MATLAB遗传算法工具箱及其应用

合集下载

MATLAB遗传算法工具箱在函数优化中的应用

MATLAB遗传算法工具箱在函数优化中的应用

[x, fval] = ga(fun, 1,,,,,,,, options);
%输出结果
disp(['x = ', num2str(x)]);
disp(['f(x) = ', num2str(fval)]);
在上述代码中,我们首先定义了目标函数,然后设置了遗传算法的参数,包 括种群规模、最大迭代次数、交叉概率和变异概率。接下来,我们使用 optimoptions函数初始化遗传算法,并传入目标函数和参数设置。最后,我们使 用ga函数求解最小值点,并输出结果。
在使用遗传算法工具箱进行函数优化时,需要注意以下问题:
1、适应度函数的设计:适应度函数是评价个体优劣程度的指标,必须合理 设计以满足优化问题的需求。
2、种群规模和迭代次数的设定:种群规模和迭代次数是影响遗传算法性能 的关键参数,需要根据问题规模和复杂度进行合理设定。
3、交叉和变异操作的控制:交叉和变异操作是遗传算法的核心操作,需要 合理控制以保持算法的搜索能力和避免陷入局部最优解。
在定义了目标函数和约束条件之后,我们可以使用Matlab提供的ga函数来运 行遗传算法。ga函数将根据指定的目标函数和约束条件,使用遗传算法搜索最优 解。在运行过程中,我们可以使用Matlab提供的动画功能来实时查看遗传算法的 迭代过程。
除了使用Matlab遗传算法优化工具箱来解决常规的优化问题外,还可以将其 应用于其他领域。例如,在机器学习领域中,可以使用遗传算法来优化神经网络 的连接权值和结构;在控制系统领域中,可以使用遗传算法优化控制系统的参数 和结构;在图像处理领域中,可以使用遗传算法优化图像处理的算法和参数等。
通过本次演示的介绍,希望能使读者更好地理解和应用遗传算法工具箱解决 实际优化问题。

MATLAB遗传算法工具箱及应用(第二版)图文 (1)

MATLAB遗传算法工具箱及应用(第二版)图文 (1)
一旦计算了个体适应度值,种群中适应度高的个体将被 选中并重组,产生下一代。遗传算子直接操作染色体的特征 (基因),使用一般情况下个体的基因代码,产生更适合的个 体。重组算子用在一对个体或一大组个体中交换基因信息。 最简单的重组算子是单点交叉。
第一章 遗传算法概述
考虑两个二进制父代串:
A=10010110 和 B=10111000 I是随机地在1到串长L减1之间(即[1,
在决策变量域中的染色体表现型已被编码,可以估计种 群的个体成员的特性或适应度。通过特征目标函数来估计个 体在问题域中的特性。在自然世界中,这就是个体在现行环 境中的生存能力。因此,目标函数建立的基础是在整个繁殖 过程中选择成对的个体进行交配。
第一章 遗传算法概述
在再生(复制)期间,每个个体均被计算适应度值,它来 自没有加工的原始特性度量,由目标函数给出。这个值用来 在选择中偏向更加适合的个体。相对整个种群,适应度高的 个体具有高的选中参加交配的概率,而适应度低的个体具有 相对低的选中概率。
第一章 遗传算法概述
1.2 遗传算法的特点
遗传算法具有如下优点: (1)对可行解表示的广泛性。遗传算法的处理对象不是参 数本身,而是针对那些通过参数集进行编码得到的基因个体。 此编码操作使得遗传算法可以直接对结构对象进行操作。所谓 结构对象,泛指集合、序列、矩阵、树、图、链和表等各种一 维或二维甚至多维结构形式的对象。这一特点使得遗传算法具 有广泛的应用领域。比如: ①通过对连接矩阵的操作,遗传算法可用来对神经网络或 自动机的结构或参数加以优化。 ②通过对集合的操作,遗传算法可实现对规则集合和知识 库的精炼而达到高质量的机器学习目的。 ③通过对树结构的操作,用遗传算法可得到用于分类的最 佳决策树。 ④通过对任务序列的操作,遗传算法可用于任务规划,而 通过对操作序列的处理,可自动构造顺序控制系统。

使用MATLAB遗传算法工具实例详细

使用MATLAB遗传算法工具实例详细

最新发布的MATLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。

使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。

本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。

8.1 遗传算法与直接搜索工具箱概述本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。

8.1.1 工具箱的特点GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MATLAB数值计算环境的性能。

遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。

这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。

所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。

使用语句type function_name就可以看到这些函数的MATLAB代码。

我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。

工具箱函数可以通过图形界面或MATLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。

遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。

遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。

Matlab遗传算法优化工具箱GAOT的研究与应用

Matlab遗传算法优化工具箱GAOT的研究与应用

M a tl ab遗传算法优化工具箱(GAO T)的研究与应用3周正武1,丁同梅1,2,田毅红2,3,王晓峰2,4(1.广东省技师学院,广东博罗 516100; 2.天津大学机械工程学院,天津 300072;3.承德技师学院,河北承德 067400;4.郑州职业技术学院,河南郑州 450121)摘 要:介绍遗传算法的基本原理和Matlab的遗传算法优化工具箱(G AOT),分析了优化工具函数。

探讨Matlab遗传算法工具箱在参数优化和非线性规划中的应用。

通过优化实例,说明遗传算法是一种具有良好的全局寻优性能的优化方法。

用Matlab语言及Matlab语言编制的优化工具箱进行优化设计具有语言简单、函数丰富、用法比较灵活、编程效率高等特点。

关键词:遗传算法;Matlab工具箱;优化中图分类号:T H164 文献标识码:A 文章编号:1007-4414(2006)06-0069-03The study and appli ca ti on of geneti c a lgor ith m opti m i za ti on toolbox i n M a tl abZhou Zheng-wu1,D ing T ong-mei1,2,Tian Yi-hong2,3,W ang Xiao-feng2,4(1.College of high-grade technician,B oluo Guangdong 516100,China;2.College of m echanical and engineering,Tianjin university,Tianjin 300072,China;3.Chengde college of high-grade technician,Chengde Hebei 067400,China;4.Zhengzhou vocational college of technology,Zhengzhou Henan 450121,China)Abstract:The paper intr oduces genetic algorith m(G A)and Matlab genetic algorith m op ti m izati on t oolbox and analyses the op ti m izati on t oolbox functi on.The functi on op ti m izati on p r oble m of para meter op ti m izati on and nonlinear has been given t o de monstrate that genetic algorith m is a better gl obal op ti m izati on method.The op ti m izati on design in M atlab and Matlab op ti m i2 zati on t oolbox have si m p le language、abundant functi ons、flexible method and high p r ogramm ing efficiency.Key words:genetic agolrith m;matlab t oolbox;op ti m izati on 遗传算法(G A)是一类借鉴生物界自然选择和遗传原理的随机优化搜索算法。

matlab工具箱遗传算法使用方法

matlab工具箱遗传算法使用方法

简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2010版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。

GUI界面如下图所示:1、problem setup and results设置与结果(1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等)(2)problem:1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。

2)number of variable变量数,必须是整数,即,使用这个GUI界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。

3)constraints约束4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式8)integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5] 9)run solver and view results求解use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果2、population(1)population type编码类型1)double vector实数编码,采用双精度。

整数规划的种群类型必须是实数编码。

Matlab遗传算法工具箱函数及应用实例

Matlab遗传算法工具箱函数及应用实例

!"#$"%遗传算法工具箱函数及应用实例于玲!!贾春强""!#沈阳化工学院机械工程学院!辽宁沈阳!!$!%"#"&大连理工大学机械工程学院!辽宁大连!!’$"($摘要%基于!"#$"%语言的遗传算法工具箱支持二进制和浮点数编码方式!并且提供了多种选择&交叉&变异的方法’通过具体实例对!"#$"%的遗传算法工具箱的用法进行了说明介绍(关键词%)*+,*-#遗传算法#工具箱#优化中图分类号%./(0!&12文献标识码%3文章编号%!$$"4"(((""$$%)!!4$$"14$"&’()#*+(,"(-./"01$2,*(!"#$"%345++$%+/678*(9:!;<4=>’(?@*"(9A5!#67899,9:);78*<=7*,><?=<;;@=<?A68;<B*<?C<D+=+E+;9:F8;G=7*,.;78<9,9?BH68;<B*<?!!I!%"H F8=<*J"#67899,9:);78*<=7*,><?=<;;@=<?H K*,=*<L<=M;@D=+B9:.;78<9,9?BH K*,=*<!!’I"(H F8=<*N 4%,#B")#C.8;O;<;+=73,?9@=+8G.99,-9P-*D;Q9<)*+,*-DERR9@+D+8;-=<*@B*<Q:,9*+H*<Q+8;@;*@;+8;;P7;,,;<+ 9R;@*+9@D9:D;,;7+=9<H7@9DD9M;@*<Q GE+*+=9<=<+8;.99,-9PH+S9;P*GR,;D*-9E+89S+9ED;+8;.99,-9P*@;=<+@9QE7;Q =<+8=D R*R;@#C+=D+98;,R@;*Q;@D=GR@9M;+8;*-=,=+B+9*<*,BT;+8;UE;D+=9<*<Q D9,M;R@9-,;G ED=<?+8;.99,-9P# D2E F+B-,C G*+,*-J?;<;+=7*,?9@=+8GJ+99,-9PJ9R+=G=T*+=9<:遗传算法与!"#$"%语言!"#$"%是一种开放式软件!经过一定的程序可以将开发的优秀的应用程序集加入到!"#$"%工具的行列(这样!许多领域前沿的研究者和科学家都可以将自己的成果集成到!"#$"%之中!被全人类继承和利用(因此!!"#$"%中含有诸多的面向不同应用领域的工具箱!例如%信号处理工具箱&图像处理工具箱&通信工具箱&系统辨识工具箱&优化工具箱&鲁棒控制工具箱&非线性控制工具箱等!而且工具箱还在不断地扩展之中(A遗传算法工具箱的函数及其功能目前!国内图书市场上有关!"#$"%方面的书籍要么侧重于!"#$"%语言编程介绍!要么侧重于各种工具箱函数的解说!而对怎样用工具箱函数来解决实际问题鲜有涉及(本文将对遗传算法工具箱函数进行说明介绍(遗传算法工具箱&’()包括了许多实用的函数!这些函数按照功能可以分为以下几类%!"#主界面函数主程序*"+,提供了遗传算法工具箱与外部的接口(它的函数格式如下%-./012345/%345/#6"708194:;*"<%4=12>!0?"$@A!0?"$(5>!>#"6#345!45#>!#06,@A!#06,(5>!>0$07#@A!>0$07#(5>!.(?06@A>!.(?06(5>!,=#@A>!,=#(5>B输出参数输入参数!"!核心函数及其它函数具体见表C(G遗传算法工具箱应用实例$%&无约束优化问题利用遗传算法计算函数’<(B;(DEF*>G1<H(BDI*74><J(B/的最大值!其中(!-F!K:选择二进制编码!种群中的个体数目为EF!二进制编. 012345 %345#6"708194求得的最优解!包括染色体和适配度最终得到的种群最优种群的搜索轨迹每一代的最好适应度和平均适应度%4=12>0?"$@A0?"$(5>>#"6#34545#>#06,@A#06,(5>>0$07#@A>0$07#(5>.(?06@A.(?06(5>,=#@A,=#(5>变量上下界矩阵!矩阵的行数确定变量个数适应度函数传递给适应度函数的参数!默认值为+ALMM,初始种群选项(一个向量+05>G$41/564%N45>/2G>5$"O,!这里05>G$41表示两代之间的差距#564%N45>取F表示二进制编码!取E表示浮点数编码#2G>5$"O控制运行中是否输出当前群体和最好结果!取F表示运行中不输出!取E表示运行中输出(默认值为+E0P Q/E/F,终止函数的名称!默认值为+R,".&01)06,R,传递给终止函数的参数!默认值为+REFFR,选择函数的名称!默认值为+R146,&04,S0$07#R,传递给选择函数的参数!默认值为+RF+FTR,交叉函数名称表!以空格分开!浮点数编码默认值为+R/"6G#UV4?06/U0=6G>#G7V4?06/>G,5$0V4?06R,!二进制编码默认值为+R>G,5$0V4?06R,传递给交叉函数的参数表!浮点数编码默认值为+RW/F#W/C#W/FR,!二进制编码默认值为+F+Q,变异函数名称表!以空格分开!浮点数编码默认值为+R%4=12"6O!=#"#G41/,=$#GA41L1G9!=#"#G41141/L1G9!=#"#G41=P1G9!=#"#G41R,!二进制编码默认值为+R%G1"6O!=#"#G41R,传递给变异函数的参数表!浮点数编码默认值为+J/F#Q/EFF/C#J/EFF/C#J/F/F,!二进制编码默认值为+F+FH,表:表A码长度为!"!交叉概率为"#$%!变异概率为"#"&"采用’()*的程序清单如下#+编写目标函数文件,-.#/!文件存放在工作目录下"0123.4,256,7!89:7;<,-.=6,7!,-.4,26>?@<6,7=A>$89:7<@BA"C642=%C@>BDC 3,6=EC @>$F 生成初始种群!大小为A"?"424.G,-<424.4:74H8I:=A"!5"?$;!J,-.K>$L 调用遗传算法函数"5@?82MG ,-?NG ,-O.P:38;<I :=5"?$;!K,-.K !5;!424.G ,-!5A8Q R?A?A;!K/:@’82*8P/K !!%!K2,P/’8,/S 8783.K !5"#"&;!5K:P4.TU,98PK;!5!;!K2,2V240W1.:.4,2K !5!?!%?X;>?$经过!%次遗传迭代!运算结果为#!<D#&%RR "=!><!E#&%%E $即当!为D#&%RR 时!"=!>取最大值!E#&%%E "遗传算法一般用来取得近似最优解!另外!遗传算法的收敛性跟其初始值有关!大家运行上面的命令所得到的结果可能跟我的结果不同或是差别很大!但多执行几次上面的命令%随机取不同的初始群体&一定可以得到近似最优解"#$%有约束优化问题考虑如下问题#/42"=!><=!A Q !>!B=!!Q A>!6#.#&A =!><!A Q !!!BA !"&!=!><!!A EQ !!!BA !"本例中存在两个不等式约束!因此我们需要把有约束问题转换成无约束问题来求解"近年来提出了多种用遗传算法满足约束的技术!工程中常用的策略是惩罚策略!通过惩罚不可行解!将约束问题转换为无约束问题"惩罚项的适值函数一般有加法和乘法两种构造方式!本例采用加法形式的适值函数!惩罚函数由两部分构成!可变乘法因子和违反约束乘法"种群中的个体数目为A""!实数编码!交叉概率为"#$%!变异概率为"#"&"遗传算法求的是函数的极大值!因此在求极小值问题时!需将极大值问题转换为极小值问题求解"采用’()*的程序清单如下#Y 编写目标函数文件04.#/!文件存放在工作目录下"0123.4,256,7!89:7;<04.=6,7!,-.4,26>?@A<6,7=A>$@!<6,7=!>$PA<"#A $P!<"#&$Z 约束条件IA<@AQ !C @!BA $I!<@A#[!\EQ @!#[!BA $Z 加惩罚项的适值40?=IA]<">^=I!]<">89:7<=@AQ !>#[!B=@!Q A>#[!$876889:7<=@AQ !>#[!B=@!Q A>#[!BPAC I ABP!CI!$89:7<Q 89:7$82M_设置参数边界!本例边界为!O "N,12M6<,286%!!A &C5Q A !A;$‘调用遗传算法函数"5@O82MG,-ONG,-O.P:38;<I:=N,12M6!KW42K>O $a 性能跟踪"-7,.=.P:38=b !A>!.P:38=b !X>!KPQ K>$T,7MO,2-7,.=.P:38=b !A>!.P:38=b !!>!KNC K>$@7:N87=K’828P:.4,2K>cOd7:N87=Ke4..2866K>$f8I82M=K 解的变化K !K 种群平均值的变化K>$经过A""次遗传迭代!运算结果为#!<O5AOA;$此时极小值89:7=!><A $I A =!><"$I !!!><"#!%!显然最优解满足约束条件"!结论遗传算法工具箱功能强大!包括了大量的算子函数!提供各种类型的选择策略!交叉’变异的方式!适用于各类不同的实际问题"由于大多数实际问题都是有约束条件的!所以!用遗传算法处理约束条件的方法仍属于难点问题!需要进一步的研究和探讨"(参考文献)(")高尚#基于$%&’%(遗传算法优化工具箱的优化计算())*微型电脑应用!+,,+!"-.-/#0+102*(+)姜阳!孔峰*基于$%&’%(遗传算法工具箱的控制系统设计仿真())*广西工学院学报!+,,"!"+.23#41-*(5)飞思科技产品研发中心*$%&’%(4*0辅助优化计算与设计($)*北京#电子工业出版社!+,,5*%编辑阳光&作者简介#于玲%A$D$Q &!女!硕士!主要从事机电液一体化的教学及科研工作"收稿日期#!""EQ "DQ "R!!!!!!!!!!初始化函数424.4:74H8,I :#/P,178..8#/2,P/’8,/S 8783.#/.,1P2S 8783.#/64/-78U,98P#/3d3743U,98P#/7428PU,98P#/7428P,PM8PU,98P#/N,12M:PdW1.:.4,2#/2,2V240W1.:.4,2#//:@’82*8P/#/,-.W:@’82*8P/#/0!N#/N!0#/变异交叉二进制格式和浮点数格式的初始化函数有序数据的初始化函数常用的轮盘赌法基于归一化的优先选择法竞争选择法二进制格式或浮点数格式的交叉函数有序数据的交叉函数!可以将演化函数组合使用浮点数格式的变异函数主程序I :#/用来判断是否满足终止条件用来计算遗传算法满足精度要求时!染色体所需要的二进制位数用来完成二进制数和浮点数之间的相互转换选择函数终止函数二进制表示函数演化函数3:73N4.6#/424.4:74H8I :#/表"。

matlab遗传算法工具箱关于离散变量优化算例

matlab遗传算法工具箱关于离散变量优化算例

1. 引言遗传算法是一种模拟自然选择与遗传机制的优化算法,被广泛应用于离散变量优化问题的求解。

在Matlab软件中,有专门的工具箱可以支持遗传算法的实现与应用,极大地方便了工程技术人员进行离散变量优化问题的研究与应用。

本文将介绍Matlab遗传算法工具箱在离散变量优化算例中的应用,并通过具体案例来展示其实际求解效果。

2. Matlab遗传算法工具箱介绍Matlab遗传算法工具箱是Matlab软件的一个重要工具箱,它提供了丰富的遗传算法函数和工具,方便用户进行遗传算法的实现和应用。

在离散变量优化问题的求解中,用户可以利用工具箱提供的函数对问题进行建模、参数设置、运行算法等操作,从而快速高效地求解问题。

3. 离散变量优化算例为了更好地展示Matlab遗传算法工具箱在离散变量优化中的应用效果,我们选取了一个经典的离散变量优化问题作为算例,具体问题描述如下:设有一组零件需要进行装配,零件的形状和尺寸有多种选择。

每种零件的装配工艺和成本不同,需要选择最佳的零件组合方案来满足装配要求并使总成本最低。

假设可供选择的零件种类有n种,每种零件有m个备选方案,且装配每种零件的成本已知。

问应选择哪些零件及其具体方案才能使得总装配成本最低?4. Matlab遗传算法工具箱的应用为了利用Matlab遗传算法工具箱求解上述离散变量优化问题,我们可以按照以下步骤进行操作:1) 利用Matlab的数据处理工具,将零件的备选方案数据以矩阵的形式导入Matlab环境;2) 利用工具箱提供的函数对遗传算法的参数进行设置,例如选择交叉方式、变异方式、群体大小、迭代次数等;3) 利用工具箱提供的函数对离散变量优化问题进行编码和解码,以便算法能够对离散变量进行操作;4) 利用工具箱提供的函数编写适应度函数,用于评价每个个体的适应度;5) 利用工具箱提供的主函数运行遗传算法,获取最优解及其对应的总装配成本。

5. 案例求解结果分析通过上述步骤,我们在Matlab环境中成功应用遗传算法工具箱求解了离散变量优化问题。

使用MATLAB遗传算法工具实例

使用MATLAB遗传算法工具实例

使用MATLAB遗传算法工具实例MATLAB中提供了一种用于优化问题的遗传算法工具箱,可以帮助用户通过遗传算法来寻找最优解。

下面是一个示例,展示了如何使用MATLAB遗传算法工具箱解决一个简单的优化问题。

假设我们要求解以下函数的最大值:f(x)=x^2,其中x的取值范围在[-10,10]之间。

首先,我们需要定义适应度函数,即用来评估个体适应度的函数。

在本例中,适应度函数可以直接使用目标函数,即f(x)=x^2、在MATLAB中,我们可以使用函数句柄来定义适应度函数:```matlabfunction fitness = fitnessFunction(x)fitness = x^2;end```接下来,我们需要配置遗传算法的参数。

我们可以使用`gaoptimset`函数来创建一个参数结构体,并设置算法的各个参数:```matlaboptions = gaoptimset('PopulationSize', 50, 'Generations', 100, 'FitnessLimit', 1e-6, 'StallGenLimit', 10);```上述代码将设置种群大小为50,迭代次数为100,适应度极限为1e-6(即当适应度较小时停止迭代),最大迭代代数为10(即如果连续10代迭代没有改进,则停止迭代)。

接下来,我们需要调用`ga`函数来运行遗传算法并求解最优解。

我们可以使用以下代码来实现:```matlab```最后,我们可以打印出最优解及其目标函数值:```matlabdisp(['Optimal solution: x = ' num2str(x) ', f(x) = 'num2str(fval)]);```上述代码中,`num2str`函数用于将数字转换为字符串,然后使用`disp`函数打印出最优解和目标函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
函数 reins
InsOpt是一最多有两个参数的任选向量。 InsOpt(1)是一标量,指明用子代代替父代的选择方法。0—
—均匀选择,子代代替父代使用均匀随机选择。1——基于
适应度的选择,子代代替最小适应的个体。如果省略 InsOpt(1)或为NaN,则假设InsOpt(1)=0。 InsOpt(2)是一在[0,1]间的标量,表示每个子种群中重插入 的子代个体与整个子种群中个体的比率。如果省略InsOpt(2) 或为NaN,则假设InsOpt(2)=1.0。 如果InsOpt省略或为NaN,则InsOpt为缺省值。
11
函数 ranking
功能:基于排序的适应度分配。 格式:① FitnV = ranking(ObjV) ② FitnV = ranking(ObjV,RFun)
③ FitnV = ranking(ObjV,RFun,SUBPOP)
ranking按照个体的目标值ObjV由小到大的顺序对它们进行 排序,并返回一包含对应个体适应度值FitnV的列向量。这 个函数是从最小化方向对个体进行排序的. RFun是一任选向量,有1、2或length(ObjV)个参数。 (1)如果省略RFun或为NaN,则采用线性排序,选择压差 假设为2。
22
函数 reins
ObjVCh是一可选的列向量,包含Chrom中个体的目标值。 对基于适应度的重插入,ObjVCh是必需的。
ObjVSel是一可选的列向量,包含Selch中个体的目标值。如
果子代的数量大于重插入种群中的子代数量,则ObjVSel是 需要的。在这种情况下,子代将按它们的适应度选择插入。 在格式④中,输出参数ObjVCh是子代个体的适应度值,包 含子代中原个体的适应度值ObjVCh 和产生的新个体的适应 度值ObjVSel。
本节介绍的是英国谢菲尔德大学开发的遗传 算法工具箱。 由于MATLAB高级语言的通用性,对问题用 M文件编码,与此配对的是MATLAB先进的数 据分析、可视化工具、特殊目的的应用领域工 具箱和展现给使用者具有研究遗传算法可能性 的一致环境。 GA工具箱本质是个函数包,用户只要安装 了这个工具箱或者软件自带了这个工具箱,就 可以调用这些函数命令,从而编写出强大的 MATLAB遗传算法程序。
26
函数 rws
轮盘赌选择方法举例。考虑8个个体的种群,假设已计算出 适应度FitnV:
FitnV = [1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]
5
函数crtbase
BaseVec = crtbase(Lind, Base) % This function creates a vector containing the base of the loci crtbase产生向量的元 素对应染色体结构的基因座 BaseVec = crtbase([4,6],[8,5]) %创建一有4个基数为8的基 本字符{0,1,2,3,4,5,6,7}和6个基数为5的基本字符 {0,1,2,3,4}的基本字符向量
23
函数 reins
(1)下面的程序代码为在6个个体的父代种群中插入子代种 群。
FieldDR1=[-10,-5,-3,-1;10,5,3,1]; % 定义边界变量
Chrom=crtrp(6,FieldDR1); % 产生6个个体的父代种群
24
函数 reins
(2)FieldDR2=[-100,-50,-30,-20;100,50,30,20]; % 定义 边界变量
19
函数 reins
功能:重插入子代到种群。 格式:① Chrom = reins(Chrom,SelCh) ② Chrom = reins(Chrom,SelCh,SUBPOP)
③ Chrom = reins(Chrom,SelCh,SUBPOP,InsOpt,ObjVCh)
④ [Chrom,ObjVCh]= reins(Chrom,SelCh,SUBPOP,InsOpt,ObjVCh,ObjVSel) 详细说明:reins完成插入子代到当前种群,用子代代替父代 并返回结果种群。子代包含在矩阵SelCh中,父代在矩阵 Chrom中,Chrom和Selch中每一行对应一个个体。
4
二、遗传算法工具箱结构
1、种群表示和初始化函数:crtbase,crtbp,crtp。 crtbase crtbp crtrp 创建种群 创建基向量 创建任意离散随机种群 创建实值初始种群
GA工具箱支持二进制、整数和浮点数的基因表示。二进制 和整数种群可以使用工具箱中的crtbp建立二进制种群。 crtbase是附加的功能,它提供向量描述整数表示。种群的 实值可用crtrp进行初始化。在二进制代码和实值之间的变 换可使用函数bs2rv,s
功能:重插入子代到种群。 格式:① Chrom = reins(Chrom,SelCh) ② Chrom = reins(Chrom,SelCh,SUBPOP) ③ Chrom = reins(Chrom,SelCh,SUBPOP,InsOpt,ObjVCh) ④ [Chrom,ObjVCh]= reins(Chrom,SelCh,SUBPOP,InsOpt,ObjVCh,ObjVSel) 详细说明:reins完成插入子代到当前种群,用子代代替父代 并返回结果种群。子代包含在矩阵SelCh中,父代在矩阵 Chrom中,Chrom和Selch中每一行对应一个个体。 SUBPOP是一可选参数,指明Chrom和SelCh中子种群的个 数。如果SUBPOP省略或为NaN,则假设SUBPOP=1。在 Chrom和SelCh中每个子种群必须具有相同大小。
FitnV = ranking(ObjV,[2 1],2)
17
函数 scaling
功能:线性适应度计算。 格式:FitnV = scaling(ObjV,Smul) 详细说明:scaling转换一种群的目标值ObjV为由Smul的值
决定上界的适应度值。scaling使用Goldberg描述的线性比率
SelCh=crtrp(2,FieldDR2); % 产生2个个体的子代种群
Chrom = reins(Chrom,SelCh)
25
函数 rws
功能:轮盘赌选择。 格式:NewChrIx = rws(FitnV,Nsel)
详细说明:rws在当前种群中按照它们的适应度FitnV选择
Nsel个个体繁殖。 FitnV是一包含种群中每个个体性能尺寸的列向量,它能通 过使用函数ranking或scaling计算每个个体的适应度水平来 得到。返回值NewChrIx是为育种选择的个体的索引值,按 照它们的选择顺序排列,这些选择的个体能通过评估函数 Chrom(NewChrIx,:)恢复。 rws是一低级选择函数,通常被select调用。
12
函数 ranking
(2)如果RFun是一在[1,2]内的标量,则是线性排序,这 个标量指定选择的压差。 (3)如果RFun是一具有两个参数的向量,则
RFun(1):对线性排序,标量指定的选择压差RFun(1)必须
在[1,2]之间;对非线性排序,RFun(1)必须在[1, length(ObjV)-2]之间。如果为NaN,则RFun(1)假设为2。 RFun(2):指定排序方法。0为线性排序,1为非线性排序。 (4)如果RFun为长为length(ObjV)的向量,则它包含对每 一行的适应度值计算。
函数 ranking
(2) 使用非线性排序和选择压差为2估算适应度。
FitnV = ranking(ObjV,[2 1])
15
函数 ranking
(3)使用Rfun中的值估算适应度。
FitnV = ranking(ObjV,[2 1])
16
函数 ranking
(4)使用非线性排序,选择压差为2,在ObjV中有两个子种群 估算适应度。
9
函数 crtrp
Chrom = crtrp(Nind,FieldDR); % 创建元素为均匀分布随机 十进制数染色体 Nind - A scalar containing the number of individuals in
the new population.指定了种群中个体的数量 FieldDR - A matrix of size 2 by number of variables describing the boundaries of each variable. FieldDR = [-100 -50 -30 -20; % lower bound
7
函数crtbp
crtbp % 创建二进制串染色体 ① 创建一个长度为9、有6个个体的随机种群。 [Chrom,Lind,BaseV] = crtbp (6,9)
8
函数crtbp
② 创建一长度为9有6个个体的随机种群,这里前四个基因 位是基本字符{0,1,2,3,4,5,6,7},后五个基因位是 基本字符{0,1,2,3}。 BaseV = crtbase([4 5], [8 4]); [Chrom,Lind,BaseV] = crtbp(6,BaseV) ; 或 [Chrom,Lind,BaseV] = crtbp(6,[8 8 8 8 4 4 4 4 4]);
13
函数 ranking
SUBPOP是一任选参数,指明在ObjV中子种群的数量。如 果省略SUBPOP或为NaN,则假设SUBPOP=1。在ObjV中 的所有子种群大小必须相同。
如果ranking被调用于多子种群,则ranking独立地对每个子
种群执行。
FitnV = ranking(ObjV)
14
6
函数crtbp
crtbp % 创建二进制串染色体 ① [Chrom,Lind,BaseV] = crtbp(Nind,Lind) %创建一大小为 Nind× Lind的随机二元矩阵,这里Nind指定种群中个体的数 量,Lind指定个体的长度。此格式习惯于指定染色体的尺寸 (维度)。 ② [Chrom,Lind,BaseV] = crtbp(Nind,BaseV) %返回长度为 Lind 的染色体结构,染色体基因位的基本字符由向量BaseV 决定 ③ [Chrom,Lind,BaseV] = crtbp(Nind,Lind,Base) %用于产生 基本字符为Base的染色体矩阵。如果Base是向量,Base的 元素值指定了染色体的基因位的基本字符。在这种情况下, 右边的第二个变元可省略,即为格式②。
相关文档
最新文档