九年级期中考试数学试卷

合集下载

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题

山东省济南市历下区2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.2024年巴黎奥运会,中国体育健儿勇夺91枚奖牌,如图是本届奥运会的领奖台,其左视图是()A .B .C .D .2.已知点()13,A y -,()21,B y -和()32,C y 都在反比例函数()0ky k x=>的图象上,则1y ,2y 和3y 的大小关系是()A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.如图1是某班级的花架,图2是其侧面示意图,已知AB CD EF ∥∥,36cm AC =,35BD DF =,则AE 的长为()A .48cmB .60cmC .96cmD .120cm4.10月16日是世界粮食日.某校组织了粮食安全公益活动,现有“节粮宣讲员”、“光盘示范员”和“爱粮监督员”三类志愿者岗位身份,小霞和小艺从中任选一类,则她们恰好选到同一类岗位的概率是()A .14B .13C .12D .235.函数y kx k =-和()210k y k x+=-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .6.“黄金比例分割法”是启功先生研究的一套楷书结构法,是将正方形按照黄金分割的比例来分割,形成“黄金格”(如图,四条与边平行的线的交点都是黄金分割点),汉字的笔画至少要穿过两个黄金分割点才美观.若正方形“黄金格”的边长为8cm ,四个黄金分割点组成的正方形的边长为()A .()4cmB .()16cmC .(12cm-D .(24cm-7.如图,直线y x =-与双曲线()0ky k x=≠交于A ,B 两点,已知OA =表达式为()A .3y x=B .3y x=-C .9y x=D .9y x=-二、填空题8.如图,圭表是度量日影长度的一种天文仪器,垂直于地面的直杆叫“表”,水平放置于地面上刻有刻度以测量影长的标尺叫“圭”.当正午太阳照射在表上时,日影便会投影在圭面上,冬至日影最长,夏至日影最短.圭面上冬至线与夏至线之间的距离AB 的长为3.5m ,则表高为()(参考数据:冬至时,0.5≈表高影长;夏至时,3≈表高影长)A .2.1mB .2.4mC .56m .D .5.8m三、单选题9.如图,点光源O 射出的光线沿直线传播,将胶片上的建筑物图片AB 投射到与胶片平行的屏幕上,形成影像CD .已知3cm AB =,胶片与屏幕的距离EF 为定值,设点光源到胶片的距离OE 长为x (单位:cm ),CD 长为y (单位:cm ),y 随x 的变化而变化,且当60x =时,43y =,则y 与x 的函数关系可表示为()A .4360y x =B .233y x =+C .24003y x=+D .2580y x=10.已知反比例函数()22a y a x-=≠,点()11,M x y 和()22,N x y 是反比例函数图象上的两点.若对于12x a =,256x ≤≤,都有12y y >,则a 的取值范围是()A .502a -<<或522a <<B .532a -<<且2a ≠,0a ≠C .532a -<<-或02a <<D .5522a -<<且2a ≠,0a ≠四、填空题11.若()304n m m =≠,则n mm+=.12.近年来,济南环境保护效果显著,越来越多的候鸟选择来济过冬.为了解候鸟的情况,生物学家采用“捕获—标记—再捕获”的方法估计候鸟的数量.先随机捕捉40只候鸟,戴上标记卡并放回,经过一段时间后,重复进行5次捕捉.记录数据如下表,由此估计该区域约有只候鸟.累计捕捉数量(只)100200350420480带有标记卡数量(只)132444526013.坐落于济南市大明湖的超然楼是一座拥有700年历史的名楼,《周髀算经》中有“偃矩以望高”的测高方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC ),小明受到启发,利用“矩”测量超然楼DE 的高度.通过调整自己的姿势和“矩”的摆放位置,使AC 保持水平,点A 、B 、D 在同一直线上,90AFE DEF ∠=∠=︒,测得0.15m AB =,0.2m BC =, 1.7m AF =,37.5m EF =,则超然楼的高度DE =m .14.如图,点P ,Q ,R 在反比例函数()0ky x x=>的图象上,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为1S ,2S ,3S .若OE ED DC ==,2320S S +=,则k =.15.如图,在ABCD 中,4AB =,6AD =,45A ∠=︒,点E 为边AD 上的一个动点,连接EC 并延长至点F ,使得12CF CE =,以EB ,EF 为邻边构造BEFG ,连接CG ,则CG 的最小值为.五、解答题16.如图,一次函数4y kx =+的图象与反比例函数()0my x x=<的图象交于A ,B 两点,与y 轴交于点C ,()1,3B -,连接OA ,OB .(1)求k 和m 的值;(2)求AOB V 的面积.17.图1是小亮沿广场道路AB 散步的示意图,线段CD 表示直立在广场上的灯柱,点C 表示照明灯的位置,已知小亮身高1.5m ,6m CD =.(1)如图2,小亮站在E 处时与灯柱的距离9m ED =,则此时小亮的影长AE =m ;(2)如图3,小亮继续行至G 处时,发现其影长KG 恰为身高的一半,求此时小亮与灯柱的距离.18.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()2,6A ,()6,2B ,()10,0C .(1)以原点O 为位似中心画111A B C △,使它与ABC V 位似.若1112A B AB =在第一象限内画出111A B C △;(2)在(1)的条件下,求点1A的坐标.19.如图1,直角尺是机械行业中检验工件垂直度的常用工具.如图2,在矩形ABCD中,直角尺的顶点G在CD上滑动,当点E落在BD上时,另外两个顶点恰好与A,B重合.若==,求BD的长.BE AE22420.2024年8月8日是中国第16个“全民健身日”.为提高学生身体素质,积极倡导全民健身,某校开展了一分钟跳绳比赛.数学兴趣小组随机抽取了部分学生成绩,并对数据进行统计整理,以下是不完整的统计图表.一分钟跳绳成绩统计表成绩等级一分钟跳绳次数频数x≥nA160x≤<75B120160x≤<69C80120x<36D80请根据以上信息,完成下列问题.(1)随机抽取的学生人数为人,统计表中的n=,统计图中B等级对应扇形的圆心角为度;(2)该校共有800人参加比赛,请你估计该校成绩达到B等级及以上的有多少人?(3)该比赛服务组有两名男生和两名女生,现从中随机挑选两名同学负责跳绳发放工作,请用树状图法或列表法求出恰好选中“一男一女”的概率.21.如图1,在平面直角坐标系中,直线y x b =+与双曲线()10ky k x=≠交于()4,1A m +,(),3B m -.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出关于x 的不等式kx b x+<的解集;(3)如图2,将直线y x b =+向上平移a 个单位长度得到直线l ,直线l 与反比例函数()2130y x x=-<的图象交于C ,D 两点,与双曲线1k y x =在第一象限内交于点E ,连接BD ,EA ,若四边形ABDE 是平行四边形,求a 的值.22.2024年9月,济南港—寿光港集装箱业务的首船作业,标志着小清河复航业务再结硕果.集装箱搬运车是为了更高效地对集装箱进行搬运和叠放,当液压撑杆与吊臂垂直且吊臂完全伸展开时,集装箱搬运车的抓手可以达到最大高度.如图1是抓手达到最大高度时的示意图,四边形ABCD 为矩形,5m AB =,0.9m BC =,AE BF ⊥,延长FB DC ,交于点H , 1.2m CH =.(1)求此时液压撑杆AE 的长;(2)已知吊臂BF 最长为9.5m ,抓手0.5m FG =,某批集装箱的长宽高如图2所示,使用该款搬运车最多能将集装箱在地面上叠放几层?请通过计算说明.23.小光根据学习函数的经验,探究函数11y x =-的图象与性质.(1)刻画图象①列表:下表是x ,y 的几组对应值,其中a =,b =;x …4-2-1-0122334544332234 (11)x -…15-13-12-1-2-a4-4321b13…②描点:如图所示;③连线:请用平滑的曲线顺次连接.(2)认识性质观察图象,完成下列问题:①当1x >时,y 随x 的增大而;②函数11y x =-的图象的对称中心是.(填写点的坐标)(3)类比探究①小光发现,函数11y x =-的图象可以由反比例函数1y x =的图象经过平移得到.请结合图象说明平移过程;②函数43y x =-的图象经平移可以得到函数42=+y x 的图象,请说明平移过程.24.(1)在ABC V 和DEC 中,AB AC =,DE DC =,90BAC EDC ∠==︒.①如图1,当CE 与AC 重合时,BEAD=;②如图2,DEC 绕点C 逆时针旋转一定角度,连接AD ,BE ,BEAD的值是否改变?请说明理由;(2)如图3,正方形ABCD 的边长为2,E 为边AB 上一动点,以CE 为斜边在正方形ABCD 内部作等腰直角CFE △,90CFE ∠=︒,连接AF ,BF ,当AFE ABF ∠=∠时,求BE 的长.25.某数学兴趣小组学习了反比例函数后,进一步研究反比例函数8y x=的图象,他们在平面直角坐标系内选定点133,2P ⎛⎫- ⎪⎝⎭,过点P 作直线,并将图象沿该直线按一定的操作翻折,探究过程如下:【动手操作】操作1:如图1,过点P 作x 轴的平行线l ,将直线l 上方的反比例函数图象沿直线l 翻折得到新图象,与第一、三象限未翻折的图象组成“X 图象”.操作2:如图2,过点P 作y 轴的平行线m ,将直线m 左侧的反比例函数图象沿直线m 翻折得到新图象,与第一、三象限未翻折的图象组成“Y 图象”.操作3:如图3,过点P 作直线n :152y x =-+,将第一象限内反比例函数的图象在直线n 下方的部分沿直线n 翻折得到新图象,与直线n 下方的图象组成的封闭图象是“Z 图象”.试卷第11页,共11页【解决问题】(1)如图1,求“X 图象”与x 轴的交点C 的坐标;(2)过x 轴上一点(),0Q t 作y 轴的平行线,与“Y 图象”交于点M ,N .若3MN QN =,求t 的值;(3)如图3,反比例函数()80y x x =>的图象与直线n 交于点E ,F ,已知点G 和点H 是“Z 图象”上的两个动点,当以点E ,G ,F ,H 为顶点的四边形面积最大时,直接写出点G 和点H 的坐标.。

陕西省渭南市部分学校2024-2025学年九年级上学期期中考试数学试题

陕西省渭南市部分学校2024-2025学年九年级上学期期中考试数学试题

陕西省渭南市部分学校2024-2025学年九年级上学期期中考试数学试题一、单选题1.某几何体如图水平放置,其左视图是()A .B .C .D .2.若把方程2410x x --=化为2()x m n +=的形式,则n 的值是()A .5B .2C .2-D .5-3.为了估计鱼塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼,通过多次重复试验后发现捕捞的鱼中有做记号的频率稳定在2.5%左右,则估计鱼塘中鱼的条数为()A .600条B .1000条C .1200条D .2200条4.如图,晚上小亮在路灯下散步,他从A 处向着路灯灯柱方向径直走到B 处,这一过程中他在该路灯灯光下的影子()A .逐渐变短B .逐渐变长C .先变短后变长D .先变长后变短5.某班准备从《我爱你中国》《我和我的祖国》《让世界充满爱》《在灿烂阳光下》四首歌曲中任选两首进行排练,以参加市级合唱大赛,那么该班恰好选中《我和我的祖国》和《在灿烂阳光下》这两首歌曲的概率是()A .12B .14C .16D .186.如图,在正方形ABCD 中,AC 为其对角线,点E 为AC 上一个动点,连接BE ,DE ,过D 作DF BE ∥交AC 于F ,连接BF .下列结论错误的是()A .BE DE=B .ADE FDC ∠=∠C .BC CE =D .AE CF=7.在同一直角坐标系中,若0ab <,则函数y ax b =+与b y x =的大致图象是()A .B .C .D .8.如图,在矩形ABCD 中,点E ,F 分别是边,AB BC 的中点,连接,EC FD .点G ,H 分别是,EC FD 的中点,连接GH .若6AB =,10BC =,则GH 的长度为()A .B .CD .2二、填空题9.菱形的两条对角线的长分别为6和8,则这个菱形的周长为.10.如图,AB DE ∥,连接,BD AE 交于点C ,若2BC =,1DC =,ABC EDC S kS =△△.则k 的值为.11.某种服装,平均每天可销售30件,每件赢利40元,网查发现,若每件降价1元,则每天可多售6件,如果每天要赢利2100元,每件应降价多少元?设该服装每件降价x 元,根据题意可列方程.12.如图,点A 在反比例函数()20y x x -=<的图象上,点B 在反比例函数()0k y x x =>的图象上,AB x ∥轴,点C 是x 轴上的一点,若ABC 的面积为52,则k 的值为.13.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC 中,DB =1,BC =2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,则CD 的长为.三、解答题14.解方程:2(1)2(1)x x x -=-.15.在一个不透明的盒子里装有若干个白球和35个黄球,这些球除颜色不同外其余均相同,每次从盒子里摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到白球的频率稳定在0.3左右,请估计盒子里白球的个数.16.如图,在ABC V 中,AB AC =,点D 是BC 上一点,BD CD =,CE AB ⊥于点E ,连接AD .求证:ABD CBE ∽△△.17.如图,在平面直角坐标系中,ABC V 的顶点坐标分别为()2,2A -,4,0B -,()4,4C --.(1)在y 轴右侧,以原点O 为位似中心,画出A B C ''' ,使它与ABC V 位似,且相似比为12:(点A ,B ,C 的对应点分别为点A ',B ',C ');(2)在(1)的条件下,求A B C ''' 的面积.18.如图,小明欲测量一座信号发射塔的高度.他站在该塔的影子上前后移动,直到他自己影子的顶端正好与塔的影子的顶端重合,此时他距离该塔20米(20CE =米),他的影长2AE =米,已知小明的身高 1.8DE =米,点E 在AC 上,且BC AC ⊥,DE AC ⊥,求信号发射塔的高度BC .19.某班四个数学小组,准备研读四部古代数学著作.现制作背面完全相同的4张卡片,正面分别写有《九章算术》《周髀算经》《五经算术》《数術记遗》,将4张卡片混合后正面朝下放置在桌面上,每个小组选一代表从中依次抽取一张卡片.(1)第一学习小组抽到《五经算术》的概率是__________________________.(2)若第一和第二小组依次从中抽取一张,请利用列表或画树状图的方法,求这两组抽取的两张卡片正面写的是《九章算术》和《周髀算经》的概率.20.已知反比例函数21kyx+ =.(1)若该函数图象在第二、四象限,求k的取值范围;(2)当k取什么值时,在每个象限内y随x的增大而减小?21.如图,四边形ABCD为菱形,E为对角线AC上的一个点,连接DE并延长交AB的延长线于点F,连接BE.求证:AFD EBC∠=∠.22.很多学生由于用眼不科学,导致视力下降,需要佩戴眼镜.研究发现,近视眼镜的度数y(度)与镜片焦距x(米)成反比例函数关系,其函数图象如图所示.(1)当近视眼镜的度数是200度时,镜片焦距是多少米?(2)明明原来佩戴275度的近视眼镜,经过一段时间的矫正治疗并注意用眼健康,复查验光后,所配镜片的焦距调整到了0.4米,则明明的眼镜度数下降了多少度?23.已知关于x 的方程22(23)340x m x m m -+++-=.(1)求证:无论m 取何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2x =,求m 的值.24.如图,点E 是ABCD 对角线AC 上的点(不与A ,C 重合),连接BE ,过点E 作EF BE ⊥交CD 于点F .连接BF 交AC 于点G ,BE AD =,FEC FCE ∠=∠.(1)求证:ABCD 是矩形;(2)若点E 为AC 的中点,求ABE ∠的度数.25.如图1,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成.(1)要使所围矩形猪舍的面积达到250m ,求猪舍的长和宽.(2)农户想在现有材料的基础上扩建矩形猪舍面积达到260m ,小红为该农户提出了一个意见:“为方便进出,在垂直于住房墙的一边留一个1m 宽的门就行”,如图2,请通过计算求小红设计的猪舍的长和宽?26.如图1,在等腰三角形ABC 中,10AB AC ==,12BC =,有两动点P 、Q 分别在边AB 、BC 上运动,点P 的速度为每秒1个单位长度,点Q 的速度为每秒2个单位长度,它们分别从点A 和点B 同时出发,点P 沿线段AB 按A B →方向向终点B 运动,点Q 沿线段BC 按B C →方向向终点C 运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t 秒,请解答下列问题:(1)如图1,当t为何值时,PQ ACV相似;(2)当t为何值时,以点P、B、Q为顶点的三角形与ABC△的面积等于4?若存在,请求出t (3)点P、Q在运动过程中,是否存在这样的t,使得PCQ的值;若不存在,请说明理由.。

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)

2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。

2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。

3.答案全部涂、写在答题卡上,写在本卷上无效。

考试结束后,将答题卡交回。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。

广东省汕头市潮阳区2024-2025学年九年级上学期期中考试数学试题

广东省汕头市潮阳区2024-2025学年九年级上学期期中考试数学试题

广东省汕头市潮阳区2024-2025学年九年级上学期期中考试数学试题一、单选题1.下面四幅图形是用数学家名字命名的,其中是轴对称图形,但不是中心对称图形的是()A .科克曲线B .笛卡尔心形线C .赵爽弦图D .斐波那契螺旋线2.抛物线221y x =-+的对称轴是()A .直线12x =B .直线1x =-C .直线0x =D .直线2x =3.若一元二次方程20ax bx c ++=中的a ,b ,c 满足0a b c ++=,则方程必有根()A .0x =B .1x =C .1x =-D .1x =±4.已知(),2A a -和()4,B b 关于原点对称,则a b -的值为()A .6B .6-C .2D .4-5.若二次函数()22y mx x m m =++-的图象经过原点,则m 的值为()A .2B .0C .2或0D .16.已知m ,n 是方程2310x x --=的两根,则24m m n --的值为()A .-3B .-2C .-1D .47.如图,在ABC V 中,90ACB ︒∠=,将ABC V 绕点C 逆时针旋转θ角到DEC 的位置,这时点B 恰好落在边DE 的中点,则旋转角θ的度数为().A .60︒B .45︒C .30︒D .55︒8.已知二次函数222(0)y m xm x m =-+≠在22x -≤≤时有最小值−2,则m =()A .4-或-12B .4或-12C .4-或12D .4或129.如图,把Rt ABC △放置在平面直角坐标系中,90C ∠=︒,已知点A 是x 轴上的定点,点B 的坐标为0,2.将Rt ABC △绕点A 逆时针旋转60︒,旋转后点C 恰好与点O 重合,则旋转前点C 的坐标是()A .()4B .(2,C .)D .10.如图,在平面直角坐标系xOy 中,菱形ABDC 的边AB 在x 轴上,顶点C 在y 轴上,()3,0A -,()0,4C ,抛物线28y ax ax c =-+经过点C ,且顶点M 在直线BC 上,则a 的值为()A .25B .12C .34D .23二、填空题11.若关于x 的方程221x mx m -=-有一个根为1-,则m =.12.二次函数2y x =的图象向左平移2个单位长度,得到新的图象的二次函数解析式是.13.抛物线2y ax bx c =++的部分图象如图所示,则当0y >时,x 的取值范围是;14.如图,O 是正ABC V 内一点,3OA =,4OB =,5OC =.将线段BO 绕B 逆时针旋转60︒得到线段BO ,那么AOB ∠=.15.已知二次函数()()2140y a x a =-+≠的图象L 如图所示,点O 是坐标系的原点,点P 是图象L 对称轴上的动点,图象L 与y 轴交于点C ,则PCO △周长的最小值是.三、解答题16.用适当的方法解方程:()440x x x --+=17.已知函数21(1)45m y m x x +=-+-是二次函数;(1)求m 的值;(2)写出这个二次函数图象的开口方向、对称轴和顶点坐标.18.如图,ABC V 三个顶点的坐标分别为()2,4A ,()1,1B ,()4,3C .(1)请画出ABC V 关于原点对称的111A B C △,并写出1A 的坐标;(2)请画出ABC V 绕点B 逆时针旋转90︒后的222A B C △,并写出2A 的坐标.19.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.20.如图,在四边形ABCD 中,AC ,BD 是对角线,ABC V 是等边三角形.线段CD 绕点C 顺时针旋转60︒得到线段CE ,连接AE .(1)求证:AE BD =;(2)若30ADC ∠=︒,3AD =,5BD =,求CD 的长.21.某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额1y (万元)与销售量x (吨)的函数解析式为15y x =;成本2y (万元)与销售量x (吨)的函数图象是如图所示的抛物线的一部分,其中17,24⎛⎫ ⎪⎝⎭是其顶点.(1)求出成本2y 关于销售量x 的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额-成本)22.如图1,四边形ABCD 是正方形,E ,F 分别在边BC 和CD 上,且45EAF ∠=︒(此时12EAF BAD ∠=∠),我们把这种模型称为“半角模型”;小明为了解决线段EF BE DF ,,之间的关系,将ADF △绕点A 顺时针旋转90︒后(如图2)解决了这个问题.(1)写出线段EF BE DF ,,之间的数量关系,并说明理由.(2)如图3,等腰Rt ABD △中,90BAD ∠=︒,AB AD =,点E ,F 在边BD 上,且45EAF ∠=︒,请写出EF BE DF ,,之间的数量关系,并说明理由.23.如图,抛物线()260y ax bx a =++≠与x 轴交于()1,0A -,()3,0B 两点,顶点为D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,使得45BMO ∠=︒,过点O 作OH OM ⊥交BC 的延长线于点H ,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标,请说明理由.。

湖南省娄底市双峰县2024-2025学年九年级上学期11月期中数学试题(含答案)

湖南省娄底市双峰县2024-2025学年九年级上学期11月期中数学试题(含答案)

双峰县2024年下学期九年级期中考试数学试卷时量:120分钟 满分:120分考生注意:1.本学科试卷分试题和答题卡两部分,满分120分。

2.请在答题卡上作答,答在试卷上无效。

一.选择题(本题共10小题,每小题3分,共30分)1.下列方程中是一元二次方程的是( )A .B .C .D .2.若反比例函数的图象上有两点,则与的大小关系( )A .B .C .D .无法确定3.如果(其中),那么下列式子中不正确的是( )A .B .C .D .4.方程的解是( )A .B .C .D .5.关于反比例函数,下列说法中错误的是( )A .时,y 随x 的增大而减少B .当时,C .它的图像位于二、四象限D .当时,有最小值6.如图,若直线,且,则( )20ax bx c ++=2211x x +=()()121x x -+=223250x xy y --=1y x =()1213,,,2A y B y ⎫⎛-- ⎪⎝⎭1y 2y 12y y >12y y <12y y =a c b d=0,0b d >>a b c d b d ++=a b c d b d --=a c c b d d +=+a d b c=()2x x x -=3x =0x =120,3x x ==121,3x x ==3y x=0x >13x <<13y <<1x ≤-y 3-123l l l ∥∥:2:3,15DE EF AC ==BC =A .5B .6C .9D .107.新能源汽车已逐渐成为人们喜爱的交通工具,据某品牌新能源汽车经销商7月份至9月份统计,该品牌新能源汽车7月份销售1000辆,9月份销售1690辆.设月平均增长率为,根据题意,下列方程正确的是( )A .B .C .D .8.若是关于的方程的一个根,则的值是( )A .2022B .2026C .2020D .20199.验光师检测发现近视眼镜的度数(度)与镜片焦距(米)成反比例,关于的函数图象如图所示.经过一段时间的娇正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了( )度.A .150B .200C .250D .30010.在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听,他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来,后来人们将这个数称为黄金分割数.设,记,,,,则的值为( )x 21690(1)1000x -=21000(1)1690x +=()1000121690x +=()1000121690x x ++=a x 2310x x --=2202462a a +-y x y x a b ==11111S a b =+++2221111S a b =+++3331111S a b =+++ 100100100111a 1b S =+++123100S S S S ++++A .B .C .100D .505二.填空题(本题共8小题,每小题3分,共24分)11.如果,则_________.12.若是一元二次方程的两个根,则_________.13.若关于的一元二次方程有两个实数根,则实数的取值范围是_________.14.已知函数是反比例函数,则的值为_________.15.一个长方体物体的一顶点所在三个面的面积比是,如果分别按、面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为、(压强的计算公式为),则_________.16.如图所示的两个四边形相似,则的度数是_________。

山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题

山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题

山东省青岛市2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.若一元二次方程2352x x =+的二次项系数是3,则它的常数项是()A .2-B .2C .5-D .52.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有黑白两色棋子共10枚,每枚棋子除颜色外都相同.将盒子中的棋子搅拌均匀,从中随机摸出一枚棋子,记下它的颜色后再放回盒子中.不断重复这一过程,共摸了100次,发现有71次摸到白色棋子,则盒子中黑色棋子可能有()A .2.9枚B .3枚C .7枚D .7.1枚3.某学校致力于劳动教育的探索与实践,在校内设立了“田园风光”和“耘梦园”两个相似的矩形劳动场所,它们的相似比是1:2.若两个劳动场所种植相同品种的蔬菜,在每平方米所需农资成本(主要包括化肥、农药以及灌溉用水)不变的情况下,“田园风光”的农资成本为200元,则“耘梦园”的农资成本为()A .800元B .400元C .100元D .50元4.如图,四边形ABCD 是正方形,ADE V 是等边三角形,则ECB ∠的度数是()A .15︒B .30°C .60°D .75︒5.黄金分割在文艺复兴时期被视为金子般的比例,比值约等于0.618.有研究发现,成人的理想体重与身高的关系是:体重(kg )=身高()()cm 10.618⨯-.若王老师的身高是170cm ,下列选项中,最接近她的理想体重的是()A .60kgB .63kgC .65kgD .67kg6.关于x 的一元二次方程257x mx +=的根的情况是()A .无法确定B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根7.如图,在菱形ABCD 中,2BAD ABC ∠=∠,4cm AC =,则BD 的长为()A .2cmB .C .4cmD .8.秋冬季是支原体肺炎的感染高发期,佩戴口罩是遏制支原体肺炎病毒传播的一种有效途径.若有一个人患了支原体肺炎,经过两轮传染后共有81人患了支原体肺炎(假设每个人每轮传染的人数同样多).设每轮传染中平均一个人传染了x 个人,可列方程为()A .()181x x +=B .()181x x x ++=C .2181x x ++=D .()1181x x x +++=9.某学校开展“校园文化艺术节”文艺汇演活动,现打算从5名(2名男生和3名女生)候选人中随机选取3人担任本次活动的主持人,则选中的3人恰好都是女生的概率是()A .25B .35C .110D .31010.如图,把矩形ABCD 和矩形CEFG 拼成如图所示的图案,已知3AB =,4BC =,6CE =,8EF =,M 是AF 的中点,则CM 的长为()A .5BCD .二、填空题11.在中华人民共和国75周年华诞到来之际,某学校开展了“我心绘版图美丽白纸坊”手绘地图活动.小明绘制了一张比例尺为1:10000的青岛城区交通游览图,栈桥的图上长度约为4.4cm ,则栈桥的实际长度约为m .12.在正常情况下,10米跳台跳水运动员必须在距水面不小于5m 时完成规定的翻腾动作,并且调整好入水姿势,否则就容易出现失误.假设运动员距离水面的高度h (m )和运动员起跳后的运动时间t (s )之间满足关系:210 2.55h t t =+-,则当5h =时,210 2.555t t +-=即2220t t --=.t1.1 1.2 1.3 1.42220t t --=0.68-0.32-0.080.52根据表格中的对应值,可判断运动员完成动作的时间最多不超过s .(精确到0.1)13.为了加强学生国防教育,某校举办了主题为“爱我中华,强我国防”的演讲比赛,甲、乙、丙、丁四名学生分在同一个小组,赛前需要以抽签的方式确定出场顺序,主持人将表示出场顺序的卡片(除正面分别写有1,2,3,4外,其余完全相同)背面朝上放在桌面上,洗匀后先由甲随机抽取一张,然后由乙随机抽取一张,甲、乙抽到的出场顺序相邻的概率为.14.如图,在ABCD 中,对角线AC 与BD 相交于点O ,ABO 是等边三角形.若3AB =,则ABCD 的面积=.15.如图,一次函数25y x =+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上(不与点A ,B 重合),过点P 作OB 的垂线,垂足为C ,连接OP ,过点C 作CD OP ∥,交x 轴于点D .若四边形PCDO 的面积为2,则点P 的坐标为.16.在平面直角坐标系中,Rt OAB 的位置如图所示,在直线OA 上依次取点1A ,2A ,3A …n A ,使12AA OA =,123A A OA =,234A A OA =,…,()11n n A A n OA -=+,分别过点1A ,2A ,3A …n A 作OA 的垂线,交x 轴于点1B ,2B ,3B …n B ,依次连接1AB ,12A B ,23A B …1n n A B -.若OAB △的面积为1,则1n n n A A B - 的面积=.三、解答题17.解下列方程(1)254x x =;(2)2412x x +=;(3)22760x x -+=;(4)()()2351x x --=.18.“回文”是指正读反读都能读通的句子,是古今中外都有的一种修辞手法和文字游戏.例如“处处飞花飞处处,潺潺碧水碧潺潺”等.在数学中,如果一个正整数从左往右读与从右往左读都一样,那我们称之为回文数,例如11,22,121…都是回文数.将牌面数字分别为0,1,2,3四张纸牌(除牌面数字外,其余均相同)背面朝上,洗匀后放在桌面上,小明先从中随机抽取一张,记下数字后放回并洗匀,小红再从中随机抽取一张.将小明、小红抽取的数字分别作为一个四位数(该四位数的千位数字和个位数字均为2)的百位和十位数字.请用列表或画树状图的方法求组成的四位数是回文数的概率.19.对于几何图形,我们通常是从它的定义、性质、判定和应用等方面进行研究,并且都是从组成图形的元素及相关元素之间的关系进行探究.观察、实验、归纳、类比、猜想、证明等是我们常用的探究方法.【定义】如图①,在四边形ABCD 中,BA BC =,DA DC =,我们把这种有两组邻边分别相等的四边形叫做筝形.不相邻的两个顶点连成的线段叫做它的对角线,线段AC 就是它的一条对角线.【性质】请结合图①,写出筝形ABCD 具有的性质.(任意写出2条你认为正确的即可)例如:∵四边形ABCD 是筝形∴BA BC =,DA DC=性质1:______;性质2:______.【判定】下列条件能够判定四边形ABCD 是筝形的有______.(将所有正确的序号填在横线上)①AB BC =且AD CD =;②BAD BCD ∠=∠;③AC BD ⊥且OA OC =;④ABD CBD ∠=∠.【应用】如图②,在筝形ABCD 中,AB AD =,BC CD =,请利用无刻度的直尺和圆规,在筝形ABCD 内部找一点P ,连接PB ,PD ,使折线B P D --恰好将筝形ABCD 的面积分为相等的两部分.(保留作图痕迹,不写作法)20.如图,在Rt ABC △中,90BAC ∠=︒,D 为BC 中点,连接AD ,取AD 的中点E ,过点D 作DF AC ∥,交CE 的延长线于点F ,连接AF .(1)求证:AC DF =;(2)已知______(从以下两个条件中任选一个作为已知,填写序号),请判断四边形AFDC 的形状,并证明你的结论.条件①:30B ∠=︒;条件②:CF 平分ACD ∠.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)21.面向日益严峻的气候变化形势,以发展新能源汽车推动道路交通领域零碳转型已成为全球共识.我国政府不断加大对新能源汽车的支持和推动,新能源汽车的市场需求正在不断增加.下表是一款某品牌新能源热门车型7月份和9月份的全国销量情况:月份7月9月销量/万辆 2.5 3.6(1)求该款车销量的月平均增长率.(2)青岛一个该品牌4S 店购进一批该款车型进行销售,已知进价为每辆6万元.经试销发现:当该款汽车售价为7.5万元时,平均每月销量为150辆;而当售价每降低0.1万元时,平均每月就能多售出15辆.为了扩大销量,该4S 店决定降价促销,若该4S 店想要维持利润不变,该款车的售价应为每辆多少万元?22.如图,点P 为线段AB 上一点,在AB 的同侧作等腰直角三角形PAC 和等腰直角三角形PBD ,AD 与BC ,PC 分别相交于点E ,F ,BC 与PD 交于点H .(1)求证:APD CPB △∽△;(2)求FEH ∠的度数.23.如图,在菱形ABCD 中,对角线12AC cm =,16BD cm =,在Rt QEF 中,90QEF ∠=︒,边QE 和BO 重合,边EF 和OC 重合.如图②,QEF △从图①所示位置出发,沿B 方向匀速运动,速度为1/s cm ;同时,动点P 从点D 出发,沿DA 方向匀速运动,速度为2/s cm .连接AQ ,PE .设运动时间为()s t ()05t <<.解答下列问题:(1)当t 为何值时,AOQ △为等腰三角形?(2)当PE AQ 时,求t 的值;(3)在运动过程中,是否存在某一时刻t 值,使DPE 与EFQ △相似?若存在,求出t 的值;若不存在,请说明理由.。

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷

福建省厦门双十中学2024-2025学年上学期期中考试九年级数学试卷一、单选题1.一抛物线的形状、开口方向与抛物线212y x =相同,顶点为()2,1,则此抛物线的解析式为()A .()21212y x =-+B .()21212y x =+-C .()21212y x =++D .()21122x y --=2.如图将ABC V 绕点A 顺时针旋转90︒到ADE V ,若50DAE ∠=︒,则CAD ∠等于()A .30︒B .40︒C .50︒D .90︒3.我国古代数学的许多创新与发明都在世界上具有重要影响.下列图标是中心对称图形的是()A .B .C .D .4.将抛物线y =x 2平移得到抛物线y =(x -5)2,下列平移方法正确的是()A .向左平移5个单位B .向右平移5个单位C .向上平移5个单位D .向下平移5个单位5.已知关于x 的一元二次方程22590x x k ++-=的常数项为0,则k 的值为()A .9B .3C .3-D .3±6.若2x =是关于x 的一元二次方程220ax bx -+=的解,则代数式20242a b +-的值为().A .2022B .2023C .2024D .20257.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B (2,-l ),C (-m ,-n ),则点D 的坐标是()A .(-2,l )B .(-2,-l )C .(-1,-2)D .(-1,2)8.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为()A .7B .8C .9D .109.如图,在ABC V 中,90308C A AC ∠=︒∠=︒=,,,点O 为AC 的中点,将ABC V 绕点O 按逆时针方向旋转得到A B C ''' ,点A ,B ,C 的对应点分别为A B C ''',,.当A '落在AB 边上时,两个三角形重叠部分(阴影部分)的面积为()A .833B .4C .D .10.已知a 、b 、m 、n 为互不相等的实数,且(a +m )(a +n )=2,(b +m )(b +n )=2,则ab-mn 的值为()A .4B .1C .﹣2D .﹣1二、填空题11.已知抛物线()2221y x =--+,当2x >时,y 随x 的增大而.12.请写出一个关于x 的一元二次方程;并且方程有两个相等的实数根.则这个一元二次方程可以是.13.如图,用48m 长的篱笆靠墙(墙足够长)围成一个面积是2300m 的长方形鸡场,鸡场有一个2m 的门,设与墙垂直的边长为m x ,所列方程是.14.若抛物线28y x x k =-+与x 轴只有一个公共点,则k 的值为.15.二次函数²y ax bx c =++自变量和对应函数值的部分对应值如下表所示,则关于x 的不等式.²50ax bx c ++-≤的解集为x 4-3-2-1-012y13854581316.如图,一段抛物线:(3)(03)y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;L ,如此进行下去,直至得2024C ,若(,2)P m -在第2024段抛物线2024C 上,则m =.三、解答题17.解方程:x 2+4x+1=0.18.为了让大家都能用上实惠药,医保局与药商多次谈判,将一种原价每盒100元的药品,经过两次降价后每盒64元,两次降价的百分率相同,求每次降价的百分率.19.如图,在ABC V 中,2AB =, 3.6BC =,=60B ∠︒,将ABC V 绕点A 按顺时针旋转一定角度得到ADE V ,当点B 的对应点D 恰好落在BC 边上时.(1)作出ADE V ;(要求:尺规作图,保留作图痕迹,不写作法)(2)求CD 的长.20.如图,x 轴上依次有A B C D E F ,,,,,六个点,且AB BC CD DE EF =====2,从点A 处向右上方沿抛物线.2412y x x =-++.发出一个带光的点P .(1)求抛物线顶点坐标;并在图中补画出y 轴;(2)若抛物线上点(,)P m n ,若06m <<,直接写出n 的取值范围为.21.已知关于x 的一元二次方程()()220a b x cx b a +++-=,其中a ,b ,c 分别为ABC V 三边的长.(1)如果1x =-是方程的根,试判断ABC V 的形状,并说明理由;(2)如果ABC V 是等腰直角三角形,c 为斜边,解这个一元二次方程.22.综合与实践数学兴趣小组在学习了二次函数之后,对物理学中的探究实验“阻力对物体运动的影响”又有了新的认识.对一个静止的小球从斜坡滚下后,在水平木板上运动的速度、距离与时间的关系进行了深入探究.兴趣小组先设计方案,再进行测量,然后根据所测量的数据进行分析,并进一步应用,请完成下列任务.【实验过程】如图1所示,一个黑球从斜坡顶端由静止滚下沿水平木板直线运动.从黑球运动到A 点处开始,用频闪照相机、测速仪测量并记录黑球在木板上的运动时间t (单位:s )、运动速度v (单位:/s cm )、滑行距离y (单位:cm )的数据.【收集数据】记录的数据如下:运动时间t /s 03691215…运动速度V /(/s cm )108.57 5.54 2.5…运动距离y /cm27.755169.758493.75…【建立模型】根据表格中的数值分别在图2、图3的平面直角坐标系中描点、连线;通过观察图像发现,我们可以用一次函数近似地表示v 与t 的函数关系,用二次函数近似地表示y 与t 的函数关系.请直接写....出v 与t 的函数关系式和y 与t 的函数关系式(不要求写出自变量的取值范围).①当黑球在水平木板上滚动了64cm 时,运动速度是多少?②若黑球到达木板A 点处的同时,在前方70cm 处有一辆电动小车,以2/s cm 的速度匀速向右直线运动,则黑球能否追上小车?请说明理由.23.在平面直角坐标系中,设二次函数()21232y x m m =--+-(m 是实数).(1)当2m =时,若点()8,A n 在该函数图象上,求n 的值.(2)小明说二次函数图象的顶点在直线132y x =-+上,你认为他的说法对吗?为什么?(3)已知点()1,P a c +,()45,Q m a c -+都在该二次函数图象上,是否存在m ,使得c 存在最大值,若存在,求出最大值,若不存在,请说明理由.24.综合与实践:问题情景:如图1、正方形ABCD 与正方形AEFG 的边AB ,()AE AB AE <在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为α,在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE ,DG .(1)操作发现:当正方形AEFG 旋转至如图2所示的位置时,求证:BE DG =;(2)操作发现:如图3,当点E 在BC 延长线上时,连接FC ,求FCE ∠的度数;(3)问题解决:如图4,如果45α=︒,2AB =,AE =G 到BE 的距离.25.已知抛物线22y ax bx =+-的顶点是P ,且交x 轴于()2,0A -,()2,0B 两点.(1)求抛物线的函数表达式;(2)过原点O 的直线与抛物线交于C ,D 两点,其中点C 在y 轴的左侧.①若直线CD 的表达式为y x =,求PCD △的面积;②若C ,E 两点关于y 轴对称,O ,Q 两点关于P 对称,求证:D ,E ,Q 三点共线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中考试数学试卷
初三 班 姓名 座号 得分
一、选择题(每小题4分,共40分)
1、方程224x x =的根为 ( )
A .0x =
B .2x =
C .120,2x x ==
D .以上都不对
2、等腰三角形两边长分别是2和7,则它的周长是( )
A .9
B .11
C .16
D .11或16
3、方程:①13122
=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是( ) A. ①和② B. ②和③ C. ③和④ D. ①和③
4、二次三项式x 2-4x+3配方的结果是( )
A .(x-2)2+7
B .(x-2)2-1 D .(x+2)2+7 D .(x+2)2-1
5、三角形三边长为
6、8、10,那么这个三角形的最短边上的高为( )
A .8
B .6
C .7.4
D .4.5
6、三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是( )
A .角平分线
B .中位线
C .高
D .中线
7、对角线相等,并且互相平分的四边形是( )
A .等腰梯形
B .矩形
C .菱形
D .正方形
8、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A .正方形
B .矩形
C .菱形
D .平行四边形
9、某工厂搞技术革新,计划在两年内使成本下降51%,则平均每年下降百分率为( )
A .30%
B .26.5%
C .24.5%
D .32%
10、下列命题中,不正确的是( )
A . 顺次连结菱形各边中点所得的四边形是矩形。

B . 有一个角是直角的菱形是正方形。

C .对角线相等且垂直的四边形是正方形。

D .有一个角是60°的等腰三角形是等边三角形。

二、填空题(每题4分,共32分)
11、方程(x+5)(x-7)=-26,化成一般形式是 ,其二次项的系数和一次项系数的和是 。

12、命题“如果∠1与∠2是邻补角,那么∠1+∠2=180°。

它的逆命题是 ,
它是一个 命题。

(填“真”“假”)
13、等边三角形的边长为2cm ,则它的高为 。

14、如果方程03)1(2=--+x k x 的一个根是1,那么k 的值是 ,另一个根是 。

15、平行四边形的长边是短边的2倍,一条对角线与短边互相垂直,则这个平行四边形的一个锐角为 ;
16、已知21,x x 是方程0452=-+x x 的两个根,那么=+21x x ,=21x x
17、在平行四边形ABCD 中,若∠A+∠C=︒210,则∠A= ∠B=
18、等腰直角三角形斜边上的中线长为4cm ,则其面积为 。

三、解方程(每题5分,共20分)
19、0322=--x x 20、22510x x +-=
21、()2
231210x --= 22、(x-3)2=2(3-x)
四、23、(此题6分)△ABC 中,AB=AC ,利用尺规作AB 边上的垂直平分线MN 与∠BAC 的角平分线AD ,两线交于点P 。

(保留作图痕迹,不写作法)
五、(第24题6分,第25题10分,第26题6分,共22分)
24、某钢铁厂今年1月份钢产量为4万吨,第一季度共生产钢13.24万吨,问2、3月份平均每月的增长率是多少?
25、已知:如图梯形ABCD 中,AB//DC ,E 是BC 中点,AE 、DC 的延长线相交于点F ,连结AC 、BF 。

(1)求证:AB=CF
(2)四边形ABFC 是什么四边形?并说明你的理由。

A B C
26、已知:菱形ABCD的对角线AC=6m,周长是20m,求另一条对角线BD的长及菱形的面积。

做完后,一定要认真检查!相信你会做得更好!C
B。

相关文档
最新文档