NPSH(汽蚀-汽蚀余量)

合集下载

汽蚀余量 NPSH

汽蚀余量 NPSH

,还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度 。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料 的机械剥裂与电化学腐蚀破坏的综合现象称为气蚀。
离心泵最易发生气蚀的部位有: a.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; b.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; c.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶梢的低压侧; d.多级泵中第一级叶轮。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过 程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并 导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
汽蚀余量
指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱) 标注,用(NPSH)表示,具体分为如下几类:
b.提高进液装置有效气蚀余量的措施
(1)增加泵前贮液罐中液面的压力,以提高有效气蚀余量。 (2)减小吸上装置泵的安装高度。 (3)将上吸装置改为倒灌装置。 (4)减小泵前管路上的流动损失。如在要求范围尽量缩短管路,减小管路中的流速 ,减少弯管和阀门,尽量加大阀门开度等。 以上措施可根据泵的选型、选材和泵的使用现场等条件,进行综合分析,适当加 以应用。
计算公式
什么叫气蚀余量?什么叫吸程?各自计量单位及表示字母? 答:泵在工作时液体在叶轮的进口处因一定真空压力下会产生液体汽体,汽化的 气泡在液体质点的撞击运动下叶轮等金属表面产生剥落,从而破坏叶轮等金属,此时 真空压力叫汽化压力,气蚀余量是指在泵吸入口处单位重量液全所具有的超过汽化压 力的富余能量。单位为米液柱,用(NPSH)r表示。 吸程即为必需气蚀余量Δ/h:即泵允许吸液体的真空度,亦即泵允许几何安装高度 。单位用米。吸程=标准大气压(10.33米)--气蚀余量--管道损失--安全量(0.5)标准 大气压能压上管路真空高度10.33米 例如:某泵气蚀余量为4.0米,求吸程Δh

NPSH

NPSH

汽 蚀 余 量 (NPSH)
7.汽蚀的危害: 7.汽蚀的危害: 汽蚀的危害 叶轮上留下打击状的坑; a) 叶轮上留下打击状的坑; 设备产生振动 振动; b) 设备产生振动; 增加噪音 象小石子穿过水泵的声音) 噪音( c) 增加噪音(象小石子穿过水泵的声音)。 轻微的汽蚀只会造成水泵效率或扬程的降低。 d) 轻微的汽蚀只会造成水泵效率或扬程的降低。 严重的汽蚀会产生很强的噪音, e) 严重的汽蚀会产生很强的噪音,并缩短水泵的使用寿命 。 估算来讲,损失最大占设计扬程的3% 3%。 f) 估算来讲,损失最大占设计扬程的3%。 对于多级水泵, 汽蚀只会对第一级叶轮产生影响。 g) 对于多级水泵, 汽蚀只会对第一级叶轮产生影响。
汽 蚀 余 量 (NPSH)
8.如何防止和消除汽蚀: 8.如何防止和消除汽蚀: 如何防止和消除汽蚀 根据系统设备分布情况计算NPSHA NPSHA值 将设备NPSHR NPSHR值与其 a) 根据系统设备分布情况计算NPSHA值,将设备NPSHR值与其 相比较, 相比较,确保 NPSHA > NPSHR+0.5mH2O ; 如果NPSHA数值很小 NPSHA数值很小, b) 如果NPSHA数值很小,选择更大一些型号的水泵或转速更 慢一些的水泵。 慢一些的水泵。 水泵
正 吸 入 水 头 NPSHA 计 算
大气压力
90度
Hz = 5 m 1.5m(摩擦阻力损失 摩擦阻力损失) Hf = 1.5m(摩擦阻力损失) (大气压力 大气压力) 10.7m Hp = 1.01325bar (大气压力)= 10.7m Hvp = 0.7011bar(90oC蒸汽压力)=7.4m 蒸汽压力)=7.4m )=7.4
1
WM4 02.00
汽 蚀 余 量 (NPSH) 讲解目录

NPSH(汽蚀-汽蚀余量)

NPSH(汽蚀-汽蚀余量)
NPSHr= 4 mH2O
避免汽蚀的方法
汽蚀发生的条件: NPSHa<=NPSHr 泵汽蚀
NPSHa-Q曲线
H
H-Q曲线
避免汽蚀的方法:
(1) 选择低NPSHr泵型 (2) 提高装置汽蚀余量NPSHa
NPSHr-Q曲线
汽蚀界限
无汽蚀区 Q
汽蚀区
避免汽蚀的方法 ---降低NPSHr
选择低NPSHr泵型:
计算公式: NPSHa=
pa gρ
pa
+hg- hc pa gρ
pv gρ pv hg
hg = NPSHr 计算实例: hg = NPSHr -
+hc+ gρ
假定: pa =1 bar=10 mH2O
hc = 4 mH2O
pa gρ
+hc+ gρ
pv
= 4-10+4+7.15 = 5.15 m
pv= 0.715 bar=7.15 mH2O (90 OC清水饱和蒸汽压)
汽蚀发生条件
H
H-Q曲线
NPSHa-Q曲线
NPSHa=NPSHr 泵汽蚀
汽蚀界限
NPSHa<NPSHr 泵严重汽蚀
NPSHa>NPSHr 泵无汽蚀
NPSHr-Q曲线
无汽蚀区 Q
汽蚀区
NPSHa与安装高度hg的计算
(吸上装置—任意压力pc)
计算公式: NPSHa= hg =
pc
gρ pc gρ
- hg- hc pv gρ
NPSHa与安装高度hg的计算
(吸上装置—大气压力pa)
计算公式: NPSHa= hg =
pa
gρ pa gρ

汽蚀余量npsh

汽蚀余量npsh

汽蚀余量npsh
汽蚀余量(Net Positive Suction Head,简称NPSH)是指给定的流量条件下,泵入口处的压力和液体的蒸发压力之间的差值。

它是判断泵是否会发生汽蚀的重要指标。

汽蚀是指液体在泵的吸入侧形成气蚀现象,导致泵的性能降低甚至损坏。

当液体在泵的吸入侧形成负压时,液体中的溶解气体会析出形成气泡,进而引起气蚀。

而汽蚀余量则是指泵入口处的压力减去蒸发压力后剩余的压力值。

汽蚀余量的计算公式为:
NPSH = P - Pvap - (h1 - h0) * g/ρ
其中,P为泵入口处的压力,Pvap为液体的蒸发压力,h1为泵入口处的液面高度,h0为液体自由面到泵入口处的垂直距离,g为重力加速度,ρ为液体密度。

当NPSH大于泵的汽蚀余量要求时,泵不会发生汽蚀。

汽蚀余量是评估泵的抗汽蚀能力的重要指标。

一般来说,泵的汽蚀余量要求越高,泵的抗汽蚀能力越强。

在实际应用中,为了防止泵发生汽蚀,可以采取一些措施,如增加泵的入口压力、减小液体的蒸发压力、提高液体的进口流速等。

在选择泵的时候也要考虑液体的特性以及具体应用场景的需求。

汽蚀余量计算方法和例子

汽蚀余量计算方法和例子

汽蚀余量计算方法和例子汽蚀余量[]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。

单位用米标注,用(NPSH)r。

吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

吸程=标准大气压(10.33米)-临界汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。

[]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。

把这种产生气泡的现象称为汽蚀。

汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。

这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。

泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍抽送液体的绝对压力降低到当时温度下的因为某种原因,后的某处).汽蚀余量计算方法和例子液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。

在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。

在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。

水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体xx,不能正常工作。

[]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;汽蚀余量计算方法和例子[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。

汽蚀余量NPSH有效汽蚀余量NPSHa

汽蚀余量NPSH有效汽蚀余量NPSHa

汽蚀余量的影响因素
汽蚀余量的大小受到多种因素的影响,如泵的类型、 转速、吸入口压力、液体温度和粘度等。
对于不同类型的泵,汽蚀余量的要求也不尽相同,需 要根据实际情况进行选择和调整。
在实际操作中,可以通过提高泵的安装高度、增加前 置泵或使用诱导轮等方式来减小汽蚀余量的需求,从
而提高泵的汽蚀性能和吸入性能。
VS
汽蚀现象的发生与流体的性质、流动 状态、设备结构等因素有关。汽蚀会 对设备部件造成损坏,影响设备的性 能和寿命,严重时甚至会导致设备失 效和事故发生。因此,研究汽蚀现象, 提高设备的抗汽蚀性能,是流体机械 领域的重要研究方向之一。
02
汽蚀余量npsh
汽蚀余量的定义
01
汽蚀余量是指在泵进口处,单位 重量液体所具有的超过汽化压力 的富余能量,通常用字母 “NPSH”表示。
随着工业技术的发展,对流体机械的性能要求越来越高,汽蚀性能的研究也愈发重要。因此,深入了解汽蚀余量npsh和有效 汽蚀余量npsha的概念、计算方法和影响因素,对于提高流体机械的性能和可靠性具有重要的实际意义。
汽蚀现象简介
汽蚀现象是指液体在流动过程中,由 于局部压力下降到低于液体饱和蒸汽 压力,使得液体内部产生大量汽泡, 并随液体流动到高压区,在高压力下 汽泡迅速破裂,对周围的液体产生强 烈的冲击和剥蚀作用,导致设备部件 的损坏和性能下降的现象。
另外,也可以通过实验方法测量有效汽蚀余量,即在一定流量和转速下,水泵进口处的压力低于该温 度下的汽化压力时,水泵开始发生汽蚀。
有效汽蚀余量的影响因素
01
02
03
04
流量和转速
水泵的有效汽蚀余量随着流量 的增大而减小,随着转速的增
大而增大。
吸水管长度与管径

汽蚀余量计算方法和例子

汽蚀余量计算方法和例子

汽蚀余量[]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。

单位用米标注,用(NPSH)r。

吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

吸程=标准大气压(10.33米)-临界汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。

[]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。

把这种产生气泡的现象称为汽蚀。

汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。

这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。

泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。

在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。

在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。

水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体xx,不能正常工作。

[]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。

有效汽蚀余量NPSHa与必须汽蚀余量NPSHr

有效汽蚀余量NPSHa与必须汽蚀余量NPSHr

泵的汽蚀余量,这是生产好了就固有了的性能!也就是设备结构决定了的,当然,采用诱导轮等降低汽蚀余量的措施的泵,结构上就多了一个部件。

从叶轮的角度来说,其水力模型决定了汽蚀余量的高低,加工上,流道的阻力,叶片的切入角度都对吸入性能有影响。

目前,但还没有特别的标准之类的,都是水力曲线实验测得的数据。

查表法来选择。

苏尔寿的水力模型基本是通吃的了,各家泵厂大都采用,特别是流程泵基本都是。

汽蚀余量的知识请参照如下专题资料:举例和概念都有,呵呵,这是我用来与师傅们共同学习时用的气蚀余量专题1、气蚀余量:NPSH:气蚀余量,指泵入口液体压力超过液体气化压力的富余能力;NPSHa:装置气蚀余量,也称有效气蚀余量或者可用气蚀余量,是指油泵装置系统确定的气蚀余量,大小由泵吸液管路系统参数和管道中流量所决定,与泵结构无关;NPSHr:必须气蚀余量,由泵自身结构决定,由泵生产厂家通过实验确定。

一般情况下要求NPSHa不小于NPSHr,经验取值:NPSHa大于NPSHr1.3倍.2、为什么要计算NPSHa?对于离心泵,直接造成气蚀(Cavitation)就是因为气泡的形成。

如果泵吸入侧的压力(Suction Pressure)远大于饱和蒸汽压(Vapour Pressure),那液中气泡将在完全形成之前崩溃,无法与泵叶轮接触然后进行破坏;如果吸入侧的压力接近或等值蒸汽压,则气泡会产生并与叶轮接触进行破坏。

离心泵的运作原理就是利用叶轮转动离心力形成低压把液体吸入,然后把能量转移到排出的液体。

在吸入时,如果吸入压力太接近,甚至等于蒸汽压,那进入泵后压力将降至低于蒸汽压,这时候气泡会产生。

计算NPSHA的目的就是检查泵吸入口的压力和所传送液体的蒸汽压相差多远,确定吸入侧没有气蚀的问题后,方可继续下一步的计算:输出压力(Discharge Pressure)。

NPSHa (净吸入压头,m)= (泵吸入口压力- 蒸汽压)Pa/(密度kg/m3 x 9.81 m/s2)简单来说NPSHa是泵选型计算的第一步检查,和输出压力的计算结果是无关的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

???
泵汽蚀余量-NPSHr
计算公式: vo2 wo2 NPSHr= +λ 2g 2g 式中
vo---叶片进口前的绝对速度 wo---叶片进口前的相对速度 λ---叶片进口压降系数
H H-Q曲线
NPSHr-Q曲线
Q
• NPSHr近似与泵叶片进口流速平方成正比,其为泵的固有 特性,不会随使用条件而改变。 • NPSHr表示泵的抗汽蚀性能, 值越小,泵的抗汽蚀性能越好! • 从泵性能曲线中可查出相应流量值下NPSHr
pv gρ
= 10-4-0.24-4 = 1.76 m
pv= 0.0238 bar=0.24 mH2O (20 OC清水饱和蒸汽压)
NPSHr= 4 mH2O
NPSHa与安装高度hg的计算
(倒灌装置—任意压力pc)
计算公式: NPSHa=
pc gρ
pc
+ hg- hc pc gρ
pv gρ pv hg
(1) NPSHr-Q曲线表明泵抗汽蚀 性能的好坏。
H
H-Q曲线
(2) 对特定泵型在某流量值下的
NPSHr可从性能曲线图中查出。 (3) 对一确定泵型,减小运行流量Q
NPSHr
NPSHr-Q曲线
可降低NPSHr.
Q1
Q
计算公式: pc pv NPSHa= - hg- hc gρ gρ 式中 pc---进口水池液面绝对压力
汽蚀发生条件
H
H-Q曲线
NPSHa-Q曲线
NPSHa=NPSHr 泵汽蚀
汽蚀界限
NPSHa<NPSHr 泵严重汽蚀
NPSHa>NPSHr 泵无汽蚀
NPSHr-Q曲线
无汽蚀区 Q
汽蚀区
NPSHa与安装高度hg的计算
(吸上装置—任意压力pc)
计算公式: NPSHa= hg =
pc
gρ pc gρ
- hg- hc pv gρ
避免汽蚀的方法 ---提高NPSHa
H
pv gρ
H-Q曲线
pc
gρ hc
hg
hc---进水管路阻力损失 pv---液体饱和蒸汽压 hg---泵安装高度(泵进口中心线离进水池液面高度差)
NPSHa-Q曲线
Q
如何提高NPSHa:
(1). 提高进口水池液面压力或管路压力。 (2). 降低液体饱和蒸汽压,如降低水温度。 (3). 减小进水管路阻力损失,如采用大管径/减少阀门,弯头/缩短管路长度等。 (4). 调整泵安装高度:如为吸上方式,降低安装高度 如为倒灌方式,增加安装高度
hg = NPSHr 计算实例: hg = NPSHr -
+hc+ gρ
pc gρ
+hc+ gρ
pv
假定: pc =0.5 bar=5 mH2O
hc = 5 mH2O
= 4-5+5+0.24 = 4.24 m
pv= 0.0238 bar=0.24 mH2O (20 OC清水饱和蒸汽压)
NPSHr= 4 mH2O
泵产生汽蚀的现象
• 产生振动和噪音
• 过流部件的腐蚀破坏
• 性能下降
H
H-Q曲线
Q
水的饱和蒸汽压力
温度对应饱和蒸汽压力
温度低时饱和蒸汽压低
20oC 0,0238 bar
沸腾水
温度对应饱和蒸汽压力
100oC
1,0 bar
温度高时饱和蒸汽压高
沸腾水
泵产生汽蚀的过程
泵进口压力下降 Pinlet
<
特定温度下液体的 汽化压力Pv 液体汽化,气泡形成 高压区气泡破裂 汽蚀形成!!!
计算公式: NPSHa=
pa gρ
pa
+hg- hc pa gρ
pv gρ pv hg
hg = NPSHr 计算实例: hg = NPSHr -
+hc+ gρ
假定: pa =1 bar=10 mH2O
hc = 4 mH2O
pa gρ
+hc+ gρ
pv
= 4-10+4+7.15 = 5.15 m
pv= 0.715 bar=7.15 mH2O (90 OC清水饱和蒸汽压)
NPSHa与安装高度hg的计算
(吸上装置—大气压力pa)
计算公式: NPSHa= hg =
pa
gρ pa gρ
- hg- hc pv gρ
pv gρ pa hg
-
hc-
- NPSHr 假定: pa =1 bar=10 mH2O - NPSHr
hc = 4 mH2O
计算实例: hg =
pa

-
hc-
pv gρ pc hg
-
hc-
- NPSHr 假定: pc =2 bar=20 mH2O - NPSHr
hc = 4 mH2O
计算实例: hg =
pc

-
hc-
pv gρ
= 20-4-0.24-4 = 11.76 m
pv= 0.0238 bar=0.24 mH2O (20 OC清水饱和蒸汽压)
NPSHr= 4 mH2O
装置汽蚀余量-NPSHa
计算公式:
H
pv gρ
H-Q曲线
pc pv NPSHa= - hg- hc gρ gρ

pc
hg

hc
NPSHa-Q曲线
式中
pc---进口水池液面绝对压力 hc---进水管路阻力损失 pv---液体饱和蒸汽压 hg---泵安装高度(泵进口中心线离进水池液面高度差)
Q
• •
NPSHa的大小与装置参数及液体性质有关,与泵本身无关。 NPSHa随流量增加而减小。
NPSHr= 4 mH2O
避免汽蚀的方法
汽蚀发生的条件: NPSHa<=NPSHr 泵汽蚀
NPSHa-Q曲线
H
H-Q曲线
避免汽蚀的方法:
(1) 选择低NPSHr泵型 (2) 提高装置汽蚀余量NPSHa
NPSHr-Q曲线
汽蚀界限
无汽蚀区 Q
汽蚀区
避免汽蚀的方法 ---降低NPSHr
选择低NPSHr泵型:
NPSHa与安装高度hg的计算
(倒灌装置—汽化压力pv)
计算公式: NPSHa= hg- hc hg = NPSHr +hc 计算实例: hg = NPSHr +hc
= 4+4 =8m
pv
hg
假定: hc = 4 mH2O
NPSHr= 4 mH2O
NPSHa与安装高度hg的计算
(倒灌装置—大气压力pa)
相关文档
最新文档