t统计学 第六章 抽样调查
统计学第六章抽样调查

Part
05
系统抽样技术
系统抽样原理及步骤
• 系统抽样原理:系统抽样是一种等距抽样方法,它首先确定一个抽样间隔,然后在总体中按照这个间隔进行抽 样。这种方法适用于总体单位排列有序且周期性变化的情况。
系统抽样原理及步骤
01
系统抽样步骤
02
确定总体范围和抽样框;
03
计算抽样间隔,确定样本量;
系统抽样原理及步骤
01
03 02
分层标准选择与确定方法
• 以调查对象的某些自然特征或社会特征作 为分层标准。
分层标准选择与确定方法
专家判断法
依靠专家经验判断选择合 适的分层标准。
数据分析法
通过对历史数据或相关数据的 分析,找出影响调查指标的主 要因素,作为分层标准。
试验法
通过试验确定不同分层标准 对调查结果的影响程度,选 择最优的分层标准。
缺点
由于样本可能被重复抽取,导致样本的代表性降 低。
缺点
操作相对复杂,需要记录已经抽取过的样本。
简单随机抽样优缺点分析
操作简单
简单随机抽样的操作过程相对简单,易于理解和实施。
等概率原则
保证了每个单位被抽中的机会相等,避免 具有代表性:当样本量足够大时,简单随机抽样可以获得具有代表性的样本。
整群抽样优缺点比较
• 适用于某些特定情况:对于某些总体分布不均匀或难以划分的情况,整群抽样 可能更为适用。
整群抽样优缺点比较
抽样误差较大
01
由于是以群为单位进行抽样,可能导致抽样误差较大。
样本代表性不足
02
如果群的划分不合理或随机性不足,可能导致样本代表性不足。
对群内个体差异考虑不足
03
统计学第六章抽样推断

尖山一委…
尖山二委
居民一组
居民二
组
…
第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断
统计学原理-第六章 抽样调查(复旦大学第六版)

2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
统计学罗文宝主编 第六章抽样推断单选题多选题参考答案

第六章抽样推断二、单项选择题1.抽样平均误差是( A )。
A.抽样指标的标准差B.总体参数的标准差C.样本变量的函数D.总体变量的函数2.抽样调查所必须遵循的基本原则是( B )。
A.准确性原则B.随机性原则C.可靠性原则D.灵活性原则3.在简单随机重复抽样条件下,当抽样平均误差缩小为原来的1/2时,则样本单位数为原来的( C )。
A.2倍B.3倍C.4倍D.1/4倍4.按随机原则直接从总体N个单位中抽取n个单位作为样本,这种抽样组织形式是( A )。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样5.事先将总体各单位按某一标志排列,然后依排列顺序和按相同的间隔来抽选调查单位的抽样称为( C ) 。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样6.在一定的抽样平均误差条件下( A )。
A.扩大极限误差范围,可以提高推断的可靠程度B.扩大极限误差范围,会降低推断的可靠程度C.缩小极限误差范围,可以提高推断的可靠程度D.缩小极限误差范围,不改变推断的可靠程度7.映样本指标与总体指标之间的平均误差程度的指标是( C )。
A,平均数离差 B,概率度C,抽样平均误差 D,抽样极限误差8 以抽样指标估计总体指标要求抽样指标值的平均数等于被估计的总体指标值本身,这一标准称为( A )。
A.无偏性B.一致性C.有效性D.准确性9.在其他条件不变的情况下,提高估计的概率保证程度,其估计的精确程度( B )。
A.随之扩大B.随之缩小C.保持不变D.无法确定10.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样三、多项选择题1.抽样推断的特点是(ABCE) 。
A.由推算认识总体的一种认识方法B.按随机原则抽取样板单位C.运用概率估计的方法D.可以计算,但不能控制抽样误差E.可以计算并控制抽样误差2. 抽样估计中的抽样误差(ACE) 。
统计学第六章 抽样法

第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下
第 一
16个样本的均值(x)
个
第二个观察值
观 察值1 2
3
4
11
1.
20.
52. 0.
5
21
2.
25.
03. 5.
0
23
2.
30.
53. 0.
5
24
3.
35.
04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)
统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
《国民经济统计学概论》_第六章_抽样推断

总体分组: 2 (X X )2 F F
总体成数的方差为 P(1 - P)
2.统计量,又称样本指标,反映样本特 征的统计指标
(1)样本平均数( x ),样本各 单位数量标志值的平均数
未分组: x x
n
分组: x xf f
(2)样本成数(p) 是指样本中具有某一相同标志表现的单
要有四个:
(1)总体平均数( X )
总体各单位数量标志值的平均数
X
总体未分组情况下:X N
总体分组情况下:
XF
X
F
(2)总体成数(P)
是指总体中具有某一相同标志表现的单 位数占全部总体单位数的比重
多为交替指标
总体中具有相同标志表现的单位数用N1 表示
P N1 N
(3)总体方差和标准差 总体方差(σ2)
特点: 1.抽样方式组织简便,便于实施 2.在已知总体某些有关信息的情况下,
采用等距抽样能保证样本单位在总体中 均匀的分布,从而提高了样本对总体的 代表性,有利于降低抽样误差。
无关标志排队 有关标志排队
(三)类型抽样 首先把总体按某一标志分成若干个类型
组,使各组组内标志值比较接近,然后 分别在各组内按随机原则抽取样本单位。 特点:在于把分组法和随机抽样原则结 合起来。
i2ni
n
抽样成数的平均误差:
重置抽样:
p
P(1 P) n
不重置抽样:
第四节 抽样的组织形式及抽样方 案设计
一、抽样的组织形式 (一)简单随机抽样 从总体全部单位中直接按随机原则抽取
样本单位,使每个总体单位都有同等机 会被抽中
最基本形式
(1)直接抽选法 直接从调查对象中随机抽选。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据以往资料,产品质量不太稳定,若σ =200 小时,
于是: 20(小时)
2.不重复抽样:
x
2
Nn
n
N 1
但实际中, 往往N很大,n很小,故改用下列公式: x 2 n (1 n N )
上例中,若为不重复抽样,则: x 400 100 (1 100 10000 ) 1.99(小时 )
注 抽样误差是由于抽样的随机性而产生的样本 指标与总体指标之间的平均离差。
按照定义:
(x X ) K
2
x
重复抽样分布--样本平均数的分布
样本 样本平 均数 x 34 36 38 40 42 36 38 40 42 44 38 40 42 44 46 样本 46,34 46,38 46,42 46,46 46,50 50,34 50,38 50,42 50,46 50,50 样本平 均数 x 40 42 44 46 48 42 44 46 48 50
N 15000 p n 150 147 98% 150 p (1 p ) 0.98 (1 0.98) p 1.14% n 150 若按不重复抽样方式:
p
p (1 p ) n 0.98 (1 0.98) 150 (1 ) (1 ) 1.1374% n N 150 15000
中心极限定理
中心极限定理: 1.独立同分布中心极限定理:
2 x ~ N X, n
2.德莫福-拉普拉斯中心极限定理:
X ~ N np, npq
大样本的平均数近似服从正态分布。
第三节 抽样平均误差
一、抽样误差的概念及其影响程度
在统计调查中,调查资料与实际情况不 一致,两者的偏离称为统计误差。
重置抽样分布--样本平均数的分布
样本平均数 x 34 36 38 40 42 44 46 48 50 合计 频数 1 2 3 4 5 4 3 2 1 25
• 验证了以下两个结论:
E ( x) X
2 ( x)
2
n
E ( x) xf 42(元) f
• 抽样平均数的标准差 反映所有的样本平均 数与总体平均数的平 均误差,称为抽样平 均误差,用 表示。 x
• 全及指标:反映总体数量特征的指标。 其数值是唯一的、确定的。 • 抽样指标:根据样本分布计算的指标。 是随机变量。
全及指标和抽样指标
总体 样本
全及指标
抽样指标 平均数
X
x
S、 S2
p
、2
P
标准差、方差
成数
变量总体和属性总体
• 变量总体各单位标志值可用数量表示
第六章 抽样调查
第一节 第二节 第三节 第四节 第五节 第六节 第七节
抽样调查的意义 抽样调查的基本概念 抽样平均误差 全及指标的推断 抽样方案设计 必要抽样单位数的确定 假设检验
第一节 抽样调查的意义
一、抽样调查的概念 抽样调查是按随机原则,从全部研 究对象中抽取一部分单位进行观察,并 根据样本的实际数据,对总体的数量特 征做出具有一定可靠程度的估计和判断 其中心问题是如何根据已知的部分资料 来推断未知的总体情况。
三、大数定理与中心极限定理
一、全及总体和抽样总体
全及总体:即总体,所要调查观察的全 部事物。总体单位数用N表示。 抽样总体:即样本,抽取出来调查观察的 单位。抽样总体的单位数用n表示。 n ≥ 30 大样本 n < 30 小样本
注 总体是唯一的、确定的,而样本是不确定的、 可变的、随机的
全及指标和抽样指标
例
1 1 1 , , ,L L 5000 5000 5000
不重复抽样:又称不放回抽样。 1 1 1 , , ,L L 例 5000 4999 4998
重复抽样
• 例如从A、B、C、D、E五个字母中随机 抽取两个作为样本。N=5,n=2
A A B C D E B A B C D E
C
A B C D E
B C D E
A B
C
N! (N - n)!
B
C D E
n PN
D E
D
A B C E
E
A B C D
A
•
不考虑顺序时:样本个数
B C D E
B
C D E
C
D E
n CN
D
E E
N! (N - n)!n!
三、大数定理
1 n lim p xi X 1 n n i 1
抽样误差的作用
1. 在于说明样本指标的代表性大小。
误差大,则样本指标代表性低; 误差小,则样本指标代表性高; 误差等于0,则样本指标和总体指标一样大。
2. 说明样本指标和总体指标相差的 一般范围。
第四节 全及指标的推断
一、优估计
• 无偏性 • 一致性 • 有效性
二、点估计
• 点估计的含义:直接以样本指标作为相应 全及指标的估计量。
(二) 成数的抽样平均误差
已知:成数的方差为p(1-p)
在重复抽样情况下: p(1 p) n 在不重复抽样情况下:
p
p(1 p) n (1 ) n N
p
例
某玻璃器皿厂某日生产15000只印花玻璃杯,现 按重复抽样方式从中抽取150只进行质量检验,结 果有147只合格,其余3只为不合格品,试求这批印 花玻璃杯合格率(成数)的抽样平均误差。
• 某班组5个工人的日工 资为34、38、42、46、 50元。 • = 42 • 2 = 32
• 现用重复抽样的方法 从5人中随机抽2个构 成样本。共有52=25个 样本。如右图。
34,34 34,38 34,42 34,46 34,50 38,34 38,38 38,42 38,46 38,50 42,34 42,38 42,42 42,46 42,50
抽样极限误差△=tμ,(t为概率度)
x的抽样分布
68.27%的样本
X x X
x1 x1
X x
x2
表示有(1 ) 100%的 区间包含了X
x2 x3 x3
x4
x4
当F(t)=68.27%时,抽样极限误差等于抽样平均误差 的1倍(t=1); 当F(t)=95.45%时,抽样极限误差等于抽样平均误差 的2倍(t=2); 当F(t)=99.73%时,抽样极限误差等于抽样平均误差 的3倍(t=3);
x X p P S 2 2
例 在全部产品中,抽取100件进行仔细检查,得
到平均重量x 1002克,合格率p 98%,我们直接推 断全部产品的平均重量X 1002克,合格率P 98%。
三、全及指标估计概述
• 设待估计的全及指标是 X ,用以估计该 参数的统计量是 x ,抽样估计的极限误 差是 x ,即:
可见,抽样极限误差,即扩大或缩小了以后 的抽样误差范围。
四、全及平均数和全及成数的推断
在概率F(t)的保证下: x X x p Pp 即:全及平均数(成数) 抽样平均数(成数) t
x x p p
例1
某农场进行小麦产量的抽样调查,该农场 小麦播种面积为10000亩,采用不重复的简单 随机抽样从中选100亩作为样本,进行实割实 测,得到样本的平均亩产量为400千克,样本 标准差为12千克。(1)求抽样平均误差; (2)以95.45%的概率保证,该农场平均某 产量的范围;(3)以99.73%的概率保证, 该农场平均某产量的范围。
x
n
2 ( x) ( x X ) f 16(元2 )
2
f
取得σ的途径有:
1. 用过去全面调查或抽样调查的资料,若同时 有n个σ的资料,应选用数值较大的那个; 2. 用样本标准差S代替全及标准差σ; 3. 在大规模调查前,先搞个小规模的试验性的 调查来确定S,代替σ; 4. 用估计的方法。
登记误差 偏差 统计误差 代表性误差 实际误差 随机误差 抽样平均误差
抽样误差即指随机误差,这种误差是 抽样调查固有的误差,是无法避免的。
实际误差指样本指标和总体指标之间数 量上的差别,即 x X 、 p P 。
二、抽样平均误差
抽样平均误差实际上是样本指标的标 准差。通常用μ表示。在N中抽出n样本, 从排列组合中可以有各种各样的样本组。
X X
N
• 总体成数P是指具有某种特征的单位在总体中 的比重。成数是一种结构相对数,设总体单 位总数目是N,总体中有该特征的单位数是N1。 设x是0、1变量,则有:
N1 P N
样本成数
• 现从总体中抽出n个单位,如果其中有相应特 征的单位数是n1,则样本成数是: n1 p n
• P也是一个随机变量,利用样本平均数的分布 性质结论,即有: E ( p) p
当样本容量n 充分大时,可以用 样本平均估计总体平均。
m lim p p 1 n n
当试验次数n充分大时,可以用 频率代替概率。
大数定理的意义:个别现象受偶然因素影响,但是,对总体 的大量观察后进行平均,就能使偶然因素的影响相互抵消, 从而使总体平均数稳定下来,反映出事物变化的一般规律。
二、抽样调查的特点
1.抽样调查是非全面调查。 2.抽样调查是用样本的指标数值去推算总体 的指标数值。 3.抽样调查是按随机原则抽选调查单位。 4.抽样调查中产生的抽样误差,可以事先计 算并加以控制。
第二节 抽样调查的基本概念
一、全及总体和抽样总体 二、抽样方法
1.重复抽样分布 2.不重复抽样分布
抽样平均误差的影响因素:
1. 2. 3. 4. 全及总体标志变异程度。——正比关系 抽样单位数目的多少。 ——反比关系 不同的抽样方式。 不同的抽样组织形式。