最新最全的遗传算法工具箱及说明
matlab遗传算法工具箱关于离散变量优化算例

matlab遗传算法工具箱关于离散变量优化算例离散优化问题在实际应用中具有重要意义,其中遗传算法是一种常用的解决离散优化问题的方法。
Matlab遗传算法工具箱提供了一系列强大的函数和工具来帮助开发者实现离散变量优化算法。
本文将介绍如何使用Matlab遗传算法工具箱解决离散变量优化问题,并给出一个算例来演示其应用。
1. 算法背景离散优化问题是指在一组有限离散值中寻找最优解的问题。
这些离散值可能代表不同的决策或选择,例如在某个集合中选取最佳的元素组合。
传统的优化算法无法直接应用于离散变量优化问题,而遗传算法则具有较好的适应性。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟基因的交叉、变异和选择来搜索最优解。
2. Matlab遗传算法工具箱简介Matlab遗传算法工具箱是Matlab平台上用于遗传算法优化设计和问题求解的工具包。
它提供了一系列函数和工具,可以简便地实现离散变量优化算法。
其中常用的函数包括:- ga:用于定义遗传算法的参数和问题函数,进行优化计算。
- gamultiobj:用于多目标优化的遗传算法。
- customSelectionFcn:自定义选择函数,用于指定选择操作。
- customCrossoverFcn:自定义交叉函数,用于指定交叉操作。
- customMutationFcn:自定义变异函数,用于指定变异操作。
3. 算例演示假设我们有一个离散优化问题,要在集合{1, 2, 3, 4, 5}中找到一个长度为5的序列,使得序列中所有元素的和最大。
首先,我们需要定义问题函数和适应度函数。
问题函数用于定义问题的约束条件,适应度函数则计算每个个体的适应度值。
```matlabfunction f = problemFunction(x)f = sum(x);endfunction f = fitnessFunction(x)f = -problemFunction(x); % 求和最大化,所以需要取负值end```接下来,我们可以使用Matlab遗传算法工具箱中的`ga`函数进行优化计算。
matlab 遗传算法 参数

Matlab 中可以使用遗传算法工具箱(Genetic Algorithm Toolbox)来实现遗传算法。
该工具箱提供了许多参数可以用于调整算法的行为。
以下是一些常用的参数:1. `PopulationSize`:种群大小,即染色体数量。
通常设置为一个相对较大的数值,以保证算法的搜索能力和多样性。
2. `MaxGenerations`:最大迭代次数。
算法将根据指定的迭代次数进行搜索,直到达到最大迭代次数或找到满足条件的解。
3. `CrossoverFraction`:交叉概率。
在每一代中,根据交叉概率对染色体进行交叉操作,以产生新的染色体。
4. `MutationFcn`:变异函数。
该函数将应用于染色体上的基因,以增加种群的多样性。
5. `Elitism`:精英策略。
该参数决定是否保留最佳个体,以避免算法陷入局部最优解。
6. `PopulationType`:种群类型。
可以选择二进制、实数或整数类型。
7. `ObjectiveFunction`:目标函数。
该函数将用于评估染色体的适应度,以确定哪些染色体更有可能产生优秀的后代。
8. `Variableargin`:变量参数。
可以将需要优化的变量作为参数传递给目标函数和变异函数。
9. `Display`:显示设置。
可以选择在算法运行过程中显示哪些信息,例如每个迭代的最佳个体、平均适应度等等。
以上是一些常用的参数,可以根据具体问题进行调整。
在Matlab 中使用遗传算法时,建议仔细阅读相关文档和示例代码,以便更好地理解算法的实现细节和如何调整参数来获得更好的结果。
matlab遗传算法工具箱导出数据的方法 -回复

matlab遗传算法工具箱导出数据的方法-回复如何使用MATLAB遗传算法工具箱导出数据MATLAB是一种广泛使用的数值计算和数据可视化软件,其遗传算法工具箱(Genetic Algorithm Toolbox)是一款强大的用于解决优化问题的工具。
在使用遗传算法工具箱时,可能会遇到需要导出数据的情况。
本文将详细介绍如何使用MATLAB遗传算法工具箱导出数据,并提供一步一步的操作指南。
第一步:加载遗传算法工具箱首先,打开MATLAB软件并加载遗传算法工具箱。
在命令窗口输入"ga"命令,即可加载遗传算法工具箱。
第二步:定义适应度函数在使用遗传算法工具箱前,需要定义一个适应度函数。
适应度函数用于度量个体对问题的适应程度,其中最佳适应程度对应最优解。
在定义适应度函数时,可以根据特定问题的要求进行自定义。
第三步:设置遗传算法参数在使用遗传算法工具箱之前,还需要设置一些遗传算法的参数。
这些参数包括种群数量、迭代次数、交叉概率、变异概率等。
根据具体问题的要求,选择合适的参数值。
第四步:运行遗传算法在完成适应度函数和参数设置后,就可以运行遗传算法了。
在命令窗口输入"ga"命令,并将适应度函数和参数作为输入参数传递给该命令。
第五步:导出数据使用遗传算法工具箱进行优化后,可能需要将优化结果导出。
下面介绍几种常用的导出数据的方法。
方法一:使用内置函数MATLAB提供了一些内置函数用于导出数据,其中比较常用的是"save"和"xlswrite"函数。
1. 使用"save"函数"save"函数用于保存变量和工作空间中的数据。
通过在命令窗口输入"save"命令,再将需要保存的变量名作为参数传递给该命令,即可将变量保存为.mat文件。
例如,要将名为"result"的变量保存为.mat文件,可以使用以下命令:save('result.mat', 'result')2. 使用"xlswrite"函数"xlswrite"函数用于将数据写入Excel文件。
谢菲尔德大学遗传算法工具箱

ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值
[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群
SelCh=select('sus',Chrom,FitnV,GGAP); %选择
SelCh=recombin('xovsp',SelCh,px); %重组
SelCh=mut(SelCh,pm); பைடு நூலகம் %变异
trace(2,gen)=Y; %记下每代的最优值
end
plot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点
grid on;
plot(X,ObjV,'b*'); %画出最后一代的种群
X=bs2rv(Chrom,FieldD);
gen=gen+1; %代计数器增加
%获取每代的最优解及其序号,Y为最优解,I为个体的序号
[Y,I]=min(ObjV);
trace(1,gen)=X(I); %记下每代的最优值
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=20; %最大遗传代数
PRECI=20; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(2,MAXGEN); %寻优结果的初始值
FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器
matlab遗传算法工具箱关于离散变量优化算例

1. 引言遗传算法是一种模拟自然选择与遗传机制的优化算法,被广泛应用于离散变量优化问题的求解。
在Matlab软件中,有专门的工具箱可以支持遗传算法的实现与应用,极大地方便了工程技术人员进行离散变量优化问题的研究与应用。
本文将介绍Matlab遗传算法工具箱在离散变量优化算例中的应用,并通过具体案例来展示其实际求解效果。
2. Matlab遗传算法工具箱介绍Matlab遗传算法工具箱是Matlab软件的一个重要工具箱,它提供了丰富的遗传算法函数和工具,方便用户进行遗传算法的实现和应用。
在离散变量优化问题的求解中,用户可以利用工具箱提供的函数对问题进行建模、参数设置、运行算法等操作,从而快速高效地求解问题。
3. 离散变量优化算例为了更好地展示Matlab遗传算法工具箱在离散变量优化中的应用效果,我们选取了一个经典的离散变量优化问题作为算例,具体问题描述如下:设有一组零件需要进行装配,零件的形状和尺寸有多种选择。
每种零件的装配工艺和成本不同,需要选择最佳的零件组合方案来满足装配要求并使总成本最低。
假设可供选择的零件种类有n种,每种零件有m个备选方案,且装配每种零件的成本已知。
问应选择哪些零件及其具体方案才能使得总装配成本最低?4. Matlab遗传算法工具箱的应用为了利用Matlab遗传算法工具箱求解上述离散变量优化问题,我们可以按照以下步骤进行操作:1) 利用Matlab的数据处理工具,将零件的备选方案数据以矩阵的形式导入Matlab环境;2) 利用工具箱提供的函数对遗传算法的参数进行设置,例如选择交叉方式、变异方式、群体大小、迭代次数等;3) 利用工具箱提供的函数对离散变量优化问题进行编码和解码,以便算法能够对离散变量进行操作;4) 利用工具箱提供的函数编写适应度函数,用于评价每个个体的适应度;5) 利用工具箱提供的主函数运行遗传算法,获取最优解及其对应的总装配成本。
5. 案例求解结果分析通过上述步骤,我们在Matlab环境中成功应用遗传算法工具箱求解了离散变量优化问题。
MATLAB7.0 GA工具箱详细讲解及实例演示

minimize f ( x)
x
如果我们想要求出函数f(x)的最大值, 可以转而求取函数g(x)=-f(x)的最小值, 因为函数g(x) 最小值出现的地方与函数f(x)最大值出现的地方相同。
2 例如,假定想要求前面所描述的函数 f ( x1 , x2 ) x12 2x1 x2 6x1 x2 6x2 的最大值,这时,
137
显示参数描述
输入适应度函数 输入适应度函数 的变量数目
开始遗传算法
显示结果
图8.2
遗传算法工具
为了使用遗传算法工具,首先必须输入下列信息: Fitness function(适应度函数)——欲求最小值的目标函数。输入适应度函数的形式 为@fitnessfun,其中fitnessfun.m是计算适应度函数的M文件。在前面“编写待优化函数的M文 件”一节里已经解释了如何编写这种M文件。符号@产生一个对于函数fitnessfun的函数句柄。 Number of variables(变量个数)——适应度函数输入向量的长度。对于“编写待优化 函数的M文件”一节所描述的函数My_fun,这个参数是2。 点击Start按钮,运行遗传算法,将在Status and Results(状态与结果)窗格中显示出相应 的运行结果。 在Options窗格中可以改变遗传算法的选项。为了查看窗格中所列出的各类选项,可单击 与之相连的符号“+”。
8.1.2 编写待优化函数的M文件
134
为了使用遗传算法和直接搜索工具箱,首先必须编写一个 M 文件,来确定想要优化的函 数。这个 M 文件应该接受一个行向量,并且返回一个标量。行向量的长度就是目标函数中独 立变量的个数。本节将通过实例解释如何编写这种 M 文件。 8.1.2.1 编写 M 文件举例 下面的例子展示了如何为一个想要优化的函数编写M文件。 假定我们想要计算下面函数的 最小值:
【Matlab】自带遗传算法工具箱的介绍和使用注意事项

【Matlab】自带遗传算法工具箱的介绍和使用注意事项简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2010版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。
GUI界面如下图所示:GUI界面使用注意事项:这里直接按从上到下,从左到右的顺序对Matlab自带的遗传算法工具箱的GUI界面进行介绍和使用注意事项的一些说明(宅主使用的是Matlab2013a,调用命令是optimtool):1、problem setup and results设置与结果(1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等)(2)problem:1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。
2)number of variable变量数,必须是整数,即,使用这个GUI 界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。
3)constraints约束4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b 是向量6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式8)integer variable indices整型变量标记约束,使用该项时Aeq 和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5]9)run solver and view results求解use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果2、population(1)population type编码类型1)double vector实数编码,采用双精度。
matlab-遗传算法工具箱函数及实例讲解

matlab-遗传算法工具箱函数及实例讲解最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。
还好用遗传算法的工具箱予以实现了,期间也遇到了许多问题。
首先,我们要熟悉遗传算法的基本原理与运算流程。
基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。
它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。
它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。
遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。
从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。
如此模仿生命的进化进行不断演化,直到满足期望的终止条件。
运算流程:Step1:对遗传算法的运行参数进行赋值。
参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。
Step2:建立区域描述器。
根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。
Step3:在Step2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。
Step4:执行比例选择算子进行选择操作。
Step5:按交叉概率对交叉算子执行交叉操作。
Step6:按变异概率执行离散变异操作。
Step7:计算Step6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。
Step8:判断是否满足遗传运算的终止进化代数,不满足则返回Step4,满足则输出运算结果。
其次,运用遗传算法工具箱。
运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATB某、GAOT以及MathWork公司推出的GADS。
实际上,GADS就是大家所看到的Matlab中自带的工具箱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新最全的遗传算法工具箱Gaot_v5及说明Gaot_v5下载地址:/mirage/GAToolBox/gaot/gaotv5.zip添加遗传算法路径:1、 matlab的file下面的set path把它加上,把路径加进去后在2、 file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下,就OK了遗传算法工具箱Gaot_v5包括许多实用的函数,各种算子函数,各种类型的选择方式,交叉、变异方式。
这些函数按照功能可以分成以下几类:主程序 ga.m提供了 GAOT 与外部的接口。
它的函数格式如下:[x endPop bPop traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,termFN,termOps, selectFn,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)输出参数及其定义如表 1 所示。
输入参数及其定义如表 2 所示。
表1 ga.m的输出参数输出参数 定义x 求得的最好的解,包括染色体和适应度endPop 最后一代染色体(可选择的)bPop 最好染色体的轨迹(可选择的)traceInfo 每一代染色体中最好的个体和平均适应度(可选择的) 表2 ga.m的输入参数表3 GAOT核心函数及其它函数核心函数:(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。
如[1e-6 1 0]termFN--终止函数的名称,如['maxGenTerm']termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如['normGeomSelect']selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]【注意】matlab工具箱函数必须放在工作目录下遗传算法实例1【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2【问题】在-5<=Xi<=5,i=1,2区间内,求解f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2))) +22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3【程序清单】%源函数的matlab代码function [eval]=f(sol)numv=size(sol,2);x=sol(1:numv);eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282; %适应度函数的matlab代码function [sol,eval]=fitness(sol,options)numv=size(sol,2)-1;x=sol(1:numv);eval=f(x);eval=-eval;%遗传算法的matlab代码bounds=ones(2,1)*[-5 5];[p,endPop,bestSols,trace]=ga(bounds,'fitness')注:前两个文件存储为m文件并放在工作目录下,运行结果为p =0.0000 -0.0000 0.0055大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。
matlab命令行执行命令:fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。
xoverops是传递给交叉函数的参数。
mutops是传递给变异函数的参数。
遗传算法实例3下面用 GA解 De Jong 函数的参数优化问题,求解:minf(x)-512≤xi≤512采用 GAOT 的步骤如下:①编制 De Jong 函数文件DeJong.m如下:function[eval]=DeJong(sol)numv=size(sol,2);x=sol(1:numv);eval=sum(x.^2);②编制目标函数适值文件 DeJongMin.m如下:function[sol,eval]=DeJongMin(sol,options)numv=size(sol,2)-1;x=sol(1:numv);eval=DeJong (x);eval=-eval;图2 De Jong函数图③编程调用主程序 DeJong_ga.m,其程序如下:bounds=ones(3,1)*[-512 512]; %设置参数边界[p,endPop,bestSols,trace]=ga(bounds,'DeJongMin'); %遗传算法优化pplot(trace(:,1),trace(:,3),'b-') %性能跟踪hold onplot(trace(:,1),trace(:,2),'r-')xlabel('Generation','fontsize',14); ylabel('Fittness','fontsize',14); legend('解的变化','种群平均值的变化')Minf=DeJong(p(1:3))④结果输出p=1.0e-003 *[0.0112 0.1450 0.1183]eval(p)=0.0000理论上最优解为:p=[0 0 0] ,极小值为0。
显然 GA有效地解决了 De Jong 函数的极小化问题。
图3是 De Jong 函数的 GA的寻优性能图。
图3 GA的寻优性能图总结GA作为一种求解复杂系统优化问题的通用算法,正在得到广泛的应用。
基于MATLAB的 GAOT 提供了一个标准的、可扩展的、简单的算法。
使用者可以节省大量编程时间和精力,且使用灵活、方便,易于学习和掌握。
只要对其相关模块作适当修改,即可解决许多实际问题。
实例表明,GAOT 对于实际工程优化问题具有较好的应用前景。