用低功耗RF芯片与超低功耗MCU组合
STSTM32L496xx系列超低功耗32位ARMMCU开发方案

ST公司的STM32L496xx系列是超低功耗32位ARM MCU+FPU,工作频率高达80MHz,具有100DMIPS,集成了多达1MB闪存,320KB SRAM,USB OTG FS,提供多达三个快速12位ADC(5 Msps),两个比较器,两个运放,两个DAC通路,一个内部基准电压缓冲器,一个低功耗RTC,两个通用32位计时器和两个专用马达控制的16位低功耗计时器,七个通用16位计时器和两个16位低功耗计时器.主要用在包括音频和图像等低功耗的应用.本文介绍了STM32L496xx系列主要特性,框图以及时钟树框图和评估板32L496GDISCOVERY Discovery kit框图,主要特性和电路图以及PCB元件布局图.The STM32L496xx devices are the ultra-low-power microcontrollersbased on the high-performance ARM® Cortex®-M4 32-bit RISC coreoperating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) whichenhances application security.The STM32L496xx devices are the ultra-low-power microcontrollersbased on the high-performance Arm® Cortex®-M4 32-bit RISC coreoperating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all Arm® single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) whichenhances application security.The STM32L496xx devices embed high-speed memories (up to 1 Mbyte of Flash memory, 320 Kbyte of SRAM), a flexible external memorycontroller (FSMC) for static memories (for devices with packages of 100pins and more), a Quad SPI flash memories interface (available on allpackages) and an extensive range of enhanced I/Os and peripheralsconnected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.The STM32L496xx devices embed several protection mechanisms forembedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.The devices offer up to three fast 12-bit ADCs (5 Msps), twocomparators, two operational amplifiers, two DAC channels, an internalvoltage reference buffer, a low-power RTC, two general-purpose 32-bittimer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devicessupport four digital filters for external sigma delta modulators (DFSDM).In addition, up to 24 capacitive sensing channels are available. Thedevices also embed an integrated LCD driver 8x40 or 4x44, with internalstep-up converter.They also feature standard and advancedcommunication interfaces.• Four I2Cs• Three SPIsST STM32L496xx系列超低功耗32位ARM MCU开发方案• Three USARTs, two UARTs and one Low-Power UART.• Two SAIs (Serial Audio Interfaces)• One SDMMC• Two CAN• One USB OTG full-speed• One SWPMI (Single Wire protocol Master Interface)• Camera interface• DMA2D controllerThe STM32L496xx operates in the -40 to +85℃ (+105℃ junction), -40 to +125℃ (+130℃ junction) temperature ranges from a 1.71 to 3.6 V VDD power supply when using internal LDO regulator and a 1.05 to 1.32VVDD12 power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design of low-power applications.Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators, 3.3 V dedicatedsupply input for USB and up to 14 I/Os can be supplied independentlydown to 1.08V. A VBAT input allows to backup the RTC and backupregisters. Dedicated VDD12 power supplies can be used to bypass theinternal LDO regulator when connected to an external The STM32L496xx family offers six packages from 64-pin to 169-pin packages.STM32L496xx系列主要特性:• Ultra-low-power with FlexPowerControl – 1.71 V to 3.6 V power supply– -40 ℃ to 85/125 ℃ temperature range– 320 nA in VBAT mode: supply for RTC and 32x32-bit backup registers – 25 nA Shutdown mode (5 wakeup pins)– 108 nA Standby mode (5 wakeup pins)– 426 nA Standby mode with RTC– 2.57 μA Stop 2 mode, 2.86 μA Stop 2 with RTC– 91 μA/MHz run mode (LDO Mode)– 37 μA/MHz run mode (@3.3 V SMPS Mode)– Batch acquisition mode (BAM)– 5 μs wakeup from Stop mode– Brown out reset (BOR) in all modes except shutdown– Interconnect matrix• Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-timeaccelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100 DMIPS and DSP instructions • Performance benchmark– 1.25 DMIPS/MHz (Drystone 2.1)– 273.55 Coremark® (3.42 Coremark/MHz @ 80 MHz)• Energy benchmark– 279 ULPMark™ CP score– 80.2 ULPMark™ PP score• 16 x timers: 2 x 16-bit advanced motor-control, 2 x 32-bit and 5 x 16-bit general purpose, 2 x 16-bit basic, 2 x low-power 16-bit timers (available in Stop mode), 2 x watchdogs, SysTick timer• RTC with HW calendar, alarms and calibration• Up to 136 fast I/Os, most 5 V-tolerant, up to 14 I/Os with independentsupply down to 1.08 V• Dedicated Chrom-ART Accelerator™ for enhanced graphic contentcreation (DMA2D)• 8- to 14-bit camera interface up to 32 MHz (black&white) or 10 MHz(color)• Memories– Up to 1 MB Flash, 2 banks read-while-write, proprietary code readoutprotection– 320 KB of SRAM including 64 KB with hardware parity check– External memory interface for static memories supporting SRAM, PSRAM, NOR and NAND memories– Dual-flash Quad SPI memory interface• Clock Sources– 4 to 48 MHz crystal oscillator– 32 kHz crystal oscillator for RTC (LSE)– Internal 16 MHz factory-trimmed RC (±1%)– Internal low-power 32 kHz RC (±5%) – Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25% accuracy)– Internal 48 MHz with clock recovery– 3 PLLs for system clock, USB, audio, ADC• LCD 8 × 40 or 4 × 44 with step-up converter• Up to 24 capacitive sensing channels: support touchkey, linear and rotary touch sensors• 4 x digital filters for sigma delta modulator• Rich analog peripherals (independent supply)– 3 × 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200μA/Msps– 2 x 12-bit DAC output channels, low-power sample and hold– 2 x operational amplifiers with built-in PGA– 2 x ultra-low-power comparators• 20 x communication interfaces– USB OTG 2.0 full-speed, LPM and BCD– 2 x SAIs (serial audio interface)– 4 x I2C FM+(1 Mbit/s), SMBus/PMBus– 5 x U(S)ARTs (ISO 7816, LIN, IrDA, modem)– 1 x LPUART– 3 x SPIs (4 x SPIs with the Quad SPI)– 2 x CAN (2.0B Active) and SDMMC– SWPMI single wire protocol master I/F– IRTIM (Infrared interface)• 14-channel DMA controller• True random number generator• CRC calculation unit, 96-bit unique ID• Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™图1:STM32L496xx系列框图图2:STM32L496xx系列时钟树框图。
STMCU低功耗产品系列详解

Clock Controller
Debug ModuleSWIM
Up to 41 I/Os
PVD
Xtal 32,768 KHz
DMA
12 bit DAC
2xComparators
Boot ROM
LCD driverUp to 4 x 28
1x16 bit TimerAdv Control3 Channels
超低功耗微控制器平台的关键词
低功耗的承诺从STM8L到STM32L完整的低功耗微控制器平台采用最新、超低漏电流的工艺极大的改善包括动态和静态的功耗高效率的承诺由于采用最新的架构,性能/功耗比达到新高运行模式功耗低至:150 µA/MHz在低功耗模式下,仅需 350nA,SRAM和寄存器数据还可以保留优化的产品分布采用通用单片机从8位到32位全覆盖的策略针对特殊的应用,提供片上集成的安全特性最佳的性价比
64 pins LQFP(10x10)
STM8L152M84 KB RAM
STM8L151M84 KB RAM
80 pins LQFP(14x14)
STM8L101 8K 结构框图
SPI
USART
I²C
2x16 bit Timer2 Channels
1x8-bit Timer
Ind. Wd with 38KHz int.
所有都包含:
USART, SPI, I2C
看门狗(STM8L15x 具有双看门狗)
多通道16-bit 定时器
内置 16 MHz 和 38 kHz RC 振荡器
复位电路(上电复位,掉电复位)
Up to 8 KB Flash
STM8L101
Up to 1.5 KB SRAM
华虹宏力:专注低功耗MCU技术持续发力物联网市场

华虹宏力:专注低功耗MCU技术持续发力物联网市场作者:来源:《中国电子报》2017年第52期在物联网(IoT)逐渐成为微控制器(MCU)的主要应用市场之后,开发具备高能效比的MCU产品成为各厂商的重点方向。
而一款低功耗MCU的成功开发,是内核、外设电路和工艺三方面共同作用的结果。
随着新工艺技术的不断推出,制造工艺的重要性正在不断提升。
专为物联网打造超低功耗工艺平台根据预测,到2020年左右,世界上将有超过500亿台设备实现联网。
这使得有关物联网的话题备受行业瞩目。
然而,如此之多的设备连接进入网络(很多设备是无线联网),必将对芯片功耗十分敏感。
具有低功耗、高性能的MCU解决方案,可以简化系统设计,降低整体功耗,帮助系统设计人员将联网设备更快推向市场。
因此,随着物联网市场的发展,具备高集成、低功耗的MCU日益受到市场欢迎。
“华虹宏力有一套专为物联网打造的0.11微米超低功耗(ULL)嵌入式eFlash及eEEPROM工艺平台,晶体管静态功耗达到0.2pA/μm。
同时可实现超低功耗数字/模拟电路、嵌入式闪存与RF-CMOS的技术结合,可为物联网客户量身定制性价比优越、全面灵活的解决方案。
”在接受《中国电子报》采访时,华虹宏力执行副总裁孔蔚然表示。
华虹宏力0.11微米超低功耗双栅型嵌入式闪存技术平台拥有四大优势:一是超低功耗,器件静态功耗可达到0.2pA/μm(ULL平台)、3pA/μm(LP平台);Flash IP待机功耗(Isb)可低至0.1μA,且支持1.2V低电压操作;数字标准单元库支持工作电压范围1.08伏到1.65伏;完整的电源管理(PMK)单元,便于超低功耗芯片设计。
二是高集成度,标准单元库密度达到310K gates/mm2,SRAM单元面积为1.61μm2;单芯片集成了Flash、EEPROM和RF-CMOS模块,可为物联网芯片提供包括无线通信在内的完整解决方案。
三是高性能,Flash IP 的读取速度到达60MHz,工作电流低至30μA/MHz。
低功耗压力采集系统设计

DOI:10.19551/ki.issn1672-9129.2021.03.068低功耗压力采集系统设计秦允振(上海控宇自动化仪表有限公司㊀201107)摘要:本文介绍了一款采用电池供电的低功耗压力采集设备㊂文章从硬件设计和软件设计分别进行产品介绍㊂硬件设计介绍了,根据产品需求选择硬件主控芯片设计低功耗的硬件电路,低功耗芯片选择STM32L151㊂软件介绍了,使用芯片低功耗控制单元实现休眠模式下保持通讯模块运行㊂软件设计对硬件模块电路控制流程的优化,进程调度中控制硬件模块保持休眠或唤醒㊂使用实时操作系统控制业务流程,在读取压力数据时如何采集压力使功耗电流才能更小㊂用最短时间完成上传数据到服务器的任务,完成任务关闭外设电路使系统进入休眠状态㊂本方案是在硬件和软件配合下完成低功耗压力采集㊂关键词:实时操作系统;STM32L151;休眠模式;进程调度中图分类号:TH812㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1672-9129(2021)03-0067-02㊀㊀1㊀引言在日常生活中每个家庭都用到燃气,燃气通过管道输送时,安全是不可忽略的一部分㊂需要一台设备对燃气管道的压力实时跟踪检测,对检查的压力情况及时上报到后台服务器或向后台服务器发送报警事件㊂因为,根据国家规定燃气管道附近不能有电线,电线需要和管道留一个安全距离,所以燃气管道的压力检测设备是不能用电线供电的,这样只能用电池供电㊂电池供电设备需要尽量节省功耗㊂综合上述条件,低功耗压力采集设备在燃气运输中不可缺少的㊂根据产品现实应用场景,查找市场低功耗产品分析学习,最终选择高性能超低功耗ARM处理器STM32L151,这款处理器专门用于超低功耗设备,提供了5种时钟源用于在各种功耗模式切换[5]㊂通讯模块选用4G通讯模块(EC20),这款通讯模块市场使用比较多相对比较稳定㊂软件操作系统选择比较精简的实时操作系统FreeRTOS[1],此操作系统代码容易修改维护,进程控制方便㊂有利于优化软件代码流程,做到及时响应事件,快速的完成数据采集和保存,数据上传到服务器㊂使设备用最短时间处理完任务,进入休眠状态做到低功耗㊂2㊀原理与设计2.1硬件设计㊂在电子产品上,硬件设计是基础㊂对于低功耗硬件设计需要更多注意电源电路模块设计,做到每量数据下,人脸识别方法的训练,提升识别率,人脸算法的性能和人脸数据库总量成反比㊂所以人脸识别技术提高的关键在于对外界影响因素的调整能力,只有不断的改善,才能适应外界因素的影响㊂4㊀人脸识别技术在微卡口监控中的应用微卡口是智慧公安建设的一部分,也是智慧型社区防范保障体系的一部分,主要包括小区出入口㊁医院出入口㊁银行出入口㊁校园出入口等区域,监控内容主要包括人脸识别㊁车牌识别㊁实时监控录像等㊂前端人脸识别摄像机具有深度学习算法,机器自身提取目标特征,可形成深层可供学习的人脸图像,支持人脸跟踪,多帧识别,自动筛选,减少重复抓拍,支持人脸瞳距20像素以上的人脸检测;后端采用超脑一体机,集IPC接入㊁存储㊁控制㊁智能分析于一体,实现精准人脸㊁人体㊁车辆识别分析,最终输出结构化数据加人脸图片㊂当前微卡口监控人脸识别技术应用最主要实现的功能是以人搜人以及1:N人脸比对㊂以人搜人主要是在本地或检索记录中上传一张人脸识别照片,进行人体以图搜图,检索结果按相似度高低进行排序;人脸比对主要是根据实时人脸分析结果,与50万在逃库及吸毒库进行结构化1:N模式进行人脸比对,达到或超过预设阈值的,进行报警联动,同时在控制中心或前端支持报警展现㊂人脸识别监控主要由前端人脸识别摄像机㊁传输设备㊁存储设备㊁人脸检测㊁识别㊁跟踪㊁比对等处理分析模块组成;具体工作流程为人脸识别摄像机输出人脸抓拍图片至超脑进行结构化处理,与数据库内人脸布控数据进行智能分析比对,出现警情后进行数据上传,并在显示终端展现报警的动态人脸图片;在这个过程中,人脸识别是核心,主要包括图像摄录㊁人脸检测㊁人脸定位㊁人脸识别㊁人脸结构化处理㊁人脸分析比对等几个过程㊂人脸识别技术极大提高了视频监控的清晰度和辨别度,这对人脸的识别和排查有着巨大帮助㊂在公安人员进行办案的过程中,人脸识别技术无疑节省了大量的人力和物力,技术人员无须从海量的数据库中一一对比,通过人脸识别技术即可立即分析出人物特征㊂这对我国的社会安全发展起到了很大的促进作用㊂在视频监控的动态视频中,技术人员研发了每一帧画面中提取出人类的面部特征的技术,从提取的人脸信息与数据库中的信息进行对比可以达到事半功倍的效果㊂5㊀人脸识别发展趋势随着生物特征识别技术发展,近几年人脸识别技术也进入爆发模式,尤其商业应用价值越来越高,市场行业应用越来越广泛㊂人脸识别技术是未来安防行业的重大支撑,从安防行业前端设备来说,近年科技人员研究出一种红外线人脸识别技术,通过红外线人脸识别技术,不管是在哪种光线条件下都能提取到比较清晰的面部图像㊂红外线人脸识别技术是传统人脸识别技术的一个实质性突破,在未来的几年中有望大幅应用到人脸识别智能监控系统㊂从算法上来看,当前3D立体人脸识别算法已经对2D 算法缺陷做了补充,对于人脸旋转㊁遮挡㊁相似度等难点,也有一定的应对措施;通过与大数据的结合,深度学习量的扩大,进一步提升了人脸识别的精确度㊂比如通过人脸识别技术使得公安历史照片数据再度存储利用,形成人脸大数据库,能够大大提升公安信息化的管理和统筹,以及历史案件的破获率㊂当前,人脸识别也有自身的使用范围和局限性,为此基于人脸识别的多生物特征融合识别模式将是未来高精度识别系统的首要选择,也是未来身份鉴别领域的发展趋势㊂人脸识别可视化程度高,可以作为基本配置,包括融合指纹㊁掌纹㊁虹膜㊁视网膜㊁声纹㊁手血管㊁步态等方式的深度融合㊂人脸识别与第三方认证的结合也将成为人脸识别发展的重大趋势,第三方认证最常见的有RFID智能卡㊁USB加密秘钥等方式㊂RFID卡也可以实现无感识别,只需授权并与人脸绑定即可实现安全管理和认证;USB加密秘钥一般是重要终端登录的安全验证方式㊂6㊀结束语总的来说,人脸识别技术是近几年来一项新兴技术,虽然起步的时间较晚,但智能监控中的人脸识别系统已经取得了广泛的应用,并得到了市场的认可,也进入到我们生活的方方面面㊂未来将是人脸识别为主的多生物态组合㊁多模式融合的发展趋势,先进的人脸识别系统为我们的生活带来极大的便利的同时,也会越来越安全,让我们生活的环境越来越安全,让生活更美好㊂参考文献:[1]柳莲花,邹香玲.探究智能视频监控系统中人脸检测与识别技术的应用和相关问题[J].中国安防技术,2018 (21):25.[2]李建勇,周祥彬.探究人脸识别技术在智能视频监控系统中的应用与改进措施[J].中国安防,2019(4):50.㊃76㊃个元器件没有多余的耗电电流㊂为了使硬件没有多余电流,硬件设计上对每个硬件模块添加了电源控制电路,使软件通过GPIO[2]可以控制硬件模块上电工作情况㊂即在系统进入休眠时,软件控制MCU休眠前,通过GPIO先对外设硬件电路下电㊂这样确保系统休眠后,外设硬件处于掉电状态㊂硬件控制电路的主要设计如下:(1)低功耗控制电路设计㊂本设计低功耗硬件电路,根据低功耗MCU[2](STM32L151[4,5])低功耗属性针对控制引脚合理分配㊂主要思路是对外部设备(如4G通讯模块),添加了电源控制电路,用于在不传输数据的时候把4G模块断电,对于LCD显示模块去掉了背光显示电路㊂对于需要休眠时运行的外部电路,配置到可以在低功耗休眠时也能工作的GPIO上,如休眠抓log端口可以配置成低功耗usart㊂(2)通讯电路设计㊂通讯电路是功耗比较大模块㊂在设计低功耗电路时,经过反复改版才完成对通讯模块降低功耗,最终满足的产品的需求㊂通讯模块降低功耗是技术难点,因为通讯电路主要是无线通讯4G电路[5],4G模块电路就涉及到射频电路[6],射频的发射与接收是非常耗电的㊂而且数据发送接收对信号要求比较高,如果设计不好信号会影响比较大㊂信号不好传输数据的时候耗时会比较大,或者传输数据连接不到服务器,导致数据需要重新上传,这样更增加了功耗㊂为了降低功耗4G通讯模块采用MCU的低功耗UART[3]进行通讯,这样在MCU低功耗状态也能保持数据传输㊂2.2软件设计㊂软件设计采用分任务控制方法,分别创建三个进程:休眠任务进程;UI刷新进程;数据上传4G 进程㊂(1)功耗控制方法㊂软件控制功耗的思路是在设备运行时尽量使任务都处于休眠状态㊂任务处于休眠就是把任务唤醒时间缩短,即对每个任务处理数据时做优化㊂对于压力读取,模块发送数据等高功耗操作,系统会退出低功耗模式,进入高速运行模式,使工作尽快处理完毕㊂如果处理进程需要等待某个事件或延迟等待,任务会自动进入休眠,等待事件到后,自动唤醒任务继续处理㊂(2)压力采集㊂压力采集使用PM100-L数字压力传感器㊂这种传感器具有定时自动捕获压力的功能,并且在待机时功耗在1uA㊂软件通过IIC总线读取压力,因为IIC是高频时钟总线所以读取压力数据时,系统必须退出休眠状态,这样会增加功耗㊂为了避免功耗增加功耗,读取压力的操作并没有单独放入定时器中断进行,而是放在UI刷新进程里执行压力读取㊂这样设计有助减少系统唤醒次数,从而降低功耗的作用㊂(3)数据上传㊂压力数据上传使用4G通讯模块发送数据时的功耗比较大,所以对4G模块的操作做了单独优化处理㊂首先,在数据不上传时模块要处于断电关机状态使功耗最小㊂其次,每数据传输时对于传输的数据流程进行优化㊂在4G模块在初始化时,需要等待一段时间,这段时间的功耗比较大,而且模块处于初始化状态,程序不能对其操作,所以程序对这段流程做了优化㊂在模块开机后,保持模块供电,然后系统进入休眠㊂等待10秒后模块准备就绪后,系统退出休眠模式,进行上传数据,这样做到细节上降低功耗㊂3㊀实验及数据分析通过上述硬件和软件配合设计,再根据产品需求定义,最终选定设备的处理流程为:每2秒唤醒一次系统,在系统唤醒时,做读取压力值,刷新系统时间,检测上报数据等操作㊂设备以这个处理流程,用3.3V电池供电㊂在供电总电路上串联一个60Ω电阻,用示波器在电阻两端测量电压变化㊂得出如下波形图:通过测量得出图2,图3,图2得出系统2秒唤醒一次,每次唤醒很短时间系统恢复休眠㊂图3得出每次唤醒时间大概是25ms,唤醒后60Ω电阻电压约等于330mv㊂根据欧姆定律,得出电流:I=U/R=330mv/60Ω=5.5mA 即得出在系统唤醒工作时,电流约为5.5mA㊂得出系统工作的平均电流:i=5.5mA/(2000ms/ 25ms)=68uA即出系统的平均工作电流68uA㊂验证压力数据上传的时间在如下日志中㊂日志是包含了4G模块的信息,从StartReport开始代表4G模块开始上电㊂然后等待大约8秒以后,模块上电完成回复了(RDY OK[7])代表就绪㊂下面是模块找SIM卡(CPIN:READY OK[7])和找移动网络用了两秒时间㊂找到移动网络后,软件开始连接后台服务器,(+QIOPEN:1,0[7])代表设备和后台服务器连接建立完成了㊂到最后发送数据完成总共耗时13秒㊂因为模块上电时间固定是8秒,这个耗时是模块从断电到上电必须的,系统在此时间进行休眠等待㊂数据实际上传数据时间是5秒,这个时间满足产品需求上传数据后快速进入休眠状态㊂4㊀结论本系统设计利用了模块化设计理论,用软件对硬件电路分模块进行管理,对产品功耗实现了有效控制㊂软件通过控制MCU的各种工作模式相互切换,使MCU工作在低功耗㊂软件控制开关电路实现对硬件模块使用时进行供电,不用时断电㊂在进程调度上做细节优化,做到各个功能操作并行处理,完成了尽量少占用MCU资源,使整体设备功耗更低㊂当然对于功耗设计本产品还是有不足的地方,后续可以对于压力采集算法进行待优化比如采用DMA直传的形式㊂另外对于通讯模块选型,可以查找选择一个低功耗的通讯模块㊂最后希望在追求低功耗设备产品设计上,本文的设计思路和方法可以供相关产品借鉴参考㊂参考文献:[1]刘火良㊁杨森,FreeRTOS内核实现与应用开发实战指南:基于STM32[M],北京:机械工业出版社,2019. [2]王永虹㊁徐炜㊁郝立平,STM32系列ARM Cortex-M3微控制器原理与实践[M],北京航空航天大学出版社,2008.[3]张健㊁刘永民,嵌入式系统低功耗电路设计[J],光电技术应用,2005,20(6):1.[4]STMicroelectronics,‘RM0038_STM32L100xx, STM32L151xx,STM32L152xx和STM32L162xx单片机参考手册“[S],https://.[5]STMicroelectronics,‘DS8928_STM32L162VC, STM32L162RC单片机的数据手册“[S],https://www.stmcu. .[6]Quectel,‘Quectel-EC20-R2.0-硬件设计手册-V1.2“[S],https:///cn.[7]Quectel,‘Quectel_EC20_R2.0_AT_Commands_Manu-al_V1.1“[S],https:///cn.㊃86㊃。
ST STM32L562QE超低功耗32位ARM MCU开发方案

ST公司的stm32L562QE是超低功耗微控制器,基于高性能Arm® Cortex®-M33 32位RISC核,工作频率高达110MHz. Cortex®-M33核具有单精度浮点单元(FPU),支持所有的Arm®单精度数据处理指令和所有的数据类型.Cortex®-M33核还能实现全套的DSP指令和存储器保护单元(MPU),从而增强了应用安全性.器件嵌入了高速存储器(512KB闪存和256KB SRAM),用于静态存储器的灵活外接存储器控制器(FSMC), Octo-SPI闪存接口,一个广泛的增强I/O和连接到两个APB总线的外设,两个AHB总线和一个32位多个AHB总线矩阵.STM32L562xx器件还嵌入了用于嵌入闪存和SRAM的保护机制如读出保护,写保护,安全和隐藏保护区域.器件还嵌入了几个外设以增强安全性如一个AES协处理器,公众金钥加速器(PKA),抗DPA,一个用于Octo-SPI外接存储器的即时解密引擎,一个HASH硬件加速计和一个真随机号码发生器.此外,器件还提供高档通信接口包括四个I2C,三个SPI,两个USART,两个UART和一个低功耗UART,两个SAI,一个SDMMC,一个FDCAN,USB器件FS,USB Type-C / USB供电控制器.主要用在表计,健康(人或机器)监测,移动销售终端以及工业物联网(IoT)等应用领主.本文介绍了STM32L562QE主要特性,框图,多种系列产品电源概述图和时钟树图,开发板STM32L562E-DK Discovery kit主要特性,硬件框图,电路图和材料清单以及PCB设计图.The STM32L562xx devices are an ultra-low-power microcontrollersfamily (STM32L5 Series) based on the high-performance Arm® Cortex®-M33 32-bit RISC core. They operate at a frequency of up to 110 MHz.The Cortex®-M33 core features a single-precision floating-point unit (FPU), which supports all the Arm® single-precision data-processinginstructions and all the data types.The Cortex®-M33 core alsoimplements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) which enhances the application’s security.These devices embed high-speed memories (512 Kbytes of Flashmemory and 256 Kbytes of SRAM), a flexible external memory controller(FSMC) for static memories (for devices with packages of 100 pins andmore), an Octo-SPI Flash memories interface (available on all packages)and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.The STM32L5 Series devices offer security foundation compliant with the trusted based security architecture (TBSA) requirements from Arm.They embed the necessary security features to implement a secure boot, secure data storage, secure firmware installation and secure firmwareupgrade. Flexible life cycle is managed thanks to multiple levels of readout protection. Firmware hardware isolation is supported thanks to securable peripherals, memories and I/Os, and also to the possibility to configure the peripherals and memories as “privilege”.The STM32L562xx devices embed several protection mechanisms forembedded Flash memory and SRAM: readout protection, write protection, secure and hidden protection areas.ST STM32L562QE超低功耗32位ARM MCU开发方案The STM32L562xx devices embed several peripherals reinforcingsecurity:- One AES coprocessor- One public key accelerator (PKA), DPA resistant- One on-the-fly decryption engine for Octo-SPI external memories- One HASH hardware accelerator- One true random number generatorThe STM32L5 Series devices offer active tamper detection andprotection against transient and environmental perturbation attacks thanks to several internal monitoring which generate secret data erase in case of attack. This helps to fit the PCI requirements for point of sales applications. These devices offer two fast 12-bit ADC (5 Msps), two comparators, twooperational amplifiers, two DAC channels, an internal voltage referencebuffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bitPWM timers dedicated to motor control, seven general-purpose 16-bittimers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM). In addition, up to 22 capacitive sensing channels are available.STM32L5 Series also feature standard and advanced communicationinterfaces such as:- Four I2Cs- Three SPIs- Three USARTs, two UARTs and one low-power UART- Two SAIs- One SDMMC- One FDCAN- USB device FS- USB Type-C / USB power delivery controllerThe STM32L562xx devices embed an AES, PKA and OTFDEC hardware accelerator. The devices operate in the -40 to +85℃ (+105℃ junction) and -40 to +125℃ (+130℃ junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows thedesign of low-power applications.Some independent power supplies are supported like an analogindependent supply input for ADC, DAC, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, which can be supplied independently down to 1.08 V. A VBAT input allows to backup the RTC and backup the registers.The STM32L562xx devices offer seven packages from 48-pin to 144-pin. STM32L562QE主要特性:• 1.71 V to 3.6 V power supply• -40℃ to 85/125℃ temperature range•Batch acquisition mode (BAM)•187 nA in VBAT mode: supply for RTC and 32x32-bit backup registers •17 nA Shutdown mode (5 wakeup pins)•108 nA Standby mode (5 wakeup pins)•222 nA Standby mode with RTC•3.16 μA Stop 2 with RTC•106 μA/MHz Run mode (LDO mode)•62 μA/MHz Run mode @ 3 V (SMPS step-down converter mode)•5 μs wakeup from Stop mode•Brownout reset (BOR) in all modes except ShutdownCore•Arm®32-bit Cortex®-M33 CPU with TrustZone®and FPU ART Accelerator •8-Kbyte instruction cache allowing 0-wait-state execution from Flashmemory and external memories; frequency up to 110 MHz, MPU, 165DMIPS and DSP instructions Performance benckmark•1.5 DMIPS/MHz (Drystone 2.1)•442 CoreMark®(4.02 CoreMark®/MHz)Energy benchmark•370 ULPMark-CP®score•54 ULPMark-PP®score•27400 SecureMark-TLS®scoreMemories • Up to 512-Kbyte Flash, two banks read-while-write• 256 Kbytes of SRAM including 64 Kbytes with hardware parity check • External memory interface supporting SRAM, PSRAM, NOR, NAND and FRAM memories• OCTOSPI memory interfaceSecurity• Arm® TrustZone® and securable I/Os, memories and peripherals• Flexible life cycle scheme with RDP (readout protection)• Root of trust thanks to unique boot entry and hide protection area (HDP)• SFI (secure firmware installation) thanks to embedded RSS (root secure services)• Secure firmware upgrade support with TF-M• AES coprocessor• Public key accelerator• On-the-fly decryption of Octo-SPI external memories• HASH hardware accelerator• Active tamper and protection against temperature, voltage and frequency attacks• True random number generator NIST SP800- 90B compliant• 96-bit unique ID• 512-byte OTP (one-time programmable) for user dataGeneral-purpose input/outputs• Up to 114 fast I/Os with interrupt capability most 5 V-tolerant and up to 14 I/Os with independent supply down to 1.08 VPower management• Embedded regulator (LDO) with three configurable range output tosupply the digital circuitry • Embedded SMPS step-down converter• External SMPS supportClock management• 4 to 48 MHz crystal oscillator• 32 kHz crystal oscillator for RTC (LSE)• Internal 16 MHz factory-trimmed RC (±1%)•Internal low-power 32 kHz RC (±5%)•Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25% accuracy)•Internal 48 MHz with clock recovery•3 PLLs for system clock, USB, audio, ADCUp to 16 timers and 2 watchdogs•16x timers: 2 x 16-bit advanced motor-control, 2 x 32-bit and 5 x 16-bit general purpose, 2x 16-bit basic, 3x low-power 16-bit timers (available in Stop mode), 2x watchdogs, 2x SysTick timer•RTC with hardware calendar, alarms and calibrationUp to 19 communication peripherals • 1x USB Type-C™/ USB power delivery controller• 1x USB 2.0 full-speed crystal less solution, LPM and BCD• 2x SAIs (serial audio interface)• 4x I2C FM+(1 Mbit/s), SMBus/PMBus™• 6x USARTs (ISO 7816, LIN, IrDA, modem)• 3x SPIs (7x SPIs with USART and OCTOSPI in SPI mode)• 1x FDCAN controller• 1x SDMMC interface2 DMA controllers• 14 DMA channelsUp to 22 capacitive sensing channels• Support touch key, linear and rotary touch sensorsRich analog peripherals (independent supply)• 2x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 μA/Msps•2x 12-bit DAC outputs, low-power sample and hold•2x operational amplifiers with built-in PGA•2x ultra-low-power comparators•4x digital filters for sigma delta modulatorCRC calculation unit Debug•Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™(ETM)图1.STM32L562QE框图图2.STM32L562xx电源概述图图3.STM32L562xxxxP 电源概述图图4.STM32L562xxxxQ 电源概述图图5.STM32L562xx时钟树图。
能量采集新应用

能量采集新应用John Donovan贸泽电子前言随着手机从无线模拟电话机演变成掌上电脑,用户需要的耗电功能越来越多,如网页浏览、视频、游戏和电子邮件等,基此需要更长的电池续航时间。
可是,电池制造商并不能提供太多帮助,所以半导体制造商设计了诸多节能技术来满足这些需求。
这些技术已经取得了巨大的成功。
在过去10多年中,低功耗已成为最重要的电子设计标准。
基于摩尔定律推动和众多高智商的工程师的努力,半导体功耗水平急剧下降,在运行模式下的耗电通常是毫瓦级,而在待机模式下则是纳瓦级,从而使超低功耗无线无传感器网络最终成为可能并得到了引人瞩目的采用。
现在,传感器可以独立位于偏远或难以到达的区域,警告建筑物和桥梁的应力异常、空气污染、森林火灾、即将发生的滑坡、轴承磨损和机翼振动。
低功耗无线传感器网络是众多工业、医疗和商业应用的核心。
但是,离网型以及便携式传感器节点都依赖于电池供电,面临着与手机相同的问题。
在这类案例中,通过收集环境能源(通常以光、热、振动、动能或环境射频的形式提供)来延长电池续航时间是明智的做法。
如果设备的能量需求低到一定程度,并且电池的更换很困难或成本高昂,那么有可能会完全摒弃电池并全部依靠收集环境能源来供电。
超低功率MCU和能量采集相结合,已带来大量以前无法实现的应用。
展望未来几年,能量采集市场巨大并且增长迅速。
据IDTechEx的分析师表示,2012年能量采集市场规模为7亿美元,到2022年预计将超过50亿美元。
届时将有2.5亿个传感器由能量采集源供电。
到2023年,仅热电能量采集一项的市场就将达到8.65亿美元。
1当前的能量采集技术和应用目前,一些能量采集技术已得到广泛应用,也有一些创新技术才刚刚起步。
最常见的能量源有光、热、振动和射频,表1显示了它们各自环境的发生功表1最常见的能量源对象及其发生功率和采集功率的对比表率及采集功率的对比。
(1)太阳能几乎所有家庭或办公室都有至少一台太阳能计算器,这实际上是带一个纽扣电池和一小块帮助续航的前面板光伏(PV)电池的计算器。
基于RF2.4GHz的超低功耗无线数传系统设计

_1 。
基 于 RF 2 4GHz的 超 低 功 耗 无 线 数 传 系 统 设 计 .
孙 先 松
( 江大学 电子信息学院 , 州 442 ) 长 荆 3 0 3
摘 要 :当前 无 线 数 据 通 信 的 应 用 越 来越 广 泛 , 系统 设 计 的 微 型 化 、 功 耗 是 电 子 产 品 设 计 的 必 然 趋 势 。 本 文 在 分 析 而 低
ulr o p t a lw owe SP43 M CU nd 2 H z RF h p EM 1 81 rM 0 a .4 G c i 98 0,t i pe v s t r hs pa rgie heha dwa ean o t a ede i t a l r d s fw r sgn ofulr ow owe p r
Key wor s: M SP4 d 30; EM 1 81 98 0;ulr t a— l ow w e o u pton;w ie e s d a ta m iso po rc ns m i r l s at r ns s in
各 有 差 异 , 1列 出 了 几 种 常 用 芯 片 的 性 能 特 点 。 表
c n u t n a e t e i e ia l e d n i so lc r n cp o u td sg .Ba e n t e a ay i fc a a t rsis a d wo k n rn i l f o s mp i r h n v t b e t n e ce f e to i r d c e i n o e s d o h n l sso h r c e it n r ig p i cp e o c
2 7条 内核 指 令 以 及 大 量 的 模 拟 指 令 ; 量 的 寄 存 器 以 及 大 片 内数 据 存 储 器 都 可 参 加 多 种 运 算 ; 有 高效 的 查 表 处 理 具 指 令 ; 较 高 的 处 理 速 度 , 8MHz晶 振 驱 动 下 指 令 周 期 有 在
物联网传感器网络设备的低功耗解决方案

物联网传感器网络设备的低功耗解决方案据估计,物联网每年会产生100多个zettabytes(万亿千兆字节)的数据,而这个数字只会增加。
到2020年,平均家庭对这一数字的贡献数据预计将增加五倍。
创建数据不需要太多的计算能力,因为可以使用最简单的传感器集线器捕获,数字化和存储数据。
能够检测九轴运动的MEMS 传感器采用封装,每侧仅测量1或2毫米。
这些微型设备和越来越多的传感器构成了当今物联网的核心,使端点能够实时在线捕获,处理和共享数据。
由于预计更多端点可以在有限的电源下运行,从他们的环境中收获的能量,对超低功率运行的需求正在增加。
端点可以是更大传感器网络的一部分,但也可能是远程和隔离的。
一旦投入使用,它们可能会运行多年而无需维护,包括更换电池。
制造商正忙于开发新的解决方案来应对这一设计挑战,使我们能够设想可以收集和传输信息的设备需要任何外部电源。
在可穿戴设备的情况下,这可能很快就会包括仅由佩戴者的身体或其活动提供动力的设备。
Energize!为了说明如何实现这一点,请考虑块如图1所示。
在大多数应用中,功率部分可以是各种电源管理器件中的任何一种,但对于超低功耗应用,选择仅限于专门开发的解决方案,以最大限度地提高有限的可用功率,如收获能源。
图1:越来越多的集成解决方案现在主要针对主要来自收获能源的应用。
图2中的框图显示了使用ADI公司ADP5090电源管理单元的典型能量收集示例。
图2:框图基于ADI公司的ADP5090的能量收集应用。
这是一款集超大功率的超低功耗升压稳压器点跟踪(MPPT)和费用管理功能。
MPPT可配置为光电和热电能源,工作范围为16 W至200 mW。
该器件可以从低至380 mV的电源电压开始,仅从80 mV开始工作。
它还支持使用可选的原电池,可以自动切换和切换。
这款16引脚器件尺寸仅为3 mm×3 mm,体积小巧,功能强大,是许多物联网应用的理想选择。
该器件由评估和演示套件ADP5090-2-EVALZ(图3)提供支持,为开发能量收集应用提供了完美的平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用低功耗RF芯片与超低功耗MCU组合
如今低功耗射频产品线包括了多种专用及基于标准的低功耗、高性能CMOS RF-IC,可用于涵盖低于1GHz和2.4GHz的各种ISM频带的无线应用。
其产品包括了低功耗收发机及发射机、单芯片系统集成解决方案以及IEEE 802.15.4/ZigBeeTM兼容解决方案。
低功耗RF-IC产品可用于一系列的住宅、建筑领域以及消费电子的无线应用:家庭和工业自动化;即家居控智,安防报警;无线抄表;消费类电于娱乐产品;鼠标、键盘与无线USB及音频传输等领域。
然而在这些应用中很重要的技术问题是采用低功耗射频收发机及发射机与高性能的模拟和超低功耗微控制器产品系列相组合成各类集成低功耗射频技术应用方案,以达到构建报警及安全系统、自动化仪表读取系统、主动射频识别(RFID)系统及其他监测和控制系统之目的。
为此本文将以源自TI公司的Chipcon CCl100多通道射频收发机和CC2500射频收发机及TRF7960射频识别(RFID)读取器等低功耗RF-IC产品为例对其芯片应用特征和所构建的有源RFID和无源RFID方案组成与应用作分析说明。
有源RFID
RFID是一种自动获取关于人,物品,时间,地点,交易的信息或数据的方式。
几毫秒内完成识别操作,无可视要求,非接触,苛刻环境下工作,无人为错误。
ID“标签”可以保存唯一的ID号,向标签读写数据,执行加密和认证,同时读大量标签。
有源RFID系统由三部分组成(见图1)。