,
则
X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2
统计学第6章统计量及其抽样分布

整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布
设
X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:
统计学第六章抽样推断

尖山一委…
尖山二委
居民一组
居民二
组
…
第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断
贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
统计学 第6章 统计量及其抽样分布

1. 样本统计量的概率分布,是一种理论分布
2. 随机变量是样本统计量
3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据
6 - 8 / 55
统计学
STATISTICS (第五版)
重要统计量
1.样本均值:
n 1 若X ~ N(, 2), X X i, n i 1
1 n 1 则E X EX i ,D X 2 n i 1 n 2.样本方差:
n 1 2 S2 ( X X ) i n 1 i 1
1 1 2 2 DX i 2 n n n i 1
X ~ (n)
2
6 - 13 / 55
统计学
STATISTICS (第五版)
2分布
(图示)
n=1 n=4 n=10
n=20
6 - 14 / 55
不同容量样本的抽样分布
2
统计学
STATISTICS (第五版)
2 分布:
定理:如果随机变量 X1, X 2, , X n 相互独立,且都服从 同一正态分布
6.1.1 6.1.2 6.1.3 6.1.4
6 - 4 / 55
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设 X1,X2,…,Xn 是从总体 X中抽取的容量为 n的一个样本,如果由此样本构造一个函 数 T(X1,X2,…,Xn) ,不依赖于任何未知参 数,则称函数 T(X1,X2,…,Xn) 是一个统计 量
6 - 2 / 55
统计学
STATISTICS (第五版)
第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下
第 一
16个样本的均值(x)
个
第二个观察值
观 察值1 2
3
4
11
1.
20.
52. 0.
5
21
2.
25.
03. 5.
0
23
2.
30.
53. 0.
5
24
3.
35.
04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)
统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计量
(statistic)
1. 设X1,X2,…,Xn是从总体X中抽取的容量为n的 一个样本,如果由此样本构造一个函数 T(X1,X2,…,Xn) , 不 依 赖 于 任 何 未 知 参 数 , 则称函数T(X1,X2,…,Xn)是一个统计量
6,4 (5.0)
5
1,5 (3.0)
2,5 (3.5)
3,5 (4.0)
4,5 (4.5)
5,5 (5.0)
6,5 (5.5)
6
1,6 (3.5)
2,6 (4.0)
3,6 (4.5)
4,6 (5.0)
5,6 (5.5)
6,6 (6.0)
表8-2
x 的抽样分布
x
频数
fi
1.0
1
1.5
2
2.0
3
2.5
有了抽样分布的基本印象后,我们还可以进一步 探索的数量特征、分布的形态以及抽样平均误差。
1. x 的数学期望 x
11
x
xi fi
i 1
M
1.011.5 2 ...... 61 3.5 36
x 3.5
2.x 的方差
2 x
M
11
(xi x )2
(xj )2 f j
2 x
i 1
4
3.0
5
3.5
6
4.0
5
4.5
4
5.0
3
5.5
2
6.0
1
x 频率p( )
1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
我们分别绘制总体分布图和抽样分布图:
P(x)
x
P( x )
x的分布
x 的分布
x
从这两个分布图中我们可以看到,在本例中,虽 然总体服从均匀分布,但经过抽样平均后,样本平 均数的抽样分布是对称的
重复抽样
AA
AB
AC
AD
N n = 42
BA
BB
BC
BD
=16 (个样本)
CA
CB
CC
CD
D A DB
DC
DD
6.2.2 抽样分布
(sampling distribution)
1.抽样分布的概念 某个统计量对应的频率分布或概率分布
称为该统计量的抽样分布。 常用的抽样分布有样本平均数的抽样分布、
样本比率的抽样分布、样本方差的抽样分布。
M
j1
11
fj
j 1
(1.0 3.5)2 1 (1.5 3.5)2 2 ...... (6.0 3.5)2 1
1.46
1 2 ...... 2 1
2 x
2
2
2
n
1.46
3.
x 的抽样平均误差
Ex
M
(x )2
i 1
M
2 x
2
nn
4.修正系数 上述结论是在重复抽样的条件下得到的,如果是 有限总体且不重复抽样,当样本容量超过总体容 量的5%时,要对样本方差进行修正,修正系数为
N n N 1
这时样本方差为:
2 x
2
n
(N n) N 1
x 的抽样平均误差为:
Ex
2 x
(
N N
n 1
)
2 (N n)
n N 1 n
(N n) N 1
此公式说明,抽样平均误差与总体标准差成正比, 与样本容量成反比。(当总体标准差未知时,可 用样本标准差代替)
例:
某讨论小组有A,B,C,D四名同学,其统计学作业分数分别 为80,90,70,60分,现从中有放回地随机抽取两名 同学,试计算样本平均分数的抽样平均误差
第 6 章 统计量及其抽样分布
作者:中国人民大学统计学院 贾俊平
第 6 章 统计量及其抽样分布
学习目标
1. 了解统计量及其分布的几个概念 2. 了解由正态分布导出的几个重要分布 3. 理解样本均值的分布与中心极限定理 4. 掌握单样本比例和样本方差的抽样分布
6.1 统计量
6.1.1 参数和统计量
样本均值、样本比例、样本方差等都是统 计量
2. 统计量是样本的一个函数 3. 统计量是统计推断的基础
6.2 关于分布的几个概念
6.2.1 抽样方法 6.2.2 抽样分布 6.2.3 抽样分布的形态与中心极限定理
6.2.1抽样方法
重复抽样和不重复抽样 1.重复抽样:是指从N个总体单位中,抽取一个单
位进行观察、记录后放回去,然后再抽取下一个单 位,这n样连续抽取n个单位组成样本的方法,也称 回置式抽样。
M=N
2.不重复抽样:是指从N个总体单位中,抽取一个 单位进行观察、记录后,不再放回去,再抽取下一 个单位,这样连续抽取n个单位组成样本的方法。
例如:从A、B、C、D四个单位中,抽出两个单位构成 一个样本,问可能组成的样本数目是多少?
1.参数 参数是总体参数的简称,是反映总体数量特征 的指标,其数值是唯一的、确定的,但往往是未
知的。最常用的参数有总体均值(记为 )、 总体比率(记为 )和总体方差(记为 2)。
2.统计量 统计量是样本统计量的简称,是由样本中单位的变量
值计算得到的反映样本数量特征的指标,其数值是不确 定的,随机的。最常用的统计量有样本平均数(记
1)样本平均数的抽样分布
【例】假设一个总体包含6个单位,分别
是 x1 1, x2 2, x3 3, x4 4, x5 5, x6 6
。
采取重复抽样的方法,从中抽取2个单位组成
样本,试x 描述 的抽样分布。
解:首先考虑总体的分布情况。显然总体服 从均匀分布:
x
1
2
3
4
5
6
P(x) 1/6 1/6 1/6 1/6 1/6 1/6
取n=2个单位组成样本,一共可以抽取 个样本,对应的可以计算出36个 。M 62 36
表 所有容量为2的样本及其平均数
xi , x取
5
6
1
1,1 (1.0)
2,1 (1.5)
3,1 (2.0)
4,1 (2.5)
5,1 (3.0)
6,1 (3.5)
2
1,2 (1.5)
2,2 (2.0)
3,2 (2.5)
4,2 (3.0)
5,2 (3.5)
6,2 (4.0)
第二次抽取
3
1,3 (2.0)
2,3 (2.5)
3,3 (3.0)
4,3 (3.5)
5,3 (4.0)
6,3 (4.5)
4
1,4 (2.5)
2,4 (3.0)
3,4 (3.5)
4,4 (4.0)
5,4 (4.5)
总体均值为:
N
i1 xi 1 2 3 4 5 6 3.5
N
6
总体方差为:
N
2 i1 (xi )2 (1 3.5)2 (2 3.5)2 (3 3.5)2 (4 3.5)2 (5 3.5)2 (6 3.5)2
N
6
2.92
采取重复抽样的方法从N=6x个单位中抽