4_第4讲_几何图形剪拼
小学四年级奥数配套课件 图形的分割与剪拼

例题(九)(★★★★★)
然后把乙剪成三块(如右下图所示)拼成的正方形,即可。
本讲重点知识
重要入手点:规则图形的中心 等底等高的两个三角形面积相等 注:特殊三角形——正三角形和等腰直角三角形的面积都相同,所以六边形面积等于13平方米。
例题(七)(★ ★ ★ )
用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、 一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图。
例题(八)(★ ★ ★ )
试将一个4×9的长方形分割成两个大小相等、形状相同的 图形,然后拼成一个正方形。
知识链接
桌子上放着m根火柴,甲、乙二人轮流每次取走1—n根。规定谁 取走最后一根火柴谁获胜。如果双方都采用最佳方法,甲先取, 那么谁将获胜? (1)若m÷(1+n)=P
则乙有必胜策略。甲取几根,乙就取(n+1)减几根。 (2)若m÷(1+n)=P …r
则甲先取r根,然后乙取几根,甲就取(n+1)减几根。
例题(四)(★ ★ ★ ★)
怎样把一个等边三角形分别分成8块和9块形状、大 小都一样的三角形。
(2)分成9块的方法:先把每边三等分,然后再把分点连接起来
知识链接
等边三角形的等分方法 ——各边等分再连线
例题(五)(★ ★ ★ ★)
下图是一个被挖去了为总面积四分之一小正方形的大正方形,请你将它分成 大小形状完全一样的两部分。如果分三部分呢?如果分成四部分呢?
知识链接
层层倒推,步步必胜。
例题一(★★)
用一条线段把一个长方形分成形状大小都相同的两块,一共有多少种不同的分 割法?
长方形的最重要之处是哪里呢? (1)做长方形的两条对甬线,设交点为O
【精品】(提高版)几何图形—专题04《图形的拆分(拼切)》2020年通用版小升初数学冲A提高集训(原卷版)

2020年通用版小升初数学冲A提高集训几何图形—专题04《图形的拆分(拼切)》一.选择题1.(2019秋•东莞市期末)把一张平行四边形卡片剪一刀分成两个图形,下面几种情况中不可能出现的是( )A.两个三角形B.两个梯形C.一个平行四边形和一个梯形2.(2019秋•会宁县期末)有一些长3厘米,宽1厘米的长方形纸片,至少需要()张这样的纸片才能拼成一个正方形.A.3 B.4 C.5 D.63.(2019•湘潭模拟)把一个长8厘米、宽6厘米、高4厘米的长方体,切成两个长方体,下图中()的切法增加的表面积最多.A.B.C.4.(2019•防城港模拟)一个长10厘米、宽8厘米的长方形,剪成同样大小的正方形,最后没有剩余,最少可以剪成()个正方形.A.10 B.20 C.40 D.805.(2018•西安模拟)如图,一个33的正方形网格,如果小正方形边长是2,那么阴影部分的面积是( )A.10 B.8 C.6 D.46.(2006•清河区校级自主招生)如图,长方形ABCD中放置了9个形状、大小都相同的小长方形(尺寸如图,单位:厘米),则图中阴影部分的面积为()A.82平方厘米B.64平方厘米C.60平方厘米D.54平方厘米7.(2006•清河区校级自主招生)将一张长40厘米、宽1厘米的长方形纸片连续对折3次,得到宽不变的较短的长方形,然后从它的一端开始,每隔1厘米剪一刀,其中可得到边长为1厘米的小正方形的个数为()A.40个B.33个C.26个D.20个二.填空题8.(2019秋•汉川市期末)一个平行四边形可以剪成两个相同的,也可以剪成两个相同的,也可以剪成两个相同的.9.(2018秋•江都区校级期末)有一块长4.5米、宽1.4米的长方形红布,大队辅导员李老师准备用这块红布剪直角边分别是7分米、4分米的直角三角形小红旗,最多可以剪面.10.(2018秋•白云区期末)把一个圆分成若干(偶数)等份,分的份数越多,拼成的图形就越接近长方形,这个近似长方形的长相当于圆的,宽相当于圆的.11.(2019•衡水模拟)如图,一个四边形可以分成2个三角形;一个五边形可以分成3个三角形;一个六边形可以分成4个三角形 .那么,一个10边形可以分成个三角形.12.(2019•天津模拟)在一个长是6厘米,宽是4厘米的长方形里剪一个最大的圆,这个圆的半径是厘米,周长是厘米.13.(2018•西安模拟)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.14.(2018•厦门模拟)用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有平方厘米是黑色的.15.(2014秋•如东县期末)用24个1平方厘米的小正方形拼成大长方形,一共有种不同的拼法,其中周长最大的是厘米.三.判断题16.(2018秋•盐城期中)用一张长方形的纸只能剪一个正方形.(判断对错)17.(2017•广东)已知一刀可以把一个平面切成2块,两刀最多可以把一个平面切成4块,三刀最多可以切成7块 ,由此可以推测,五刀最多可以切成16块.(判断对错)18.(2016秋•沛县月考)一个长方形,长24厘米,宽8厘米.这个长方形一定能分成3个完全一样的正方形(判断对错)19.(2014秋•余干县期末)在任何梯形中都能分割出一个三角形和一个平行四边形..(判断对错)四.应用题20.(2019秋•沛县期中)一块长120厘米、宽40厘米的红布,最多可以做成底和高都是8厘米的直角三角形小旗多少面?21.妈妈有一块长方形的花布(如图).她想给芳芳做成正方形的手绢,而且手绢要最大.(1)妈妈能剪出块这样的手绢.(2)剪成的每块手绢的周长是多少厘米?22.用一张长7dm、宽5dm的长方形纸剪边长是2dm的正方形,最多能剪出多少个这样的正方形?请你画一画示意图.23.(2018•西安模拟)如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3.试计算折痕对应的刻度有哪些?24.一块正方形试验田,如果边长增加5米,面积就比原来增加875平方米.现在这块试验田是多少平方米?五.操作题25.(2016春•皇姑区期末)(1)求出大正方形的周长.(2)把这个大正方形分成四个相同的小正方形,画一画,并求出每个小正方形的周长.26.(2015春•扬州校级期末)把一个边长是8厘米的正方形分成长3厘米宽2厘米的小长方形,最多能分成个.在图中把你的分法画出来.(每个小格表示边长1厘米的正方形)27.如图:有二张正方形的桌布,如何剪拼成一张更大的正方形桌布?画出裁剪图及剪拼后的示意图.28.(2017秋•兴义市月考)请你在下面的梯形中画一条线段,将梯形分成一个平行四边形和一个三角形.你能想到几种方法?说说你的画法.29.给平行四边形作一条高,将它分成两个梯形.六.解答题30.(2018秋•定州市期末)动手操作.下面方格图中每个小方格表示1平方厘米.(1)以三角形的顶点A为端点画一条线段,将这个角形分成面积相等的两部分.(2)在方格图中画一个平行四边形,使它与已知三角形的高和面积分别相等.31.(2018春•盐城期中)一根圆柱形木料,锯下5分米长的一段后,剩下的木料的表面积比原来减少了94.2平方分米.锯下的这段木料的体积是多少立方分米?32.(2015•潮州模拟)看图,回答问题:(1)不通过计算,将如图的大三角形切割成四个面积相等的小三角形,并用简单的文字说明切割而成的四个小三角形面积相等的原因.(2)作图:将如图的三角形ABC绕点A逆时针旋转90度后再向左平移4格,请在方格纸中画出变化后的图形.33.(2014秋•泰兴市期末)用一张长90厘米、宽24厘米的彩纸做直角三角形小旗,每面小旗的两条直角边分别是12厘米、9厘米.这张彩纸一共可以做多少面小旗?34.(2017秋•海安县校级期末)一张长12分米,宽8分米的长方形纸,做成底3分米,高2分米的直角三角形,最多可以做多少个?35.(2017秋•海安县期末)用长10厘米、宽6厘米的长方形硬纸(如图),做成一个棱长2厘米的正方体纸盒,应如何剪(接头处忽略不考虑)?在图中用阴影部分表示出要剪去的部分.至少给出两种不同的方案.36.(2018•海门市校级模拟)如图,用边长10厘米的正方形硬纸板,做成一个棱长2厘米的正方体纸盒,应如何剪(接头处忽略)?在图中用阴影表示出要剪去的部分.至少给出两种不同方案.37.(2018•长沙)宽18厘米.长未知的同样大小的长方形小纸片拼成如图所示的图形,求阴影部分的面积.38.(2015秋•连云港期中)一块长5米,宽2米的长方形红纸,剪出腰长为4分米的等腰直角三角形小旗,共可剪多少面?39.(2015秋•旅顺口区校级月考)学校开运动会,要做底40cm,高30cm的直角三角形小红旗300面.用来做小红旗的长方形纸长1.2m,宽0.8m,买20张这样的纸够不够?40.(2015秋•盐都区校级期中)一块长5米,宽2米的长方形红纸,剪出腰长为4分米的等腰直角三角形小旗,共可剪多少面?。
小学四年级逻辑思维学习—图形的分割与拼接

小学四年级逻辑思维学习—图形的分割与拼接知识定位本讲中的知识点比较抽象,在这一讲中我们主要学习几种图形处理方法:1、理解掌握图形的分割;2、理解掌握图形的拼合;3、理解图形的剪拼;4、利用剪拼图形计算、解决问题.【授课批注】本讲中很多类型的题目还要求学生去动手尝试.通过本讲知识点的学习,让学生了解不同图形的分割、拼合、剪拼的方法,锻炼学生的平面想象能力以及增强学生的动手操作能力知识梳理图形的分割与拼接的概念把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.【授课批注】该知识点可从七巧板引入,举几个由七巧板组成的图形的剪拼的例子。
【重点难点解析】1.根据题目需要找合适的方法进行剪拼2.如何根据相等的量来剪拼图形【竞赛考点挖掘】1.方格纸的分割与拼接2.简单平面基本图形(长方形、三角形等)的分割与拼接例题精讲【题目】右图是一个3×4的方格纸,请用四种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【题目】右图是一个4×4的方格纸,请用六种不同的方法将它分割成完全相同的两部分,但要保持每个小方格的完整.【题目】请把右面这个长方形沿方格线剪成形状、大小都相同的4块,使每一块内都含有“奥数读本”这四个字中的一个,该怎么剪?【题目】学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将右图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?【题目】图中是由三个正三角形组成的梯形.你能把它分割成4个形状相同、面积相等的梯形吗?【题目】如何把图a中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角形进行分割).【题目】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.习题演练【题目】把右图剪成形状、大小相等的8个小图形,怎么剪?作出分出的小图形.【题目】用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【题目】下面哪些图形自身用4次就能拼成一个正方形?【题目】将方格纸剪成面积是4的图形,形状只有七种,如下图所示.其中有哪几种可以拼成面积是16的正方形?【题目】试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.【题目】将右图分成4个形状、大小都相同的图形,然后拼成一个正方形.【题目】试将一个正方形分成相同的四块,然后用这四块分别拼成三角形、平行四边形和梯形.【题目】试将任意一个三角形分成三块,然后拼成一个长方形.【题目】试将任意一个矩形分成三块,然后拼成一个三角形【题目】将右图分成两块,然后拼成一个正方形.【题目】如图所示,四个等腰直角三角形和一个正方形,已知正方形的面积是4平方厘米,长方形ABCD的面积是多少平方厘米?【题目】如何把一个长20厘米、宽12厘米的长方形切成两块,拼成一个长16厘米、宽15厘米的新长方形.【题目】正六边形ABCDEF的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.【题目】一个正三角形形状的土地上有四棵大树(如右图所示),现要把这块正三角形的土地分成和它形状相同的四小块,并且要求每块地中都要有一棵大树.应怎样分?【题目】右图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【题目】用两块大小一样的等腰直角三角形能拼成几种常见的图形?【题目】用下面左边的3个图形,拼成右边的大正方形.【题目】小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?柏拉图古希腊哲学家,也是全部西方哲学乃至整个西方文化最伟大的哲学家和思想家之一,他和老师苏格拉底,学生亚里士多德并称为古希腊三大哲学家。
四年级几何图形剪拼学生版

知识要点图形剪拼菱形面积公式将一个等边三角形分割成若干个等边三角形(不要求大小相等)将一个正方形分割成若干个正方形(不要求大小相等)n 边形内角和公式常用图形的剪拼梯形面积公式平行四边形面积公式三角形面积公式 几何(本讲)一、 三角形面积公式:三角形面积=底⨯高2÷,即S 三角形2a h =⨯÷。
二、 平行四边形面积公式:平行四边形面积=底⨯高,即S 平行四边形a h =⨯。
三、 梯形面积公式:梯形面积=(上底+下底)⨯高2÷,即S 梯形()2a b h =+⨯÷。
四、 菱形面积公式:菱形面积=两条对角线乘积的一半,即S 菱形2m n =⨯÷ 五、n 边形的内角和公式:n 边形的内角和(2)180n =-⨯o 。
图形面积【例 1】如图所示,已知三角形的一条边为a,这条边上的高为h。
请用图形剪拼的方法,求出这个三角形的面积S三角形。
hahaha【例 2】如图所示,已知平行四边形的一条边为a,这条边上的高位h。
请用图形剪拼的方法,求出这个平行四边形的面积S平行四边形。
ha【例 3】如图所示,已知梯形的两条平行的边分别为a、b,梯形的高为h。
请用图形剪拼的方法,求出这个梯形的面积S梯形。
hab【例 4】如图所示,已知菱形的两条对角线分别为m、n。
请用图形剪拼的方法,求出这个平行四边形的面积S菱形。
(提示:菱形的两条对角线相互垂直)mn图形分割【例 5】 (2005年12月第六届“中环杯”小学生思维能力训练活动四年级复赛第二(5)题)将一个长方形分成形状完全一样的四块,至少画出8种分法,请用图表示。
(形状一样,排列方向不一样,只能看作一种分法)【例 6】 如图所示为一个34⨯的长方形方格纸,请用5种不同的方法将它分割成完全相同的两部分(保持每个小方格的完整)。
【例 7】 如图所示,请将44⨯的正方形分成形状相同、大小相等的四个图形,并且使其中每个图形都含有“上海世博”这四个字。
四年级奥数讲义 几何图形简拼

几何图形剪拼 例题1.将下面两个图形分别分成四块相同的图形:2. 将右面图形分成四块相同的图形,要求每一块都包含A 、B 、C 、D ;3. 在俄罗斯方块的游戏中出现的七种图形如下,它们都是由4个单位小方格组成的连通图形。
1)如果只用其中的一种图形拼成面积是16的正方形,那么可以用的图形有哪几种;2)如果用其中的4种不同的图形拼成一个面积是16的正方形,那么可以选择哪几种图形;4. 如图所示,有一个的正方形,现在要把它分割8个小正方形,1)要形成2种面积不同的小正方形,如何分割;2)要形成3种面积不同的小正方形,如何分割;5. 用四块直角三角板(形状如图)拼成一个外沿是正方形,里面有一个正方形孔的图形;6. 右图是一个正方形和一个等腰直角三角形拼成的图形,现在要把它剪成4块形状大小均相同的图形,应该如何剪?7. 长方形的长和宽各是9厘米和4厘米,把它剪成两块再拼成一个正方形;8. 将右图分成两块,然后拼成一个5 6的长方形。
请在原图上标明分割线,并画出长方形的拼合图;9. 右图的纸片是由一个正方形和一个等腰直角三角形组成,请把它分成三部分,并可以重新拼成一个正方形;D C A A B B C D A D C A B C D B(1) (2) (3) (4) (5) (6) (7)(1)几何图形剪拼课后练习1.将一个任意形状的三角形分成四块相同的图形;2.把一张长方形纸片剪一刀(不能折叠),分成两部分,使这两部分既能拼成平行四边形,又能拼成三角形,还能拼成梯形,在下面的图中画一直线表示剪切,并画出拼法;3.把一个长24厘米,宽15厘米的长方形剪成形状大小相同的两块图形,重新拼成一个长20厘米,宽18厘米的长方形;4.梯形的下底是上底的2倍,两个底角都是60 ,将这个梯形分成大小、形状完全相同的4块;5.将右图分割成相同的两块,然后拼成一个正方形;6.将一个正方形按要求分成四块图形,并重新形成两个正方形;1)四块图形相同,两个新正方形面积相同2)四块图形可以不同,两个新正方形,一个是另一个面积的8倍;。
二年级下册数学试题-奥数习题讲练:第四讲 图形剪拼(解析版)全国通用

第四讲图形剪拼数学乐园有一天,小动物们在草地上做游戏.小象齐齐看到一个图形,是一个正方形缺了一部分,齐齐想:这个图形如果剪一剪、拼一拼,成为一个正方形的框(中间含有一个正方形的空缺)就可以用来当野餐的餐桌了.可是该怎么剪、怎么拼才能符合要求呢?【教学思路】方法1:先把这个图形分成一样的8个小正方形,然后沿折线剪开,就可以拼成右边的图形.方法2:先把这个图形分成一样的4个小长方形,然后沿折线剪开,就可以拼成右边的图形图形与图形之间都是有内在联系的,这种相互间内在的联系,对以后学习图形的面积至关重要.在这节课中我们组织学生按照规定(形状和面积)的要求,把一个几何图形分割成几个图形这样的活动,通过学生的动手操作和图形的变化,让学生来感知这些图形的内在联系.方法1 方法2同学们,我们已经学过一些简单的基本几何图形,如、□、△、○等,通过折、剪、拼,这些图形之间是可以相互变化的,这不仅可以锻炼我们的动手能力,还能拓展我们的思维,使我们的头脑越来越灵活.今天这节课就用我们灵巧的小手来玩一玩拼图游戏吧!分一分【例1】要把一个正方形剪成形状相同、大小相等的4个图形,该怎样分?【分析】把一个正方形分成形状、大小相等的4个图形,我们可以先让学生把这个正方形分成形状、大小相等的2个图形,然后再把这两个图形继续分成形状、大小相等的4份.有些方法中我们也可以利用对称图形的特点来分.本题有很多种解法,这里只列举最常用的几种:.【例2】你能把下面的图形分成7个长方形吗?动手画一画.【分析】可以分成7块含有2个小方格的长方形,答案如下:(答案不唯一)拓展练习你能把下面的图形分成7个长方形,使每个长方形中包含相连的2个小方格吗?【分析】不能,因为如果可分的话,每块图形中一定是一个黑色、一个白色.那么黑白方格应分别有7个,但图中白色方格只有6个.【例3】你能将下面的图形分割成4个形状相同、大小相等的图形吗?【分析】首先可以把这个图形分成12个小正方形,要把这个图形分成大小相等的4个图形,那么每个小图形必须包含:12÷4=3个小方格,然后我们再来考虑分得的形状相同,通过尝试我们就可以得到答案.在分割不规则图形时,我们可以考虑把这个图形分割成若干个规则图形,然后再来进一步思考.答案如下图:拓展练习1、你能把下面的两个图形分割成4个形状相同、大小相等的图形吗?【分析】答案如下:2、下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形.【例4】你能把一个正三角形分成形状相同,大小相等的2个、3个、4个、6个、9个三角形吗?【分析】观察:正三角形有几条对称轴?正三角形有3条对称轴,我们把一个正三角形分成若干份,都可以根据它的对称轴来分.答案如下:思考:(1)分成4个、9个的方法与分成2个、3个、6个的方法有什么不同?(2)哪几种分割的结果仍得到正三角形?【例5】你能把一个正方形分成6个、7个、8个、9个小正方形(不要求面积相等)吗?【分析】首先我们来观察:一个正方形分成4个小正方形,每分一次,正方形的个数增加3个.根据这样的规律,我们可以想到怎样把一个正方形分成4个、6个、8个正方形的方法.分成6个分成7个分成8个分成9个【例6】下图是由三个正三角形组成的梯形.你能把它分割成4个形状相同、大小相等的梯形吗?【分析】连接正三角形各边的中点,正好把这个正三角形分割成了4个形状相同,大小相等的梯形.【例7】将下图分割成大小、形状相同的三块,使每块都包含一个小圆圈.【分析】数一数,一共有18个小方格,要分成大小、形状相同的三块,每块里面应该包含6个小方格.然后再来考虑每块里面要含一个小圆圈,通过尝试答案如下:拓展练习在下面的方格中有4个圆圈,请你把方格分成4个完全相同的非正方形,使每部分都有1个圆圈(圆圈的位置相同).动手画出你的方法.答案不唯一拼一拼【例8】晚饭后,平平和妈妈玩拼木板游戏.妈妈拿出5块木板(如下图),要求平平把这5块木板拼成一个正方形.聪明的平平很快就拼好了.小朋友,你知道她是怎样拼的吗?试一试.【分析】如果用2号、3号、4号、5号这四块木板,就可以拼成近似的正方形.现在加上1号这块正方形,拼成的正方形一定比四块拼成的大得多.【例9】用下面的四块图形能拼成右边的正方形吗?怎样拼?【分析】答案不唯一,以下有三种基本的方法,其他方法可改变不同的方位来排列.拓展练习用下面左边的3个图形,拼成右边的大正方形.【分析】答案有以下几种,其实我们可以发现这几种方法基本相同,只是方位发生了变化.【例10】你能把下面的四块图形拼成一个长方形的宣传牌吗?【分析】答案如下:【例11】下面有5组图形,每个各有5个小正方形,请把这5个图形拼成一个大正方形,可以怎样拼?【分析】这道题可以先让学生摆一摆,通过摆就可以找到答案.【例12】国外有一种流行的七巧板,它由20个小正方形组成的纸板分割而成,利用这种七巧板也可拼成许多有趣的图形.仔细观察图(1),然后把图(2)分割成七巧板.图(1)图(2)【分析】观察图(1)中的“箭头”,给组成它的每个图形编号,按面积从大到小逐步进行分割.先分割出面积最大、边最长的图形①;第二步再分割出五边形②;第三步再分割出梯形③;以此类推,整个七块都分割出来了.动动手:把长方形按上面的方式剪成7块,涂上颜色做成七巧板,然后拼一拼.附加题(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)一个长6厘米,宽4厘米的长方形,从中间剪开,如图所示,得到2个大小、形状都相同的长方形,这两个新长方形的周长是多少?【分析】切割开之后,新形成的2个小长方形除了原有长方形的边之外,新产生了两条边,如下图虚线所示,每个新长方形的周长是:(3+4)×2=14(厘米).两个新长方形的周长是14+14=28(厘米)把下面这个长方形沿格线剪成大小相等、形状相同的四块,使每块内都含有“我爱北京”这四个字中的一个字,该怎样剪呢?【答案】沿下面的粗线剪开,就得到了大小相等、形状相同的四块,并且每块内都含有“我爱北京”这四个字中的一个字.妈妈买来了两张同样大小的方桌布,想把这两张方桌布裁剪一下,然后拼成一张大方桌布,该怎样裁剪?怎样拼呢?【教学思路】要想把两块一样大小的正方形,剪拼成一个最大的正方形,我们可以把这两个小正方形对折,然后剪出四个大小一样的三角形,这四个三角形就可以拼成一个最大的正方形.如下图:有一张纸,被分成大小相等的16个方格.请你沿着方格纸的边把这张纸剪成两部分,使得这两部分正好可以拼成一个正方形.该怎样剪拼呢?(中间空白是空的)【教学思路】数一数一共16个方格,要想剪成两部分拼成一个正方形,这个正方形每条边就应该是4个方格.如下图,第一层有7个方格,我们可以剪掉3个;补到第二层上正好是四个;再把第二层上右边多的一个补到第三层也正好是4个,把第三层上剪出4个放到第四层,这样就拼出了一个正方形.沿粗线剪开:变成下面两部分:拼成正方形:练习四1. 把下图分成5个形状相同、大小相等的图形.【答案】方法如下:2. 将下面的正三角形分割成16个形状、大小一样的三角形.【答案】方法如下:3.把下图剪成形状、大小相等的8个小图形,怎么剪?【答案】方法如下:4. 请把下图中长方形分成形状相同、大小相等的两块,然后再拼成一个正方形.【答案】数一数,这个长方形一共有36块小方块,要剪拼成一个正方形,这个正方形每边应该有6个小方块.具体操作如下图:5. 用下面的四块图形能拼成右边的正方形吗?怎样拼?【答案】方法如下:6. 长为16厘米、宽为4厘米的长方形经过剪拼,组成一个正方形,这个正方形的边长为多少厘米.【答案】这个长方形可看成是边长是4厘米的正方形4个排一排.如下图:现在把这4个小正方形,拼成一个大正方形.这个大正方形的边长是8厘米.有一天,著名科学家爱因斯坦先生被邀请作演讲嘉宾.他的司机对他开玩笑说:「我经常听到你在车中预备演讲,听得多了,我也可以一字不漏地背念出来.」爱因斯坦听罢就说:「那就好极了,我昨日整天都在做研究工作,疲倦得很,况且邀请我演讲的机构与我素未谋面,你大可替我演讲,我做你的司机好了.演讲当晚,司机果然一字不漏地念出爱因斯坦惯说的演讲内容,令在场的人佩服不已,连坐在观众席最后排的爱因斯坦,也频频点头称是.可是,演讲完结后,突然有一位年青科学家,追问了一个颇为深入的问题,那当然是司机的演讲以外的资料,全场都等待着这位冒牌科学家的答复.出乎意料之外,他竟然气定神闲地开始回答说:「年青人,请恕我直言,你刚才的问题实在太简单,甚至可以说是个蠢问题,假如你不信的话,我可以证明给你看.这问题简单得连我的司机也懂得如何回答.」跟着,司机便邀请爱因斯坦上台作答,并且在掌声雷鸣之下离开会场.。
小学奥数讲义4年级-5- 图形的剪拼-难版

第5讲图形的剪拼知识梳理把一个几何图形按某种要求分成几个图形,就叫做图形的分割.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.典型例题【例1】★请将一个任意三角形分成四个面积相等的三角形。
【解析】本题要求分成面积相等的三角形,因此可以利用“同底等高的三角形面积相等”这一性质来分割。
方法一:将某一边等分成四份,连结各分点与顶点(见左下图)。
方法二:画出某一边的中线,然后将中线二等分,连结分点与另两个顶点(见右上图)。
【小试牛刀】试将一个等边三角形分割成8个全等的直角三角形。
【解析】如图【例2】★将右图分割成五个大小相等的图形。
【解析】因为图中共有15个小正方形,所以分割成的图形的面积应该等于15÷5=3(个)小正方形的面积。
3个小正方形有和两种形式,于是可得到很多种分割方法,下图是其中的三种。
【小试牛刀】下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.321D C B A 1FE221D C BA【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,AD 边长正好为3,所以AD 边分成两段,找到AD 的三等分点E ,现在,CD AE =,DE AB =,BF EF =,所以还要找到BC 的中点F ,连接EF ,就把梯形ABCD 分成完全相同的两部分.如右上图.【例3】★★右图是一个4×4的方格纸,请在保持每个小方格完整的情况下,将它分割成大小、形状完全相同的两部分。
二年级数学第四讲图形的剪拼教师版答案

第四讲图形的剪拼图形与图形之间都是有内在联系的,这种相互间内在的联系,对以后学习图形的面积至关重要.在这节课中我们组织学生按照规定(形状和面积)的要求,把一个几何图形分割成几个图形这样的活动,通过学生的动手操作和图形的变化,让学生来感知这些图形的内在联教学点为您准备了挂图.动手动脑有一天,小动物们在草地上做游戏.小狗齐齐看到一个图形,是一个正方形缺了一部分,齐齐想:这个图形如果剪一剪、拼一拼,成为一个正方形的框(中间含有一个正方形的空缺)就可以用来当野餐的餐桌了.可是该怎么剪、怎么拼才能符合要求呢?【分析】(法1)先把这个图形分成一样的8个小正方形,然后沿折线剪开,就可以拼成右边的图.(法2)先把这个图形分成一样的4个小长方形,然后沿折线剪开,就可以拼成右边的图形.方法1方法2同学们,我们已经学过一些简单的基本几何图形,如、□、△、○等,通过折、剪、拼,这些图形之间是可以相互变化的,这不仅可以锻炼我们的动手能力,还能拓展我们的思维,使我们的头脑越来越灵活.今天这节课就用我们灵巧的小手来玩一玩拼图游戏吧!巧剪图形例1要把一个正方形剪成形状相同、大小相等的4个图形,该怎样分?【分析】把一个正方形分成形状、大小相等的4个图形,我们可以先让学生把这个正方形分成形状、大小相等的2个图形,然后再把这两个图形继续分成形状、大小相等的4份.有些方法中我们也可以利用对称图形的特点来分.本题有很多种解法,这里只列举最常用的几种:.[拓展]一个长6厘米,宽4厘米的长方形,从中间剪开,如图所示,得到2个大小、形状都相同的长方形,这两个新长方形的周长是多少?[分析] 切割开之后,新形成的2个小长方形除了原有长方形的边之外,新产生了两条边,如下图虚线所示,每个新长方形的周长是:34214+⨯=()(厘米).两个新长方形的周长是14+14=28(厘米).例2 你能把下面的图形分成7个长方形吗?动手画一画.【分析】 可以分成7块含有2个小方格的长方形,答案如下(答案不唯一):【分析】 不能,因为如果可分的话,每块图形中一定是一个黑色、一个白色.那么黑白方格应分别有7个,但图中白色方格只有6个.例3 你能将下面的图形分割成4个形状相同、大小相等的图形吗?【分析】 首先可以把这个图形分成12个小正方形,要把这个图形分成大小相等的4个图形,那么每个小我来做你能把下面的图形分成7个长方形,使每个长方形中包含相连的2个小方格吗?图形必须包含:1243÷=个小方格,然后我们再来考虑分得的形状相同,通过尝试我们就可以得到答案.在分割不规则图形时,我们可以考虑把这个图形分割成若干个规则图形,然后再来进一步思考.答案如图:[拓展]你能把下面的两个图形分割成4个形状相同、大小相等的图形吗?[分析]答案如下:[拓展]下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲几何图形剪拼
1、将一个正方形纸片剪成形状、大小、都相同的四块,可以怎样剪?尽可能多的想法
2、在一块正方形的纸片上有一个正方形的空洞,现在要求用一条经过大正方形中心的线段,把纸片分成面积相等的两部分,该怎么分?
3、三角形和六角星的每条边长都相等,那么用多少个三角形可以拼成六角星?
4、在正方形边上的40个点中,选出6个点,连出三条线段,将正方形分成六部分,使得每个部分都恰好有1个三角形,2个小正方形。
5、请把图中两个图形分别沿格剪成四个形状、大小相同的图形。
6、请把图沿格剪成三个形状、大小相同的图形,使得每部分都恰好含有一个○
7、请把图沿格剪成形状、大小相同的4部分,使得每部分都恰好含有一个A、B、
C、D四个字母。
8、左图是由五个相同大小的小正方拼成的,右图是由一个正方形和一个等腰直角三角形拼成的,请把这两个图形分别剪成四个形状、大小都相同的图形。
9、有两个面积相等的正方形纸片,现在想把它们拼成一个更大的正方形,要求:(1)如果分别剪开这两个正方形,在拼成一个大正方形,应该怎么办?
(2)如果只允许剪开一个正方形,在拼成一个大正方形,应该怎么办?
10、图中是由若干个小正方形组成的图形,你能将它剪成两块,然后拼成一个正方形么?
拓展篇
1、ABCDEF是一个正六边形,O是它的中心,画出线段PQ,就把它分成2个形状、大小都相同的五边形。
能否画出2条线段,把正六边形分成6个形状、大小都相同的图形?能否画出几条线段,把正六边形分成3个形状、大小都相同的四边形?能否画出几条线段,把正六边形分成3个形状、大小都相同的五边形?
2、请在图中标出分割线,把下图沿着格线分成形状、大小相同的四部分。
3、请在图中标出分割线,把下图沿着格线分成形状、大小相同的四部分。
4、把下图分成形状、大小相同的四部分,请画出4种不同的方法。
5、从一张边长为7厘米的正方形中,最多可以剪出多少个长4厘米、宽1厘米的长方形纸条?
6、将图分成形状、大小都相同的四块,使得每块都有A、B、C、D。
7、把一个大正方形分割成两种不同的小正方形:
(1)要求两种小正方形一共有6个,应该怎样分?
(2)要求两种小正方形一共有7个,应该怎样分?
8、将边长分别为3厘米和4厘米两个正方形分割成四块,然后将它们拼成一个边长是5厘米的大正方形,请画出切割线和拼接线。
9、请将图a 剪成三块,拼成一个正方形
b
10、将图分割成四个形状和大小都相同的部分,然后将它们拼成一个正方形。
4 3
5
11、图中长方形的长和宽分别是9厘米和4厘米,请把这个长方形剪成两块在拼成一个正方形。
12、有一个长方形纸片,按图所示剪成了三块,已知这三块纸片可以拼成一个正方形,正方形的边长是多少?具体怎样拼?
13、把7个长为4厘米、宽为3厘米的长方形既互不重叠又不留空隙的拼成一个大长方形,那么这个大长方形的周长最小是多少厘米?请画出具体拼法。
14、用若干个边长为1、2、3、4的正方形纸片互不重叠的拼成一个边长为5的大正方形,最少需要纸片多少张?写出具体拼法。
超越篇
1、将图沿着格线分割成四个形状和大小都相同的部分,你能想出几种方法?
2、图中长方形的长和宽分别是25厘米和16厘米,请把这个长方形剪成两块在拼成一个正方形。
3、在一块25×49(厘米)的长方形纸片,现在要沿着虚线将它分成三块,再拼成边长为35厘米的正方形纸片,请标明剪切和拼接的方法。
虚线划分成的小长方形均为5×7(厘米)
4、将图沿着格线分割成七个形状不同的长方形(包括正方形),用实线标出分割线。
5、图中是由5个小正方形组成的一个“十字架”,将它剪成若干块拼成一个大正方形。
6、一个5×7的大正方形左上角割去了一个2×3的小正方形,请把这个图形分成三部分,再拼成一个正方形。
7、有一个大正方形,现在要把它分割成12个小正方形,那么:
(1)要形成2种面积不同的小正方形,可以如何分割?
(2)要形成3种面积不同的小正方形,可以如何分割?
(3)要形成4种面积不同的小正方形,可以如何分割?
8、请画出一个三角形,并把它分成大小形状都完全相同的5个小三角形。
如果要分为完全相同的13个小三角形,该如何画?。