小学六年级数学下册思维拓展题
牛吃草问题--2024年六年级下册小升初数学思维拓展

牛吃草问题【知识点归纳】牛顿问题的难点在于草每天都在不断生长,草的数量都在不断变化.解答这类题目的关键是想办法从变化中找出不变量,我们可以把总草量看成两部分的和,即原有的草量加新长的草量.显而易见,原有的草量是一定的,新长的草量虽然在变,但如果是匀速生长,我们也能找到另一个不变量﹣﹣每天(每周)新长出的草的数量.基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量.基本公式:生长量=(较长时间×长时间牛头数﹣较短时间×短时间牛头数)÷(长时间﹣短时间);原有草量=较长时间×长时间牛头数﹣较长时间×生长量;牛吃草问题常用到四个基本公式:牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的.典型牛吃草问题的条件是假设草多少天.由于吃的天数不同,草又是天天在生长的,所以草的存量随着吃的天数不断地变化.解决牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数﹣相应的牛头数×吃的较少天数)÷(吃的较多天数﹣吃的较少天数);(2)原有草量=牛头数×吃的天数﹣草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数﹣草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决消长问题的基础.由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量.牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的.正是由于这个不变量,才能够导出上面的四个基本公式.这类问题的基本数量关系是:1、(牛的头数×吃草较多的天数﹣牛头数×吃草较少的天数)÷(吃的较多的天数﹣吃的较少的天数)=草地每天新长草量.2、牛的头数×吃草天数﹣每天新长量×吃草天数=草地原有的草.1.12头牛28天吃完10公顷牧场上的全部牧草,21头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?2.一片牧场,每天生长草的速度相同.这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4头羊的吃草量相当于1头牛的吃草量.那么17头牛和20只羊一起吃这片牧场上的草,可以吃多少天?3.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)4.有一片草地,可供8只羊吃20天,或供14只羊吃10天.假设草每天的生长速度不变,现有羊若干只.吃了4天后又增加了6只,这样又吃了2天便将草吃完,原有羊多少只?5.某火车站在检票前若干分钟就有人排队,假设每分钟新增的旅客一样多,若同时开放4个检票口,则30分钟检票完毕,若同时开放5个检票口,则20分钟可检票完毕,若同时开放7个检票口,需要检票多少分钟?6.西安美术馆举办画展,美术馆9时开门,但早有人来等候.从第一个观众来到时起,每分钟来的观众数一样多.如果开3个入场口,9时9分就不再有人排队;如果开5个入场口,9时5分就不再有人排队.那么,第一个观众到达时是8时几分?7.有一片牧场,每天都在均匀地生长草,每头牛每天吃1份草.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养13头牛,那么15天能把草吃完.那么草地原有几份草?8.牧场上长满牧草,每天匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天.这片牧场每天新生的草可供几头牛吃?这片牧场可供30头牛吃几天?9.一片匀速生长的牧草,可供9头牛吃12天,或可供8头牛吃16天.问可供13头牛吃多少天?要使这片牧草永远吃不完,至多可以放牧多少头牛?10.两个顽皮的孩子逆着自动扶梯的方向行走,在15秒钟里,男孩可走12级梯级,女孩可走10级梯级,结果男孩走了3分钟到达另一端,女孩走了4分钟到达另一端,该扶梯共多少级?11.进入冬季后,有一片牧场的草开始枯萎,因此草会均匀地减少,现在开始在这片牧场上放羊.如果放38只羊,需要25天把草吃完;如果放30只羊,需要30天把草吃完.(1)要放养多少只羊,12天才能把草吃完?(2)如果放养20只羊,这片牧场可以吃多少天?12.两个调皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,已知在电梯静止时,男孩每秒走3米,女孩每秒走2米。
六年级数学思维拓展题

六年级数学思维拓展题一、分数运算相关1. 题目:计算公式。
解析:我们先观察每一项的特点,公式。
那么原式可转化为:公式。
可以发现从第二项起,每一项的后一个分数与下一项的前一个分数可以抵消,最后只剩下公式。
2. 题目:一个分数,如果分子加1,这个分数就等于公式;如果分母加1,这个分数就等于公式。
求这个分数。
解析:设这个分数为公式。
根据“分子加1,这个分数就等于公式”,可得到方程公式,即公式。
根据“分母加1,这个分数就等于公式”,可得到方程公式,即公式。
将公式代入公式中,得到公式。
展开式子得公式,公式,解得公式。
把公式代入公式,得公式。
所以这个分数是公式。
二、比和比例相关1. 题目:甲、乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5。
那么两包糖重量的总和是多少克?解析:设乙包糖原来的重量为公式克,因为甲、乙两包糖的重量比是4:1,所以甲包糖原来的重量为公式克。
从甲包取出10克放入乙包后,甲包糖的重量变为公式克,乙包糖的重量变为公式克。
此时甲、乙两包糖的重量比变为7:5,可得到方程公式。
交叉相乘得公式。
展开式子得公式。
移项得公式,公式,解得公式。
两包糖重量的总和是公式克。
2. 题目:一种药水是用药粉和水按3:100的比例配成的。
(1)要配制这种药水515千克,需要药粉多少千克?(2)有水60千克,需要药粉多少千克才能配制成这种药水?解析:(1)药粉和药水的比例为公式。
设需要药粉公式千克,可得到方程公式。
解得公式千克。
(2)设需要药粉公式千克,因为药粉和水的比例为3:100,所以公式。
解得公式千克。
三、几何图形相关1. 题目:一个圆柱的侧面展开图是一个正方形,如果这个圆柱的高缩短2厘米,表面积就减少12.56平方厘米。
求原来这个圆柱的体积是多少立方厘米?解析:圆柱的侧面展开图是正方形,说明圆柱的底面周长和高相等。
当高缩短2厘米时,表面积减少的部分就是高为2厘米的圆柱的侧面积。
典型应用题-六年级下册数学小升初思维拓展

典型应用题六年级下册数学小升初思维拓展一.选择题(共19小题)1车间要装配两轮摩托车和三轮摩托车共21辆,需要53个轮胎。
两轮摩托车和三轮摩托车的辆数分别是()A.12和9B.8和13C.10和112把一根木头锯成4段花了24分钟,那么锯成6段需要()A.30分钟B.40分钟C.46分钟D.48分钟3一根木头平均锯成5段,每锯一段需要6分,共需( )分。
A.36B.30C.244小明家住的楼房层高3米,小明站在他家阳台距离地面24米,小明家住第( )层。
A.7B.8C.9D.105学校食堂的大、小米桶共有50个,每个大米桶可装4kg大米,每个小米桶可装2kg大米,一共装了140kg大米,那么大米桶有( )个。
A.20B.30C.40D.506一条环形琥珀项链长60厘米,每隔4厘米有一颗抚顺琥珀,这条项链一共有( )颗抚顺琥珀。
A.14B.15C.16D.无法确定7参加“放飞梦想”演讲比赛的女选手人数是男选手人数的3倍。
一共有240人参加这次演讲比赛,其中女选手有( )人。
A.180B.80C.608妈妈让小明给客人烧水沏茶。
烧水10分钟,洗茶杯1分钟,接水1分钟,拿茶叶2分钟,沏茶1分钟。
最快需要( )分钟,客人就能喝上茶。
A.16B.14C.12D.119在一条长50米的跑道两旁,从头到尾每隔5米插一面彩旗,共插( )面彩旗。
A.10B.11C.2210一条路的一侧有8棵树,每两棵树之间相距5米,从第一棵树到最后一棵树之间相距( )米。
A.45B.40C.3511一辆小货车每次能运2吨苹果,一辆大货车每次能运3吨苹果,一共要运13吨苹果,下面( )方案能刚好一次运完。
A.安排2辆大货车和4辆小货车B.安排3辆大货车和2辆小货车C.安排4辆大货车和1辆小货车12把一些鸡和兔放在同一只笼子里,从上面数有30个头,从下面数有64条腿,那么鸡比兔子多( )只。
A.15B.20C.26D.2813在一条长2500米的公路一侧架电线杆,每隔50米架一根,若两边不架,共需电线杆( )根。
(奥数典型题)第五讲 比例的应用 2023-2024学年六年级下册数学思维拓展含答案

话说唐僧和三个徒弟为普渡众生去西天取经,要经历九九八十一难,困难重重,关卡层层,是常人很难办到的。
师徒四人走了一天,觉得累了,便休息一下。
八戒把钉耙一丢,倒地便睡,唐僧与沙僧打坐,悟空舞动金箍棒。
只见悟空一声“变”,金箍棒由原来的绣花针变成了高耸入云的大柱子。
悟空叫道:“八戒,你猜我的金箍棒现在有多长? ”八戒说:“能有多长,不过10米罢了。
”悟空说:“这金箍棒可神了,5秒能变10米。
”“那25秒能变15米的。
”八戒随口说道。
沙僧说:“这节定算错了,5秒比10米小,25秒比15米大。
”八戒说:"扯淡,这个理由一点也不充分。
”悟空说:“那我就说说理由,让你们心服口服。
”八戒说: “愿闻其详。
”悟空说:“用解比例的方法,设25秒能变x 米,比例是5:10=25:x ,5x=250,X =50,答案应该是50米啊。
”“这…这…”八戒哑口无言,还有一种方法沙僧补充道:“5秒能变10米,10÷5=2米,意思是1秒能变2米长,25秒就能变25×2=50米长。
”八戒如醍醐灌顶,连连称是。
唐僧在一旁听着,说道:你们都很聪明,用不同的方法解开这道题。
以后遇到事情要要深思熟虑。
八戒,你以后可不能瞎掰了,要用理由说明问题。
”“一定,一定,徒儿谨记师父教诲,今后要学好数学……”哈哈哈,师徒四人伴着笑声又启程了。
在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断。
成正比或反比的量中都有两种相关联的量,一种量(记作 x )变化时另一种量(记作 y )也随着变化.与这两个量联系着,有一个不变的量(记为 k ).在判断变量 x 与 y 是否成正、反比例时,我们要紧紧抓住这个不变量 k 。
如成正比例;如果 k 是 y 与 x 的积,即在 x 变化时,y 与 x 的积不变:xy =k ,那么 y 与 x 成反比例.如果这两 第五讲 比例的应用(奥数典型题)第五讲 比例的应用 2023-2024学年六年级下册数学思维拓展个关系式都不成立,那么 y 与 x 不成(正和反)比例。
逆推问题--2024年六年级下册小升初数学思维拓展含答案

逆推问题--2024年六年级下册小升初数学思维拓展逆推问题【知识点归纳】1.逆推问题内容:逆推问题还可称为还原问题,解答这类问题时,要根据题意的叙述顺序,由后向前逆推计算.2.解题方法:(1)要根据题意的顺序,从最后一组数量关系逆推至第一组数量关系,这就是逆推法中去处顺序的逆推含义.(2)原题相加,逆推用减;原题相减,逆推用加;原题相乘,逆推用除;原题相除,逆推用乘,这就是逆推法中计算方法的逆运算含义.【解题方法点拨】解题思路:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.1.马虎同学在做小数的加减法作业时,遇到一个100以内的两位小数减去3.5,但他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原来正确数字的2倍,则正确的结果应该是多少?2.李明看一本小说,第一天看了全书的一半还多20页,第二天看了剩下的一半多20页,第三天又看了剩下的一半多20页,第四天李明看了剩下的最后20页书,李明第一天看了多少页?3.小亚看一本书,第一天看了全书的一半少8页,第二天看了剩下的一半多12页,这时还剩46页没有看,这本书共有多少页?4.小明9月初的时候有一些零花钱,他先花了35.8元买学习用品,周末时爷爷又给了他零花钱120.7元,后来他又用67.2元订了报刊,现在他还有零花钱589.4元.小明9月初的时候有零花钱多少元?5.一根铁丝剪去一半后,再剪去5米,最后剪去剩余部分的一半,这时还剩43米,这根铁丝原来有多长?6.有甲、乙、丙3筐鸡量,共96枚.第一次从甲筐中取出与乙筐中同样多的鸡蛋放入乙筐;第二次从乙筐取出与丙筐同样多的鸡蛋放入丙筐;第三次从丙筐取出与甲筐剩下同样多的鸡蛋放入甲筐.这时三筐鸡蛋的枚数正好相等.三筐鸡蛋原来各有多少枚?7.一个三层书架中共有168本书,从第一层拿出18本书放到第二层,再从第二层拿出13本书放到第三层,这时这个三层书架中每层书架书的本数相等,原来每层书架各有几本书?8.有一堆桃子,小猴第一天吃了这堆桃子的一半,第二天又吃了剩下的一半,这时还剩下3个桃子,原来这堆桃子有多少个?9.有一个数,加上6,乘以6,减去6,再除以6,结果还是等于6.这个数是多少?(小提示:可以从结果倒着往回推想哦!)10.妈妈买来一些桔子,第一天吃了一半多3个;第二天吃了剩下的一半后,还剩8个。
复杂相遇问题-六年级下册数学小升初思维拓展

复杂相遇问题六年级下册数学小升初思维拓展一.选择题(共20小题)1一条环形跑道的长是40米,小东和小明在跑道上同一点沿相反方向同时出发,小东每秒跑6米,小明每秒跑4米,那么,除第一次出发以外,两人在中途相遇了( )次后又相遇在原出发点.A.2B.3C.4D.52甲、乙两车同时从两地出发,相向而行.甲车每时行105千米,5时后两车在距中点30千米处相遇.若乙车慢一些,则乙车每时行( )千米.A.93B.99C.1113有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走35米.在途中,甲和乙相遇后3分钟和丙相遇.问:这个花圃的周长是多少米?()A.1000米B.1147米C.5850米D.10000米4如图长方形ABCD中,AB:BC=5:4,位于A点的第一只蚂蚁按A→B→C→D→A方向爬行,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿长方形的边爬行,如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在( )边上.A.DAB.BCC.CDD.AB5甲从A地,乙从B地同时以均匀的速度相向而行,第一次相遇A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A、B两地相距( )千米.A.10B.12C.18D.156甲乙两车同时从AB两地相对开出,几小时后在距中点8千米处相遇.已知甲车速度是乙车的2 3,求AB两地相距( )?A.100千米B.80千米C.60千米D.40千米7淘气从学校出发前往图书馆,与此同时,笑笑从图书馆出发前往学校(见图),淘气速度为90米/分,笑笑速度为80米/分,出发9分钟后,笑笑到达学校。
下面说法正确的是( )A.他们出发4.5分后相遇B.相遇点更靠近图书馆C.当他们到达各自目的地时,用了17分钟D.淘气比笑笑晚到1分钟8爸爸和儿子去2km外的公园,爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程.儿子立刻返回,遇到爸爸后又骑向公园,到公园又返回⋯直到爸爸到达公园.儿子从出发开始一共骑了()A.2kmB.4kmC.6km9六一节当天,奇思和淘气这对好朋友相约同时从家里出发,在途中交换一份亲手为对方创作的六一节礼物。
【一日一题思维拓展训练】小学六年级数学下册思维拓展训练(第2套)附答案.人教版

六年级数学下册思维拓展训练(第2套)班级姓名得分【资料使用建议】:每日1题,坚持训练1.如下图所示,用一块面积为36平方厘米铝板下料,可裁出七个同样大小的圆铝板。
问余下的边角料的总面积是多少平方厘米?2.六个盘子中各放有一块糖,每次从任选的两个盘子中各取一块放入另一个盘子中,这样至少要做多少次,才能把所有的糖都集中到一个盘子中?3.一个正在行进的8人队列,每人身高各不相同,按从低到高的次序排列,现在他们要变成并列的2列纵队,每列仍然是按从低到高的次序排列,同时要求并排的每两人中左边的人比右边的人要矮,那么,2列纵队有多少种不同排法?4.一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?5.4只同样的瓶子内分别装有一定数量的油。
每瓶和其他各瓶分别合称一次,记录千克数如下:8,9,10,11,12,13.已知4只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少千克油?6.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有多少种?7.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?8.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?9.如图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?10.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?参考答案(1,1,1,1,1,1)—→(0,3,1,1,1,0)—→(2,2,1,1,0,0)—→(4,1,1,0,0,0)—→(6,0,0,0,0,0)3.【答案】首先,将8人的身高从低到高依次编号为1、2、3、4、5、6、7、8,现在就相当于要将这8个数填到一个4*2的方格中,要求每一行的数依次增大,每一列上面的要比下面的大.下面我们将1、2、3、4、5、6、7、8依次往方格中填,按照题目规则,很容易就发现:第二行填的的数字的个数永远都小于或等于第一行数字填的个数.也就是说,不能出现下图这样的情况.而这个正好是“阶梯型标数”题型的基本原则.于是,我们可以把原题转化成:在这个阶梯型方格中,横格代表在第一行的四列,纵格代表第二行的四列,那么此题所有标数的方法就相当于从A 走到B 的最短路线有多少条.例如,我们选择一条路线:它对应的填法就是:最后,用“标数法”得出从A 到B 的最短路径有14种,如下图:4.【答案】把这项工程的工作总量看作“1”。
和差问题--2024年六年级下册小升初数学思维拓展含答案

和差问题和差问题:已有两个数的和及两个数的差,求这两个数各是多少的应用题叫做和差问题和差公式:(和-差)÷2=小数(和+差)÷2=大数解答和差问题的关键在于若干个不相等的数的问题化为相等的数的问题。
1.一个两层书架共放书72本,若从上层中拿出9本给下层,上层比下层多4本.上、下层各放书多少本? 2.甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多483.姐姐和弟弟共有贺卡80张,如果姐姐给弟弟3张后,还比弟弟多4张.姐姐和弟弟原来各有多少张? 4.实验一小、实验二小两校共有学生2346人,如果实验一小增加146人,实验二小减少88人,两校的学生人数就相等,你知道两校实际各有多少人吗?和差问题--2024年六年级下册小升初数学思维拓展5.甲、乙两校共有学生1050人,部分学生因搬家需要转学,已知由甲校转入乙校20人,这样甲校比乙校还多10人,求两校原来有学生多少人?6.今年小玲6岁,她父亲34岁,当两人年龄和是58岁时,两人年龄各多少岁?7.小亚和小巧一共打了486个字,小亚比小巧多打了56个字,小亚打了多少个字?小巧打了多少个字?8.在一次期中考试中,小强的英语成绩和数学成绩之和是194分,他的数学成绩和语文成绩之和是186分,而语文成绩和英语成绩之和是180分,那么,小强的英语、数学和语文成绩到底各是多少?9.甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
10.A,B两地相距500千米,客车和货车分别从两地同时开出相向而行,4小时后相遇,相遇时客车比货车多行60千米,求客车和货车的速度.11.张明在期末考试时,语文、数学两门功课的平均得分是95分,数学比语文多得8分,张明这两门功课的成绩各是多少分?12.甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?13.两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?14.商店共有足球、篮球、排球213个,足球比排球多26个,篮球比排球少38个,商店里三种球各有多少个?15.学校买来5个足球和10个篮球,共计700元.每只足球比每只篮球便宜10元.足球和篮球的单价各是多少元?16.一位少年短跑选手,顺风跑90米用了10秒钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学思维训练题
一.填空
1、有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场。
2.在数列1
3,1
2
,5
9
,7
12
,3
5
,11
18
……中,第25个分数是()。
3.一个长方形把平面分成两部分,那么2个长方形最多把平面分成()部分。
4.今年,祖父的年龄是小明的年龄的6倍。
几年后,祖父的年龄将是小明的年龄的5倍。
又过几年以后,祖父的年龄将是小明的年龄的4倍。
求:祖父今年是多少岁?
5.已知等式,其中□内是一个最简分数,那么□内的数是_______。
6.一项挖土方工程,如果甲队单独做,16天可以完成,乙队单独做要20天才可以完成。
现在两队同时施工,工作效率提高20%。
当工程完成时,突然遇到地下水,影响施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程,问整个工程要挖多少方土?
7.在算式1×2×3×4×...×100中,那么这个乘积的末尾连续的零的个数等于________个。
二.计算
1.
2.
3.
附答案:
一.填空题
1.39 2.49/75 3. 4 4. 72岁 5.3/100 6.
1100 7. 24 8.
二.计算
1.15/16 2. 62 3. 148.75
小学六年级数学思维训练题
1.有含盐16%的盐水40千克,蒸发多少千克水后可将浓度提高到20%?
2.商店今天卖出两件衣服,售出的价格都是240元,按成本价计算,其中一件衣服赚了1/5,另一件衣服亏了1/5.如果两件衣服合起来考虑,是亏了还是赚了?
3.如图,直角三角形的三条边分别是3、4、5厘米,以斜边为轴旋转一周,形成的立体图形的体积是多少?
4.在一个盛有水的圆柱形容器中浸入一个底面半径为3厘米,高4厘米的铁质圆锥形零件,如果圆柱容器的底面半径是6厘米,而圆锥形零件完全进入水中且没有溢出,水面上升了多少厘米?
5.一个面积是10平方分米的正方形,按照3:1的比扩大后,面积是多少平方分米?
6.一个书架,原来上层和下层的本书比是8:7,如果从上层取8本放入下层,这时上层和下层的比为4:5,原来上层和下层各有图书多少本?
7.一辆汽车从A地到B地,又立即返回到A地,一共用了9小时,去时每小时行100千米,返回时每小时行80千米,两地相距多少千米?
8.A、B两车同时从东西两站相向开出,A、B两车的速度比是8:7,两车相遇后,B 车每小时比原来多行15千米,结果两车恰好同时到达目的地,A车每小时行多少千米?
9.小军、小明、小芳和小红四人一起做千纸鹤,小明做的只数是其他三人做的总只数的7/13,小军做的只数是其他三人做的总只数的1/3,小芳做的只数是其他三人做的总只数的11/29,小红做了15只,她们一共做了多少只千纸鹤?
10.张亮的零用钱是黄明的5/9,在爱心捐款活动中,黄明捐了48元,张亮捐了20元,这时她们剩下的零用钱相等,黄明原来有多少零用钱?
11.铁道部规定:旅客随身携带的行李的长宽高的和不能超过160厘米。
如果有一个旅客所带长方体箱子的长宽高的和是150厘米,那么这个箱子的体积最大是多少?
12.如图,一个胶水瓶的瓶身呈圆柱形(不包括瓶颈),容积为32.4立方厘米。
当瓶子正放时,瓶内胶水液面高为8厘米,瓶子倒放时,空余部分高为2厘米。
请你算一算,瓶内交税的体积是多少立方厘米?
13.一只装有水的长方体玻璃杯,底面积是60平方厘米,水深8厘米。
现将一个底面积是12平方厘米的圆柱体铁块竖放在水中后,仍有一部分铁块露在水面上,现在水深多少厘米?
14.将一些本子分给某班学生,平均每人可分得31/7本,老师决定再买几本,算了一下至少要添24本,才能使得每人发的本数是整数,这个班有多少位学生?
15.到的铁路长1460千米,一列客车从开往,同时有一列货车从开往,经过8小时两车还相距100千米,客车每小时行90千米,货车每小时行多少千米?
16.商场有一批货,第一天运走了总数的2/5,第二天运走的比总数的1/4多4吨,这时还剩17吨,这批货物共有多少吨?
17.一个修路队要修1500千米的路,按原定计划前8天完成了40%,照这样计算,完成任务还要多少天?
18.在一幅比例尺是1:20xx000的地图上,量得AB两地长8厘米。
如果在比例尺是1:4000000的地图上,这两地的距离是多少厘米?
19.一辆货车车厢是长方体,它的长是6米,宽是1.5米,高是3米。
装满一车沙子,卸下后沙子堆成一个高2米的圆锥,这个圆锥的底面积是多少平方米?
20.把一个圆柱沿高和直径切开,表面积增加了20平方厘米,求这个圆柱的侧面积。