等差数列前n项和(第二课时)

合集下载

等差数列前n项和的性质 课件(第2课时)

 等差数列前n项和的性质 课件(第2课时)

寻找等差数列前 n 项和与通项之间的关系,在比值上能否相互转 化.
(1)
65 12
(2)
8 13
[(1)



a5 b5

2a5 2b5

a1+a9 b1+b9

92a1+a9 92b1+b9

S9 T9

7×9+9+3 2=6152. 法二:设 Sn=(7n+2)nt,Tn=(n+3)nt, 则 a5=S5-S4=185t-120t=65t,b5=T5-T4=40t-28t=12t,
法四:设数列{an}的公差为 d,由于 Sn=na1+nn-2 1d, 则Snn=a1+d2(n-1). ∴数列Snn是等差数列,其公差为d2. ∴1S01000-S1100=(100-10)×d2, 且1S11100-1S01000=(110-100)×d2. 代入已知数值,消去 d,可得 S110=-110.
15 [由“片段和”的性质,S2,S4-S2,S6-S4 成等差数列,也 就是 4,5,S6-9 成等差数列,∴4+(S6-9)=2×5 解得 S6=15.]
知识点 2 等差数列奇偶项和的性质 (1)设两个等差数列{an},{bn}的前 n 项和分别为 Sn,Tn,则abnn= S2n-1. T2n-1 (2)若等差数列{an}的项数为 2n,则 S2n=n(an+an+1), S 偶-S 奇=nd,SS奇偶=aan+n 1.
类型 2 比值问题 【例 2】 (1)已知等差数列{an},{bn}的前 n 项和分别为 Sn,Tn, 且TSnn=7nn++32,则ab55=________. (2)已知 Sn,Tn 分别是等差数列{an},{bn}的前 n 项和,且abnn= 2nn++21,则TS1111=________.

等差数列前n项和公式(二)

等差数列前n项和公式(二)
第四章 数 列
4.2.4 等差数列前n项和公式(二)
(1 + )
,Sn=na1
2
1.通项公式:an=a1+(n-1)d,前n项和公式:sn=

(−பைடு நூலகம்)
d.
2
2.等差数列的通项公式和前n项和公式中共含有五个量:a1,an,n,d,
Sn,知道其中的三个量,可以通过解方程(组)求出另外的两个量.
3.已知数列{an}的前n项和公式是Sn=n2+n,求数列的通项公式.
当n≥2时,Sn-1=(n-1)2+(n-1)=n2-n.
∴an=Sn-Sn-1=(n2+n)-(n2-n)=2n.
同时当n=1时,a1=S1=2.∴当n∈N*时,an=2n
亲爱的同学们,下节课见!
3
2
21
2
a2= ,a6= .∴S7=
(1 +7 )·7
( + )·7
= 2 6 =
2
2
3 21
(2+ 2 )×7
2
=42
2.要使等差数列32,29,26,…的前n项的和Sn取最大值,求n的值.
an=a1+(n-1)·d=32+(n-1)·(-3)=35-3n≥0.
35
3
∴n≤ ∴当n=11时,Sn取最大值
(1 + )·
(18+6)×
∵Sn=
.∴48=
.∴n=4.
2
2
又∵an=a1+(n-1)·d.∴6=18+3d.∴d=-4
3.计算100以内能被3整除的所有自然数的和.
(3+99)×33
3+6+9+…+99=
=1683
2
解答题

高中数学 第二章 数列 2.3 等差数列的前n项和 第2课时 等差数列的前n项和(习题课)达标检测(

高中数学 第二章 数列 2.3 等差数列的前n项和 第2课时 等差数列的前n项和(习题课)达标检测(

等差数列的前n 项和A 级 基础巩固一、选择题1.一个等差数列共有2n +1项,其奇数项的和为512,偶数项的和为480,则中间项为()A .30B .31C .32D .33解析:中间项为a n +1.S 奇=(a 1+a 2n +1)2·(n +1)=(n +1)a n +1=512. S 偶=a 2+a 2n 2·n =n ·a n +1=480. 所以a n +1=S 奇-S 偶=512-480=32.答案:C2.(多选)设{a n }是等差数列,S n 为其前n 项和,且S 7<S 8,S 8=S 9>S 10,则下列结论正确的是()A .d <0B .a 9=0C .S 11>S 7D .S 8、S 9均为S n 的最大值解析:由S 7<S 8得a 1+a 2+a 3+…+a 7<a 1+a 2+…+a 7+a 8,即a 8>0,又因为S 8=S 9,所以a 1+a 2+…+a 8=a 1+a 2+…+a 8+a 9,所以a 9=0,故B 项正确.同理由S 9>S 10,得a 10<0,因为d =a 10-a 9<0,故A 项正确.对C ,S 11>S 7,即a 8+a 9+a 10+a 11>0,可得2(a 9+a 10)>0,由结论a 9=0,a 10<0,显然C 项是错误的.因为S 7<S 8,S 8=S 9>S 10,所以S 8与S 9均为S n 的最大值,故D 项正确.答案:ABD3.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12为()A.310B.13C.18D.19解析:S 3,S 6-S 3,S 9-S 6,S 12-S 9,构成一个新的等差数列,令S 3=1,S 6-S 3=3-1=2,所以S 9-S 6=3,S 12-S 9=4.所以S 12=S 3+(S 6-S 3)+(S 9-S 6)+(S 12-S 9)=1+2+3+4=10.所以S 6S 12=310. 答案:A4.若数列{a n }的前n 项和是S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于()A .15B .35C .66D .100解析:易得a n =⎩⎪⎨⎪⎧-1,n =1,2n -5,n ≥2. |a 1|=1,|a 2|=1,|a 3|=1,令a n >0则2n -5>0,所以n ≥3.所以|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.答案:C5.设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =()A .9B .8C .7D .6解析:设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2=-11,a 5+a 9=-2,得⎩⎪⎨⎪⎧a 1+d =-11,2a 1+12d =-2, 解得⎩⎪⎨⎪⎧a 1=-13,d =2.所以a n =-15+2n .由a n =-15+2n ≤0,解得n ≤152. 又n 为正整数,所以当S n 取最小值时,n =7.答案:C二、填空题6.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=________.解析:S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6).因为S 3=9,S 6-S 3=27,所以S 9-S 6=45,所以a 7+a 8+a 9=S 9-S 6=45.答案:457.(2019·全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和,a 1≠0,a 2=3a 1,则S 10S 5=________. 答案:48.若等差数列{a n }的前n 项和为S n (n ∈N *),若a 2∶a 3=5∶2,则S 3∶S 5=________. 解析:S 3S 5=3(a 1+a 3)5(a 1+a 5)=3a 25a 3=35×52=32. 答案:3∶2三、解答题9.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的X 围;(2)问前几项的和最大,并说明理由.解:(1)因为a 3=12,所以a 1=12-2d ,因为S 12>0,S 13<0,所以⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0, 所以-247<d <-3. (2)因为S 12>0,S 13<0,所以⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0,所以⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0, 所以a 6>0.又由(1)知d <0.所以数列前6项为正,从第7项起为负.所以数列前6项和最大.10.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 解:法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎪⎨⎪⎧10a 1+10×92d =100,①100a 1+100×992d =10,② ①×10-②,整理得d =-1150, 代入①,得a 1=1 099100. 所以S 110=110a 1+110×1092d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150 =110×1 099-109×11100=-110. 故此数列的前110项之和为-110. 法二 数列S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100为等差数列,设公差为d ′,则10S 10+10×92×d ′=S 100=10, 因为S 10=100,代入上式得d ′=-22, 所以S 110-S 100=S 10+(11-1)×d ′=100+10×(-22)=-120, 所以S 110=-120+S 100=-110.法三 设等差数列{a n }的前n 项和S n =an 2+bn . 因为S 10=100,S 100=10,所以⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10, 所以⎩⎪⎨⎪⎧a =-11100,b =11110, 所以S n =-11100n 2+11110n , 所以S 110=-11100×1102+11110×110=-110. B 级 能力提升1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则()A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n 答案:A2.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003· a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是________.解析:由条件可知数列单调递减,故知 a 2 003>0,a 2 004<0,故S 4 006=4 006(a 1+a 4 006)2=2 003·(a 2 003+a 2 004)>0, S 4 007=4 007(a 1+a 4 007)2=4 007×a 2 004<0, 故使前n 项和S n >0成立的最大自然数n 是4 006. 答案:4 0063.等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 因为S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52. 因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n , 于是T n =b 1+b 2+…+b n =13⎣⎢⎡⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+⎦⎥⎤…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13(110-3n -110)=n 10(10-3n ).。

4.2.2等差数列的前n项和公式

4.2.2等差数列的前n项和公式
( − 1)
= 1 +
.
2
作用:已知 a1,d和 n,求 Sn.
典型例题
例1已知数列{an}是等差数列.
(1)若a1=7,a50=101,求 S50;
5
(2)若a1=2,a2= ,求S10;
2
1
1
(3)若a1= ,d= − ,Sn=−5,求n.
2
6
解:(1)∵a1=7,a50=101,
当n=6时,an=0;
所以 an+1<an .所以{an}是递减数列.
当n>6时,an<0.
由 a1=10,dБайду номын сангаас=-2,
得 an=10+(n-1)×(-2) =-2n+12.
所以 , S1<S2<…<S5=S6> S7>…
令 an>0,解得 n <6.
所以,当n=5或6时,Sn最大.
因为5 = 5 × 10
2

= + (1 − ).
2
2
Sn=Sn-1+an(n≥2)
函数思想
课后作业
1.某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
=
.
2
作用:已知 a1,an 和 n,求 Sn.
an=a1+(n-1)d,(n∈N*)
,有
2
101 + 45 = 310,

人教新课标版数学高二必修五2.3.2等差数列的前n项和(二)

人教新课标版数学高二必修五2.3.2等差数列的前n项和(二)

等差数列的前n 项和(二)等差数列的内容内涵丰富,通项公式与前n 项和公式是其核心内容,我们对其进行合理整合、变形,可以得到诸多的性质,它们的应用使解题变得轻松愉悦,与常规方法相比较,过程要简捷得多.【性质1】 已知等差数列{a n },m 、p 、q ∈N *,若存在实数λ使λλ++=1qp m (λ≠-1), 则λλ++=1q p m a a a .证明:由等差数列{a n }的通项公式a n =dn +a 1-d 的几何意义:点(p,a p )、(m,a m )、(q,a q )共线,由斜率公式得mq a a pm a a m q p m --=--,因为λλ++=1qp m ,所以λ=--q m m p . 所以λ(a m -a q )=a p -a m .所以(1+λ)a m =a p +λa q ,即λλ++=1q p m a a a .评析:特别地,当λ=1时,2a m =a p +a q ,我们不妨将性质1称为等差数列的定比分点公式.【性质2】 等差数列{a n },n i ,m i ∈N *,i=1,2,3,…,k,若∑∑===ki ik i i mn 11.则∑∑===ki m ki ma a11.证明:设等差数列{a n }的公差为d .根据a n i =a mi +(n i -m i )d ,i=1,2,3,…,k,则∑∑∑∑∑======-+=k i mi k i k i k i i i mi ki nia d m n a a11111)(.所以∑∑===ki mi k i ni a a 11推论:等差数列{a n },n i ,m ∈N *,i=1,2,3,…,k,若∑==k i i n km 1.则∑==ki n m i a ka 1.评析:本性质实质上是等差中项性质的推广.【性质3】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *, 则d n m n S m S n m )(21-=-.证明:因为mn mS nS n S m S nm n m -=- =mnd n n na m d m m ma n ]2)1([]2)1([11-+--+=mndn mn mna d m mn mna 2)1(2)1(11----+=d mn mnmn mn n m 222+--=d mnmn n m 222- =d mn n m mn 2)(-=d n m )(21- 所以d n m n S m S n m )(21-=-.评析:实质上数列⎭⎬⎫⎩⎨⎧n S n 是公差为2d 的等差数列.【性质4】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *,则S m+n =S m +S n +mnd . 证明:因为S m+n =S n +(a n +1+a n +2+…+a n +m ) =S n +(a 1+nd )+(a 2+nd )+…+(a m +nd ) =S n +(a 1+a 2+…+a m )+m nd=S m +S n +m nd , 所以S m+n =S m +S n +mnd .【性质5】 等差数列{a n }前n 项和为S n ,若m=p+q(m 、p 、q ∈N *且p≠q),则有qp S S m S qp m --=. 证明:设等差数列{a n }的公差为d . 因为S p -S q =p a 1+21p(p-1)d -q a 1-21 q(q-1)d =(p-q)[a 1+21(p+q-1)d ],所以d q p a q p S S qp )1(211-++=--.又因为d m a m S m )1(211-+=且m=p+q ,所以有qp S S m S qp m --=. 推论:等差数列{a n }前n 项和为S n ,若m+t=p+q(m 、t 、p 、q ∈N *且m≠t,p≠q),则qp S S t m S S q p t m --=--.【性质6】 等差数列{a n }前n 项和为S n . (1)当n =2k(k ∈N *)时,S 2k =k(a k +a k+1); (2)当n =2k-1(k ∈N *)时,S 2k-1=k a k .。

第二讲:等差数列及其前n项和

第二讲:等差数列及其前n项和

第二讲:等差数列及其前n 项和知识体系:一、等差数列1、等差数列的概念:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

定义的表达式为1,n n a a d d +-=为常数。

2、等差中项:若a 、A 、b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。

3、等差数列的通项公式及其变形: 通项公式:,其中1a 是首项,d 是公差。

通项公式的变形:(),n m a a n m d n m =+-≠注意:等差数列通项公式的应用:(1)由等差数列的通项公式1(1)n a a n d =+-,可知: ① 已知等差数列的首项和公差,可以求得这个数列的任何一项; ② 已知1,,,n a d n a ,这四个量中的任意三个,可以求得另一个量;(2)由等差数列通项公式变形可知,已知等差数列中的任意两项就可以确定等差数列中的任何一项。

4、等差数列和一次函数的关系由等差数列的通项公式1(1)n a a n d =+-可得1()n a dn a d =+-,如果设1,p d q a d ==-那么n a pn q =+,其中p ,q 是常数。

当p ≠0时,(n ,a )在一次函数y=px+q 的图像上,即公差不为零的等差数列的图像是直线y=px+q 上的均匀排开的一群孤立的点。

当p=0时,n a q =,等差数列为常数列,此时数列的图像是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点。

等差数列的单调性:当d >0时,数列{}n a 为递增数列;当d <0时,数列{}n a 为递减数列;当d =0时,数列{}n a 为常数列; 二、等差数列的前n 和:1、等差数列的前n 项和:等差数列的前n 项和公式11()(1)22n n n a a n n S na d +-==+; 等差数列前n 项和公式与函数的关系:由1(1)2n n n S na d -=+可得21()22n d dS n a n =+-,设1,22d da b a ==-,则有2n S an bn =+。

4。2.2等差数列的前n项和

4。2.2等差数列的前n项和

4.2.2.1等差数列的前n 项和要点一 等差数列的前n 项和公式 设等差数列{a n }的公差为d ,则S n =11()(1)22n n a a n n na d +-=+ 【重点总结】(1)等差数列前n 项和公式的推导:设S n =a 1+a 2+…+a n ,倒序得S n =a n +a n -1+…+a 2+a 1.相加得2S n =(a 1+a n )+(a 2+a n -1)+…+(a n +a 1).由等差数列性质,得2S n =n(a 1+a n ),∴S n =n (a 1+a n )2.我们不妨将上面的推导方法称为倒序相加求和法. 今后,某些数列求和常常会用到这种方法.(2)在求等差数列前n 项和时,若已知a 1和a n 及项数n ,则使用S n =n (a 1+a n )2;若已知首项a 1和公差d 及项数n ,则采用公式S n =na 1+n (n -1)2d 来求.要点二 等差数列前n 项和的主要性质 1.S n ,S 2n -S n ,S 3n -S 2n ,…成等差数列.2.若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d ,①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=1n n aa+;②当项数为奇数2n -1时,S 奇-S 偶=n a ,S 奇S 偶=1n n -.S 2n -1=(2n -1)a n . 【重点总结】关于奇数项的和与偶数项的和的问题,要根据项数来分析,当项数为奇数或偶数时,S 奇与S偶的关系是不相同的.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)数列的前n 项和就是指从数列的第1项a 1起,一直到第n 项a n 所有项的和.( ) (2)数列{a n }为等差数列,S n 为前n 项和,则S 2,S 4,S 6成等差数列.( ) (3)在等差数列{a n }中,S n 为前n 项和,则有S 2n -1=(2n -1)a n .( ) (4)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1.( ) 【答案】(1)√(2)×(3)√(4)×2.在等差数列{a n }中,已知a 1=2,a 9=10,则S 9等于( ) A .45 B .52 C .108 D .54 【答案】D【解析】S 9=9(a 1+a 9)2=9×122=54.故选D.3.已知等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则S 12=( ) A .28 B .32 C .36 D .40 【答案】C【解析】∵数列{a n }为等差数列, ∴S 4,S 8-S 4,S 12-S 8成等差数列,∴2(S 8-S 4)=S 4+S 12-S 8,解得:S 12=36.4.已知数列{a n }是等差数列,且a 3+a 9=4,那么数列{a n }的前11项和等于________. 【答案】22【解析】∵数列{a n }为等差数列,∴a 3+a 9=a 1+a 11=4.∴S 11=11(a 1+a 11)2=112×4=22.题型一 等差数列前n 项和的基本运算【例1】在等差数列{a n }中,(1)已知a 1=56,a n =-32,S n =-5,求n 和d ;(2)已知a 1=4,S 8=172,求a 8和d .(3)已知d =2,a n =11,S n =35,求a 1和n .【解析】(1)由题意得,S n =n (a 1+a n )2=n ⎝⎛⎭⎫56-322=-5,解得n =15.又a 15=56+(15-1)d =-32,∴d =-16.∴n =15,d =-16.(2)由已知得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5. ∴a 8=39,d =5.(3)∵a n =11,d =2,S n =35,∴⎩⎪⎨⎪⎧a 1+(n -1)×2=11na 1+n (n -1)2×2=35解得n =5,a 1=3或n =7,a 1=-1. 【方法归纳】a 1,d ,n 称为等差数列的三个基本量,a n 和S n 都可以用这三个基本量来表示,五个量a 1,d ,n ,a n ,S n 中可知三求二,一般通过通项公式和前n 项和公式联立方程组求解,在求解过程中要注意整体思想的运用.【跟踪训练】在等差数列{a n }中,(1)a 1=32,d =-12,S m =-15,求m 及a m ;(2)a 6=10,S 5=5,求a 8和S 10. (3)已知a 3+a 15=40,求S 17.【解析】(1)∵S m =m ×32+m (m -1)2×⎝⎛⎭⎫-12=-15,整理得m 2-7m -60=0解得m =12或m =-5(舍去)∴a m =a 12=32+(12-1)×⎝⎛⎭⎫-12=-4. (2)⎩⎪⎨⎪⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得⎩⎪⎨⎪⎧a 1=-5,d =3.∴a 8=a 6+2d =10+2×3=16,S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(3)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.题型二 等差数列前n 项和性质的应用【例2】(1)等差数列前3项的和为30,前6项的和为100,则它的前9项的和为( ) A .130 B .170 C .210 D .260 【答案】C【解析】利用等差数列的性质:S 3,S 6-S 3,S 9-S 6成等差数列. 所以S 3+(S 9-S 6)=2(S 6-S 3),即30+(S 9-100)=2(100-30),解得S 9=210.(2)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.【答案】53【解析】由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. (3)已知等差数列{a n }前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =________. 【答案】14【解析】 S n -S n -4=a n -3+a n -2+a n -1+a n =80, S 4=a 1+a 2+a 3+a 4=40.两式相加得4(a 1+a n )=120,∴a 1+a n =30,又S n =n (a 1+a n )2=15n =210,∴n =14.【笔记小结】(1)中S 3,S 6-S 3,S 9-S 6也成等差数列. (2)中a 5b 5=qa 5qb 5=S 9T 9.(3)中S n -S n -4为末4项和,S 4为前4项和,倒序相加可得 4(a 1+a n ). 【方法归纳】等差数列前n 项和的常用性质(1)S n ,S 2n -S n ,S 3n -S 2n ,…是等差数列.(2)数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,公差为数列{a n }的公差的12.(3)涉及两个等差数列的前n 项和之比时,一般利用公式a m b n =2n -12m -1·S 2m -1T 2n -1进行转化,再利用其他知识解决问题.(4)用公式S n =n (a 1+a n )2时常与等差数列的性质a 1+a n =a 2+a n -1=a 3+a n -2=…相结合.【跟踪训练2】设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14等于( ) A .18 B .17 C .16 D .15 【答案】A【解析】设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.故选A.(2)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对于任意的自然数n ,都有S n T n =2n -34n -3,则a 3+a 152(b 3+b 9)+a 3b 2+b 10=( )A.1941B.1737C.715D.2041 【答案】A【解析】a 3+a 152(b 3+b 9)+a 3b 2+b 10=a 9b 3+b 9+a 3b 2+b 10=a 9+a 3b 2+b 10=a 1+a 11b 1+b 11=S 11T 11=22-344-3=1941.故选A.(3)已知等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,则S 110=________.【解析】(3)方法一:因为S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100成等差数列,设公差为d ,前10项的和为:10×100+10×92d =10,所以d =-22,所以前11项的和S 110=11×100+11×102d =11×100+11×102×(-22)=-110.方法二:设等差数列{a n }的公差为d , 则S n n =d 2(n -1)+a 1,所以数列⎩⎨⎧⎭⎬⎫S n n 成等差数列. 所以S 100100-S 1010100-10=S 110110-S 100100110-100,即10100-10010100-10=S 110110-1010010,所以S 110=-110.方法三:设等差数列{a n }的公差为d ,S 110=a 1+a 2+…+a 10+a 11+a 12+…+a 110=(a 1+a 2+…+a 10)+[(a 1+10d )+(a 2+10d )+…+(a 100+10d )]=S 10+S 100+100×10d ,又S 100-10S 10=100×992d -100×92d =10-10×100,即100d =-22,所以S 110=-110. 题型三 求数列{|a n |}的前n 项和【例3】在等差数列{a n }中,a 1=-60,a 17=-12,求数列{|a n |}的前n 项和. 【解析】等差数列{a n }的公差 d =a 17-a 117-1=-12-(-60)16=3,∵a n =a 1+(n -1)d =-60+3(n -1)=3n -63, 令a n <0,即3n -63<0,则n <21.∴等差数列{a n }的前20项是负数,第20项以后的项是非负数,设S n 和S ′n 分别表示数列{a n }和{|a n |}的前n 项和.当n ≤20时,S ′n =-S n =-⎣⎡⎦⎤-60n +3n (n -1)2=-32n 2+1232n ;当n >20时,S ′n =-S 20+(S n -S 20)=S n -2S 20=-60n +3n (n -1)2-2×⎝⎛⎭⎫-60×20+20×192×3=32n 2-1232n +1 260, ∴数列{|a n |}的前n 项和为S ′n =⎩⎨⎧-32n 2+1232n ,n ≤20,32n 2-1232n +1 260,n >20.【方法归纳】已知{a n }为等差数列,求数列{|a n |}的前n 项和的步骤 第一步,解不等式a n ≥0(或a n ≤0)寻找{a n }的正负项分界点.第二步,求和:①若a n 各项均为正数(或均为负数),则{|a n |}各项的和等于{a n }的各项的和(或其相反数);②若a 1>0,d <0(或a 1<0,d >0),这时数列{a n }只有前面有限项为正数(或负数),可分段求和再相加. 【跟踪训练3】已知数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n .【解析】a 1=S 1=-32×12+2052×1=101.当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-32n 2+2052n - ⎣⎡⎦⎤-32(n -1)2+2052(n -1)=-3n +104.∵n =1也适合上式,∴数列{a n }的通项公式为a n =-3n +104(n ∈N *). 由a n =-3n +104≥0,得n ≤34.7. 即当n ≤34时,a n >0;当n ≥35时,a n <0.①当n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-32n 2+2052n ;②当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=(a 1+a 2+…+a 34)-(a 35+a 36+…+a n )=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =2⎝⎛⎭⎫-32×342+2052×34-⎝⎛⎭⎫-32n 2+2052n =32n 2-2052n +3 502. 故T n =⎩⎨⎧-32n 2+2052n ,n ≤34且n ∈N *,32n 2-2052n +3 502,n ≥35且n ∈N *.【易错辨析】混淆等差数列的性质致误【例4】已知等差数列{a n }的前n 项之和记为S n ,S 10=10,S 30=70,则S 40=________. 【答案】120【解析】由题意知⎩⎨⎧10a 1+10×92d =1030a 1+30×292d =70得⎩⎨⎧a 1=25,d =215.所以S 40=40×25+40×392×215=120.【易错警示】 1. 出错原因将等差数列中S m ,S 2m -S m ,S 3m -S 2m 成等差数列误认为S m ,S 2m ,S 3m 成等差数列. 2. 纠错心得本题可用等差数列的性质:S m ,S 2m -S m ,S 3m -S 2m 成等差数列求解;还可以由S 10=10,S 30=70联立方程组解得a 1和d ,再求S 40.一、单选题1.已知等差数列{}n a 的前n 项和为18,若21S =,13n n a a -+=,则n 的值为( )A .9B .18C .27D .36【答案】B 【分析】由已知得()121124n n n a a a a a a -+++=+=,得12n a a +=,再由等差数列求和公式可求得答案. 【解析】解:∵等差数列{}n a 的前n 项和为18,21S =,13n n a a -+=,∵121a a +=, ∵()121124n n n a a a a a a -+++=+=,解得12n a a +=, 又()1182n n n a a S +==,∵2182n ⨯=,∵18n =.故选:B.2.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【分析】利用等比中项的性质可求得4a 的值,即为7b 的值,再利用等差数列的求和公式可求得13S 的值. 【解析】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.3.已知数列{}n a 的各项均不为零,1a a =,它的前n 项和为n S .且n a1n a +(*N n ∈)成等比数列,记1231111n nT S S S S =+++⋅⋅⋅+,则( ) A .当1a =时,202240442023T < B .当1a =时,202240442023T > C .当3a =时,202210111012T > D .当3a =时,202210111012T <【答案】C 【分析】结合等比性质处理得22n n a a +-=,再分1a =和3a =分类讨论,1a =时较为简单,结合裂项法直接求解,当3a =时,放缩后再采用裂项即可求解.【解析】由n a1n a +成等比数列可得,12n n n S a a +=⋅①,也即1122n n n S a a +++=⋅②,②-①得()1122n n n n a a a a +++=-,因为0n a ≠,所以,22n n a a +-=,即数列的奇数项成等差数列,偶数项成等差数列,当1a a =时,1122a a a =⋅,即22a =,对A 、B ,当1a =时,12341,2,3,4,n a a a a a n =====,此时数列为等差数列,前n 项和为()12n n n S +=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭, 故12311111111112121223+11n n T S S S S n n n ⎛⎫⎛⎫=+++⋅⋅⋅+=-+-+-=- ⎪ ⎪+⎝⎭⎝⎭, 当2022n =时,2022140442120232023T ⎛⎫=-=⎪⎝⎭,故A 、B 错误; 对C 、D ,当3a =时,1352021202113,5,7,3+220232a a a a -====⨯=, 2420222,4,,2022a a a ===,当n 为偶数时,232n n nS +=, 当n 为奇数时,()()()2213132122n n n n n S n +++++=-+=, 所以()()12,2n n n S n N *++≤∈,()()121121212n S n n n n ⎛⎫≥=- ⎪++++⎝⎭, 此时202212320221111T S S S S =+++⋅⋅⋅+ 111111110112123342023202410121012⎛⎫>-+-++-=-= ⎪⎝⎭,故C 正确,D 错误. 故选:C4.数列{}n a 中,12a =,且112n n n n n a a a a --+=+-(2n ≥),则数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为( ) A .20211010B .20211011C .20191010D .40402021【答案】B 【分析】由已知可得221(1)(1)n n a a n ----=,从而得221(1)(1)(1)2n a a n n ---=+-+⋅⋅⋅+,再由12a =得2(1)(1)2n n n a +-=,所以212112(1)(1)1n a n n n n ⎛⎫==- ⎪-++⎝⎭,然后利用裂项相消求和法可求得结果【解析】因为112n n n n na a a a --+=+-(2n ≥),所以22112()n n n n a a a a n -----=,整理得,221(1)(1)n n a a n ----=,所以221(1)(1)(1)2n a a n n ---=+-+⋅⋅⋅+,因为12a =,所以2(1)(1)2n n n a +-=, 所以212112(1)(1)1n a n n n n ⎛⎫==- ⎪-++⎝⎭,所以数列()211n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭前2021项和为2021111111202121212232021202220221011S ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭, 故选:B5.有一个三人报数游戏:首先甲报数字1,然后乙报两个数字2、3,接下来丙报三个数字4、5、6,然后轮到甲报四个数字7、8、9、10,依次循环,则甲报出的第2028个数字为( ) A .5986 B .5987 C .5988 D .以上都不对【答案】C 【分析】首先分析出甲第n 次报数的个数,得到甲第n 次报完数后总共报数的个数,计算出甲是第0n 次报数中会报到第2020个数字,再计算当甲第0n 次报数时,3人总的报数次数m , 再推算出此时报数的最后一个数m S ,再推出甲报出的第2028个数字. 【解析】由题可得甲第n *()n N ∈次报数的个数为32n -, 则甲第n 次报完数后总共报数的个数为[1(32)](31)22n n n n n T +--==,再代入正整数n ,使2020,n T n ≥的最小值为37,得372035T =, 而甲第37次报时,3人总共报数为3631109⨯+=次, 当甲第109次报完数3人总的报数个数为109(1091)12310959952m S +=++++==, 即甲报出的第2035个数字为5995, 所以甲报出的第2028个数字为5988. 故选:C.6.已知数列{}n a 满足()112nn n a a n +=-+,*n N ∈,则10S =( )A .32B .50C .72D .90【答案】B 【分析】由递推关系式,求得12a a +,34a a +,56a a +,78a a +,910a a +,然后相加可得10S . 【解析】由已知212a a =-+,122a a +=,436a a =-+,346a a +=,同理5610a a +=,7814a a +=,91018a a +=, 所以102610141850S =++++=. 故选:B .7.庑殿是古代传统建筑中的一种屋顶形式,其可近似看作由两个全等的等腰梯形和两个全等的等腰三角形组成,如图所示.若在等腰梯形与等腰三角形侧面中需铺瓦6层,等腰梯形中下一层铺的瓦数比上一层铺的瓦数多2,等腰三角形中下一层铺的瓦数是上一层铺的瓦数的2倍.两个等腰梯形与两个等腰三角形侧面同一层全部铺上瓦,其瓦数视作同一层的总瓦数.若顶层需铺瓦82块,整个屋顶需铺瓦666块,则最底层需铺瓦块数为( )A .82B .114C .164D .228【答案】C 【分析】由题意得等腰梯形中铺的瓦数自上而下构成一个公差为2的等差数列{}n a ,等腰三角形中铺的瓦数自上而下构成一个公比为2的等比数列{}n b ,故得到()()11611282,1265262666,212a b b a ⎧+=⎪⎪⎡⎤-⨯⎨⎢⎥+⨯+=⎪-⎢⎥⎪⎣⎦⎩,进而可求得两个数列的通项公式,再分别求每个数列的第6项,()()56622502164a b +=+=可得到最终结果.【解析】由题意等腰梯形中铺的瓦数自上而下构成一个公差为2的等差数列{}n a , 等腰三角形中铺的瓦数自上而下构成一个公比为2的等比数列{}n b , 由条件可知,()()11611282,1265262666,212a b b a ⎧+=⎪⎪⎡⎤-⨯⎨⎢⎥+⨯+=⎪-⎢⎥⎪⎣⎦⎩解之得1140,1ab ==,所以()14021238,2n n n a n n b -=+-=+=,所以()()56622502164a b +=+=,故最底层需铺瓦块数为164,故选:C.8.设数列{}n a 和{}n b 的前n 项和分别为n S ,n T ,已知数列{}n b 的等差数列,且2n n na nb a +=,33a =,4511b b +=,则n n S T +=( ) A .22n n - B .22n n -C .22n n +D .22n n +【答案】D 【分析】设等差数列{}n b 的公差为d ,进而根据等差数列的通项公式计算得121b d =⎧⎨=⎩,故1n b n =+,n a n =,再根据等差数列前n 项和公式求解即可。

等差数列的前n项和公式课件(第二课时)-高二下学期数学人教A版(2019)选择性必修第二册

等差数列的前n项和公式课件(第二课时)-高二下学期数学人教A版(2019)选择性必修第二册
若 a1>0,d<0,则 Sn 必有最_大___值,其 n 可用不等式组aann≥+1≤0,0 来确定; 若 a1<0,d>0,则 Sn 必有最_小___值,其 n 可用不等式组aann≤+1≥0,0 来确定.
(2) 二次函数法
在等差数列{an}中,由于 Sn=na1+n(n2-1) d=d2 n2+a1-d2 n,则可用求二次 函数最值的方法来求前 n 项和 Sn 的最值,其中,n 的值可由 n∈N*及二次函数图
Sn
13n
1 2
n(n
1) (2)
n2 14n
(n 7)2 49
故当n=7时, Sn取最大值49.
解法2: 由S3=S11, 得d=-2<0 则Sn的图象如下图所示
Sn
3 7 11 n
∴图象的对称轴为 n 3 11 7 2
故当n=7时, Sn取最大值49.
1.已知等差数列{an}中, a1=13且S3=S11, 求n取何值时, Sn取最大值.
解法3: 由S3=S11, 得d=-2<0
∴an=13+(n-1) ×(-2)=-2n+15

an an1
0
0
,

n n
15 2 13 2
故当n=7时, Sn取最大值49.
解法4: 由S3=S11, 得
a4+a5+a6+……+a11=0
而 a4+a11=a5+a10=a6+a9=a7+a8
∵n N*,∴1 n 30. ∴集合M的元素是由1至59共30个奇数组成.
∴这些元素的和为30(1 59) 900. 2
课本P24
*5.已知数列{an }的通项公式为an
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列前n项和(2)
知识点回顾:
数列前n项和 Sn a1 a2 ... an
等差数列的前n项和公式
(1)
n( a1 an ) Sn 2
(2) 如果已知等差数列的首项为a1,公差为d,项数为n, 把an=a1+(n-1)d代入 S n(a1 a n ) 可得到等差数列 n 2
求这个数列的通项公式.这个数列是等差数列吗? 如果是,它的首项与公差分别是什么?
我们再来对公式二的表示式做一下研究!
n(n 1) d d 2 即: Sn na1 d n (a1 )n 2 2 2 d d 若上式中令 a , b a1 , 2 2
则有, Sn an bn 记为: 公式三
1.当公差d <0即a<0时, Sn有最大值 y
(至于是否在顶点处取得,要看顶点 处所对应的横坐标距离它最近的正 整数处取得,一般情况下或一,或两个 最值),如右图所示:
2.当公差d>0即a>0时, Sn 有最小值.
o1
b 2a
x
3.当公差d =0即a=0时, an 是常数列 若a1 0 ,则它是关于n的一次函数, 若 a1 0 ,则 Sn = 0
x=

an 23 2n, 当n为何值时,其前n 例2.数列{an } 中,
项和 Sn取得最大值?
练习2.已知数列 {an }的前n项和 Sn 4n2 68n 求n为何值时, Sn 取得最大值.
a1 0, S9 S12 ,该数列前多少项 练习3.已知数列 {an }中,
的和最小?
前n项和的另一个公式:
n( n 1) S n na1 d 2
我们再来对公式二的表示式做一下研究!
n(n 1) d d 2 即: Sn na1 d n (a1 )n 2 2 2 d d 若上式中令 a , b a1 , 2 2
则有, Sn an bn 记为: 公式三
2
(注:等差数列前n项和是没有常数项的二次函数)
1 例1.已知数列 {an }的前n项和为 Sn n n 2
2

求这个数列的通项公式.这个数列是等差数列吗?
如果是,它的首项与公差分别是什么?
练习1.已知数列{an } 的前n项和为Sn 3n2 2n
求这个数列的首项与通项公式.
1 2 2 2.已知数列{an }的前n项和为 Sn n n 3 4 3
2
当d不为0时,此式是关于n的二次式且无常数项. 由于 n N * ,则数列Sn 的图象是抛物线
y ax bx( x R) 图象上的一群孤立的点.
2
那么由二次函数的性质, 我们来研究一下Sn 的最值.
d 2 d Sn n (a1 )n, 即Sn an2 bn 2 2
2 { a } 例3.已知数列 n 的前n项和是 Sn 32n n
(1)求数列的通项公式 an (2)求数列{| an |} 的前n项和 Tn
an 10 3n, 练习2.已知数列{an } 为等差数列,
求: | a1 | | a2 | ... | an |
相关文档
最新文档