matlab自带优化工具箱遗传算法中文解释

合集下载

matlab遗传算法工具箱关于离散变量优化算例

matlab遗传算法工具箱关于离散变量优化算例

matlab遗传算法工具箱关于离散变量优化算例离散优化问题在实际应用中具有重要意义,其中遗传算法是一种常用的解决离散优化问题的方法。

Matlab遗传算法工具箱提供了一系列强大的函数和工具来帮助开发者实现离散变量优化算法。

本文将介绍如何使用Matlab遗传算法工具箱解决离散变量优化问题,并给出一个算例来演示其应用。

1. 算法背景离散优化问题是指在一组有限离散值中寻找最优解的问题。

这些离散值可能代表不同的决策或选择,例如在某个集合中选取最佳的元素组合。

传统的优化算法无法直接应用于离散变量优化问题,而遗传算法则具有较好的适应性。

遗传算法是一种模拟生物进化过程的优化算法,通过模拟基因的交叉、变异和选择来搜索最优解。

2. Matlab遗传算法工具箱简介Matlab遗传算法工具箱是Matlab平台上用于遗传算法优化设计和问题求解的工具包。

它提供了一系列函数和工具,可以简便地实现离散变量优化算法。

其中常用的函数包括:- ga:用于定义遗传算法的参数和问题函数,进行优化计算。

- gamultiobj:用于多目标优化的遗传算法。

- customSelectionFcn:自定义选择函数,用于指定选择操作。

- customCrossoverFcn:自定义交叉函数,用于指定交叉操作。

- customMutationFcn:自定义变异函数,用于指定变异操作。

3. 算例演示假设我们有一个离散优化问题,要在集合{1, 2, 3, 4, 5}中找到一个长度为5的序列,使得序列中所有元素的和最大。

首先,我们需要定义问题函数和适应度函数。

问题函数用于定义问题的约束条件,适应度函数则计算每个个体的适应度值。

```matlabfunction f = problemFunction(x)f = sum(x);endfunction f = fitnessFunction(x)f = -problemFunction(x); % 求和最大化,所以需要取负值end```接下来,我们可以使用Matlab遗传算法工具箱中的`ga`函数进行优化计算。

matlab遗传算法代码

matlab遗传算法代码

matlab遗传算法代码
1 、算法概述
遗传算法(Genetic Algorithms,GA)是一种仿生学优化算法,它借用遗传学中物
竞天择的进化规则,模拟“自然选择”与“遗传进化”得出选择最优解的过程。

其基本原
理是对现有的种群中的各个个体,将其表示成某种形式的编码,然后根据自变量与约束条件,利用杂交、变异等操作,产生新一代解的种群,不断重复这一过程,最终求出收敛到
最优解的种群。

2、遗传算法的作用
遗传算法的主要作用在于优化多元函数,能够在大量的变量影响目标函数值的情况下
寻求最优解。

和其它现有的数值优化技术比较,如梯度下降法等,遗传算法更能适应“凸”和“非凸”都能解决,不受约束条件与搜索空间的影响较大,又叫做“智能搜索法”。


计算机视觉等计算机技术领域,经常用遗传算法来对一系列特征参数进行搜索和调节,成
功优化提高了系统的正确处理率。

3、matlab遗传算法的实现
Matlab的遗传算法应用是基于GA Toolbox工具箱,它提供了一个功能强大的、可扩
展的包装器,可用于构建遗传算法模型。

(1)编写最优化函数:
使用和设置最优化表达式或函数、变量;
(2)设置参数编码:
设置变量的编码,比如选择0-1二进制、0-10十进制;
(3)选择遗传算法的方法
选择遗传算法的方法,可以在多个选择中选择,比如变异、杂交等;
(4)设置运算参数:
设置每代的种群数、最大进化的世代数;
(5)运行遗传算法:
根据设定的参数运行遗传算法,算出收敛到最优解的种群;
(6)获得最优解:
获得收敛到最优解的条件下的最优解,得出最优解所在位置等参数,完成整个优化搜索。

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解核心函数:(1)function [pop]=initializega(num,bo unds,eevalFN,eevalOps,optio ns)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bo unds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数op tions--选择编码形式(浮点编码或是二进制编码)[p recision F_o r_B],如p recisio n--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由p recision指定精度)(2)function [x,endPop,bPop,trace Info] = ga(bounds,evalFN,evalOps,sta rtPop,op ts,...te rmFN,te rmOps,selectFN,selectOps,xOve rFNs,xOve rOps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解e ndPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bo unds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数sta rtPop-初始种群op ts[epsilon p rob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。

如[1e-6 1 0]te rmFN--终止函数的名称,如['maxGe nTerm']te rmOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如['no rmGeo mSelect']selectOps--传递个选择函数的参数,如[0.08]xOve rFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXove r simple Xove r'] xOve rOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]mutFNs--变异函数表,如['boundaryMuta tio n multiNonU nifMuta tio n nonU nifMutatio n unifMuta tion']mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数functio n[sol,eval]=fitness(sol,op tio ns)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x e ndPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'ma xGenTerm',25,'no rmGeo mSelect',...[0.08],['arithXove r'],[2],'no nU nifMuta tio n',[2 25 3]) %25次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。

matlab遗传算法工具箱实例讲解

matlab遗传算法工具箱实例讲解

【分享】matlab遗传算法工具箱函数及实例讲解[i=s] 本帖最后由messenger 于2009-10-14 11:09 编辑[/i]核心函数:(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] =ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs, mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options 参数,第三个参数控制是否输出,一般为0。

如[1e-6 1 0]termFN--终止函数的名称,如['maxGenTerm']termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如['normGeomSelect']selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]matlab遗传算法工具箱回复:【分享】matlab遗传算法工具箱函数及实例讲解[i=s] 本帖最后由messenger 于2009-5-18 16:10 编辑[/i]【注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 11],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代运算结果为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。

matlab遗传算法工具箱关于离散变量优化算例

matlab遗传算法工具箱关于离散变量优化算例

1. 引言遗传算法是一种模拟自然选择与遗传机制的优化算法,被广泛应用于离散变量优化问题的求解。

在Matlab软件中,有专门的工具箱可以支持遗传算法的实现与应用,极大地方便了工程技术人员进行离散变量优化问题的研究与应用。

本文将介绍Matlab遗传算法工具箱在离散变量优化算例中的应用,并通过具体案例来展示其实际求解效果。

2. Matlab遗传算法工具箱介绍Matlab遗传算法工具箱是Matlab软件的一个重要工具箱,它提供了丰富的遗传算法函数和工具,方便用户进行遗传算法的实现和应用。

在离散变量优化问题的求解中,用户可以利用工具箱提供的函数对问题进行建模、参数设置、运行算法等操作,从而快速高效地求解问题。

3. 离散变量优化算例为了更好地展示Matlab遗传算法工具箱在离散变量优化中的应用效果,我们选取了一个经典的离散变量优化问题作为算例,具体问题描述如下:设有一组零件需要进行装配,零件的形状和尺寸有多种选择。

每种零件的装配工艺和成本不同,需要选择最佳的零件组合方案来满足装配要求并使总成本最低。

假设可供选择的零件种类有n种,每种零件有m个备选方案,且装配每种零件的成本已知。

问应选择哪些零件及其具体方案才能使得总装配成本最低?4. Matlab遗传算法工具箱的应用为了利用Matlab遗传算法工具箱求解上述离散变量优化问题,我们可以按照以下步骤进行操作:1) 利用Matlab的数据处理工具,将零件的备选方案数据以矩阵的形式导入Matlab环境;2) 利用工具箱提供的函数对遗传算法的参数进行设置,例如选择交叉方式、变异方式、群体大小、迭代次数等;3) 利用工具箱提供的函数对离散变量优化问题进行编码和解码,以便算法能够对离散变量进行操作;4) 利用工具箱提供的函数编写适应度函数,用于评价每个个体的适应度;5) 利用工具箱提供的主函数运行遗传算法,获取最优解及其对应的总装配成本。

5. 案例求解结果分析通过上述步骤,我们在Matlab环境中成功应用遗传算法工具箱求解了离散变量优化问题。

遗传算法 matlab

遗传算法 matlab

遗传算法 Matlab什么是遗传算法?遗传算法是一种模拟生物进化过程的优化算法。

它模拟了自然界中的遗传、突变和选择等过程,利用这些操作来搜索和优化问题的解空间。

遗传算法具有以下几个关键步骤:1.初始化种群:通过生成一组随机解来初始化初始种群。

每个解被编码为一个染色体,染色体通常由二进制字符串表示。

2.评价适应度:使用适应度函数评估每个个体的适应度。

适应度函数通常通过衡量个体在解空间中的性能来定义。

3.选择操作:选择操作基于个体的适应度进行,通过概率选择操作来确定哪些个体应该参与繁殖下一代。

适应度较高的个体有更大的概率被选中。

4.交叉操作:选择的个体进行交叉操作,生成下一代的染色体。

交叉操作通过交换个体染色体中的信息来生成新的个体。

5.变异操作:为了保持种群的多样性,变异操作在染色体中进行随机的变异。

这个过程通过随机改变染色体中的部分基因来进行。

6.替换操作:根据新生成的染色体替换当前种群中某些个体,以此来形成新的种群。

7.重复上述步骤:重复执行上述步骤直到满足终止条件(例如达到最大迭代次数或找到满意的解)。

如何在 Matlab 中实现遗传算法?在 Matlab 中,可以使用遗传算法和优化工具箱来实现遗传算法。

以下是实现遗传算法的一般步骤:1.定义适应度函数:根据具体问题定义适应度函数,该函数衡量每个个体在解空间中的性能。

适应度函数的设计将影响到最终结果。

2.初始化种群:使用内置函数或自定义函数来生成初始种群。

每个个体都应该表示为染色体形式的解。

3.设置遗传算法参数:根据具体问题设置遗传算法的参数,如种群大小、迭代次数、选择操作和交叉操作的概率等。

4.编写遗传算法主循环:在主循环中,使用选择操作、交叉操作和变异操作来生成新的染色体,并计算每个个体的适应度。

5.选择操作:使用选择函数根据适应度值选择染色体。

具体的选择函数可以根据问题的特点进行调整。

6.交叉操作:使用交叉函数对染色体进行交叉操作,生成下一代的染色体。

matlab自带优化工具箱遗传算法中文解释

matlab自带优化工具箱遗传算法中文解释

matlab自带优化工具箱遗传算法中文解释problem setup and results设置与结果problemfitness function适应度函数number of variable变量数constraints约束linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码run solver and view results求解use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果populationpopulation type编码类型double vector实数编码,采用双精度bitstring二进制编码对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用scattered singlepoint,twopoint或custom不能使用hybrid function和nonlinear constraint functioncustom 自定义population size:种群大小creation function:生成函数,产生初始种群constraint dependent:约束相关,无约束时为uniform,有约束时为feasible population uniform:均匀分布feasible population :自适应种群,生成能够满足约束的种群initial population:初始种群,不指定则使用creation function生成,可以指定少于种群数量的种群,由creation function完成剩余的initial scores:初始值,如果不指定,则有计算机计算适应度函数作为初始值,对于整型约束不可用,使用向量表示initial range:初始范围,使用向量矩阵表示,第一行表示范围的下限,第二行表示上限fitness scaling:适应度尺度rank:等级。

Matlab遗传算法工具箱简介

Matlab遗传算法工具箱简介

2)Linear equalities 线性等式约束,表示为: Aeq * x beq ,填写矩阵 Aeq 和 向量 beq 的信息。 3)Bounds:填写独立变量的取值范围。在 Lower 中填写变量的取值下界, Upper 中填写变量的取值上界,均以向量形式表示。 4)Nonlinear constraint function 非线性约束函数,编写非线性约束函数的 M 文件 nonlcon.m,则在此处填写@nonlcon。 (4)Run solver and view results 运行求解器并观察结果。点击 Start 即 可开始运行。Current iteration 中将显示当前运行的代数。Final point 栏中 显示最优解对应的变量的取值。 (5)Option 部分是遗传算法参数的设定。 1)Population 种群参数设定。 Population type 种群类型,设定适应度函数的输入数据类型。工具箱提供了 两种输入类型:双精度、串位,用户还可以编写 M 文件自定义输入数据的类型。 Population size 种群规模,定义每一代种群的个体数量。种群规模越大,遗 传算法的运行速度越慢。 Creation function 创建函数,用于创建初始种群。 Initial population 初始种群,如果不指定初始种群,则系统将运用创建函数 创建初始种群。 Initial scores 初始得分,如果此处没有定义初始得分,则系统应用适应度函 数来计算初始得分。 Initial range 初始范围,用于指定初始种群中的各变量的上下限。初始范围 用一个矩阵表示,该矩阵行数为 2,列数为变量的个数。其中第一行描述初始种 群中变量的取值下限,第二行描述初始种群中变量的取值上限。 2)Fitness scaling 适应度测量,包括:Rank 排序尺度变换、Proportional 比例 尺度变换、Top 顶级尺度变换、Shift linear 线性转换尺度变换以及 Custom 用户 自定义。 3)Selection 选择,工具箱提供了以下几种选择函数:Stochastic uniform 随机 Remainder 剩余、 Uniform 均匀分布、 Roulette 轮盘赌选择、 Tournament 均匀分布、 锦标赛选项、Custom 用户自定义。 4)Reproduction 再生参数,需设定可生存到下一代的精英个数 Elite count, 以及下一代由交叉产生的部分所占比例 Cross箱提供的变异函数有:Gaussian 高斯函数、Uniform 均匀变异、Adaptive feasible 自适应变异、以及用户自定义。 6)Crossover 交叉, Scattered 多点交叉、 Single point 工具箱提供的交叉函数有: 单点交叉、Two point 两点交叉、Arithmetic 算数交叉等。 7)Migration 迁移, 需设置个体在子种群中移动的方向 Direction、 间隔 Interval, 以及两个子种群中较小种群的个体迁移百分比 Fraction。 8)Stoping criteria 终止条件。可设置遗传算法的最大代数、适应度极限、停 滞时间、停滞代数等。 9)Hybird function 混合函数参数。在遗传算法结束之后,可指定一个最小值 fminsearch、 patternsearch、 fminunc、 fmincon。 优化函数。 工具箱提供的优化函数有: 其中 fminsearch、fminunc 适用于无约束的优化,fmincon 适用于有约束的优化。 10)Display to command window 输出命令到窗口。Display 表示显示级别,是 一个结构体。其中包含:Off 只有最终结果显示;Iterative 显示每一次迭代的有 Diagnose 显示每一次迭代的信息, 关信息; 而且还列出函数缺省值已经被改变的 有关信息;Final 显示遗传算法的结果(成功与否)、停止的原因、最终点。 11)工具箱还提供了 Plot functions 图形输出、Output function 输出函数、User function evaluation 用户函数评估界面供用户选择。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab自带优化工具箱遗传算法中文解释
problem setup and results设置与结果
problem
fitness function适应度函数
number of variable变量数
constraints约束
linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量
linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量
bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量
nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式
integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码
run solver and view results求解
use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果
population
population type编码类型
double vector实数编码,采用双精度
bitstring二进制编码对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用
scattered singlepoint,twopoint或custom不能使用hybrid function和nonlinear constraint function
custom 自定义
population size:种群大小
creation function:生成函数,产生初始种群
constraint dependent:约束相关,无约束时为uniform,有约束时为feasible population uniform:均匀分布
feasible population :自适应种群,生成能够满足约束的种群
initial population:初始种群,不指定则使用creation function生成,可以指定少于种群数量的种群,由creation function完成剩余的
initial scores:初始值,如果不指定,则有计算机计算适应度函数作为初始值,对于整型约束不可用,使用向量表示
initial range:初始范围,使用向量矩阵表示,第一行表示范围的下限,第二行表示上限
fitness scaling:适应度尺度
rank:等级。

将适应度排序,然后编号
proportional:按比例
top:按比例选取种群中最高适应度的个体,这些个体有等比例的机会繁衍,其余的个体被淘汰
shift linear:线性转换
custom:用户定义
selection(selection function)依据适应值选择父代
stochastic uniform:随机均匀分布
remainder:残余,取适应值的整数部分进行轮盘赌选择
uniform:不是一个好方法,但是可以用来做测试
shift linear:线性转换
roulette:轮盘赌算法
tournament:联赛选择算法
custom:自定义
reproduction复制,决定如何产生子代
elite count:精英数,直接传到下一代的个体数
crossover fraction:杂交概率
mutation(mutation function)突变
use constraint dependent 默认,与约束有关,无约束时使用gaussian有约束时使用adaptive feasible
gaussian :利用高斯分布来选取
uniform:均匀
adaptive feasible:
custom:自定义
crossover杂交
scattered:随机生成遗传二进制向量,按0-1杂交
single point:单点杂交,生成一个数字,该数字代表的位置开始两父代基因交换
two point:两点交换
intermediate:媒介,加权平均
heuristic:启发式算法
arithmetic:算术平均
custom:自定义
migration迁移
direction方向:forward n-》n+1 ;both 双向
fraction:指定迁移率,以较小数量种群为标准
interval:发生迁移的间隔
constraint parameters约束参数,对应于非线性约束求解器
initial penalty:初始罚函数大于等于1
penalty factor:处罚因子大于等于1
hybrid function混合函数,指定另外一个最小值函数,在遗传算法结束之后计算,在整数值限制的时候不可用。

none
fminsearch只用于无约束
patternsearch约束与无约束
fminunc无约束
fmincon有约束
stopping criteria停止标准
generations到达代数
time limit时间限制
fitness limit适应值限制
stall generations迟滞代数,经过多代适应值没有明显提升
stall time limit 迟滞时间限制,经过限定时间适应值没有明显提升
function tolerance 在迟滞代数内适应度函数值的改变量小于这个值,则停止
nonlinear constraint tolerance 非线性约束容忍值
plot function 绘图函数
plot interval 绘图间隔
best fitness最佳适应度值
best individual最佳个体
distance个体间平均距离
expectation期望
genealogy家系
range适应度值最小最大平均值
score diversity每一代分数的柱状图
scores每一代个体的分数
selection 描绘对每一代贡献的父代
stopping停止标准的水平
max constraint非线性约束中超出范围的最大值
custom自定义
output function输出函数自定义
display to command window
off不输出
iterative每一次迭代都输出
diagnose诊断,每一次迭代都输出,并且诊断问题信息和选项中相对于默认值的改变值final只输出最终值
evaluate fitness and constraint functions评价适应度和约束函数
in serial 分别独立评价
vectorized用同一个函数调用。

相关文档
最新文档