简单的贪心算法

合集下载

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

贪心算法原理及应用

贪心算法原理及应用

贪心算法原理及应用随着人工智能技术的不断发展,算法的种类也越来越多,其中贪心算法作为一种最基础的算法,也在不断优化和升级。

本文将简要介绍贪心算法原理及其应用,探讨贪心算法的优劣和适用场景。

一、贪心算法原理贪心算法是一种常见的优化算法,它的基本思想是:在每一步选择中都采取当前状态下最优的选择,从而希望最终得到全局最优的解。

贪心算法在每一步选择中都依赖于以前的选择结果,但不依赖于将来的选择结果。

这种贪心选择性质是该算法能达到最终全局最优解的保证。

然而,即使每个局部最优的选择都是正确的,但最终的全局最优解并不一定会得到,因此贪心算法不一定能得到全局最优解,但是在实际问题中,贪心算法通常可以得到非常接近最优解的结果。

二、贪心算法应用1.最小生成树最小生成树是图论中的一个经典算法问题,它可以用贪心算法来解决。

在给定一个带权无向图时,我们需要找到一棵生成树,使得生成树所有边的权值之和最小。

Prim算法和Kruskal算法都是基于这一思想建立的。

2.背包问题背包问题是一种经典的动态规划问题,也可以用贪心算法来解决。

在背包问题中,我们需要找到一种最佳的方案,使得放入背包的物品的总价值最大。

3.活动安排在一组活动中,每个活动都有一个开始时间和结束时间。

如何安排这些活动,使得可以安排的最多?可以用贪心算法进行解决。

三、贪心算法的优劣1.优点优点是:简单,易于实现;对于一些问题可以快速得到答案。

2.缺点缺点是:贪心算法不能保证得到全局最优解,只能得到最终结果接近最优解的结果。

在一些问题中会出现无解的情况。

此外,贪心算法需要根据实际问题进行调整,否则可能会得到错误的答案。

3.适用场景对于一些特殊的问题,贪心算法通常可以得到非常好的效果。

例如上文提到的最小生成树、背包问题和活动安排等等。

在这些问题中,贪心算法可以得到接近最优解的结果。

但是,在一些问题中,贪心算法的结果会偏离真实结果。

四、结语贪心算法是一种简单而实用的算法,它在很多实际问题中都有广泛的应用。

列举用贪心算法求解的经典问题

列举用贪心算法求解的经典问题

列举用贪心算法求解的经典问题贪心算法是一种简单而高效的问题求解方法,通常用于求解最优化问题。

它通过每一步选择当前状态下的最优解,最终得到全局最优解。

贪心算法的核心思想是:每一步都做出一个局部最优的选择,并认为这个选择一定可以达到全局最优。

以下是一些经典问题,可以用贪心算法求解:1. 零钱兑换问题(Coin Change Problem):给定一些不同面额的硬币和一个目标金额,找到最少的硬币数量,使得硬币总额等于目标金额。

贪心算法可以按照硬币的面额从大到小进行选择,每次选择尽量大面额的硬币。

2. 区间调度问题(Interval Scheduling Problem):给定一些区间,找到最多的不相交区间。

贪心算法可以按照区间的结束时间进行排序,每次选择结束时间最早的区间,确保选择的区间不重叠。

3. 分糖果问题(Candy Problem):给定一个数组表示每个孩子的评分,要求给这些孩子分糖果,满足以下要求:每个孩子至少分到一个糖果,评分高的孩子要比相邻孩子分到的糖果多。

贪心算法可以从左到右进行两次遍历,分别处理评分递增和评分递减的情况。

4. 跳跃游戏问题(Jump Game Problem):给定一个非负整数数组,表示每个位置的最大跳跃长度,判断是否能从第一个位置跳到最后一个位置。

贪心算法可以记录当前能够到达的最远位置,并且更新为更远的位置。

5. 任务调度器问题(Task Scheduler Problem):给定一串任务,每个任务需要一定的冷却时间,要求以最短的时间完成所有任务。

贪心算法可以按照出现次数进行排序,优先执行出现次数最多的任务,并在冷却时间内执行其他任务。

6. 区间覆盖问题(Interval Covering Problem):给定一些区间,找到最少的区间数,使得它们的并集覆盖了所有输入区间。

贪心算法可以根据区间的起始位置进行排序,每次选择最早结束的区间,并将它添加到最终结果中。

以上仅是一些经典问题的例子,实际上还有很多问题可以用贪心算法来求解。

贪心算法程序设计

贪心算法程序设计

贪心算法程序设计贪心算法程序设计1. 什么是贪心算法贪心算法(Greedy Algorithm)是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。

贪心算法的核心思想是局部最优解能导致全局最优解。

2. 贪心算法的基本步骤贪心算法的基本步骤如下:1. 定义问题的优化目标。

2. 将问题分解成子问题。

3. 选择当前最优的子问题解,将子问题的解合并成原问题的解。

4. 检查是否达到了问题的优化目标,如果没有达到,则回到第二步,继续寻找下一个最优子问题解。

5. 在所有子问题解合并成原问题解后,得到问题的最优解。

3. 贪心算法的应用场景贪心算法的应用非常广泛,几乎可以用于解决各种优化问题。

以下几个常见的应用场景:1. 零钱找零问题:给定一定面额的纸币和硬币,如何找零使得所需纸币和硬币的数量最小?2. 区间调度问题:给定一些活动的开始时间和结束时间,如何安排活动使得可以办理的活动数量最大?3. 背包问题:给定一些具有重量和价值的物品,如何选择物品使得背包的总价值最大?4. 最小树问题:给定一个带权无向图,如何找到一棵树,使得它的边权之和最小?5. 哈夫曼编码问题:给定一组字符和相应的频率,如何构造一个满足最低编码长度限制的二进制编码?4. 贪心算法的优缺点贪心算法的优点是简单、高效,可以快速得到一个近似最优解。

而且对于一些问题,贪心算法能够得到全局最优解。

贪心算法的缺点在于它不一定能够得到全局最优解,因为在每一步只考虑局部最优解,无法回溯到之前的选择。

5. 贪心算法的程序设计在使用贪心算法进行程序设计时,通常需要以下几个步骤:1. 定义问题的优化目标。

2. 将问题分解成子问题,并设计子问题的解决方案。

3. 设计贪心选择策略,选择局部最优解。

4. 设计贪心算法的递推或迭代公式。

5. 判断贪心算法是否能够得到全局最优解。

6. 编写程序实现贪心算法。

6.贪心算法是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。

贪心算法基本步骤

贪心算法基本步骤

贪心算法基本步骤贪心算法是一种非常常用的算法思想,广泛应用于算法设计中。

本文将介绍贪心算法的基本步骤、实现方式、应用场景以及优缺点。

一、基本步骤贪心算法的基本步骤可概括为:定义最优解的性质->利用贪心策略获得局部最优解->将局部最优解合并成一个整体最优解。

具体来说,一般包括以下几个步骤:1. 确定问题的最优解性质:要知道问题的最优解应该具有怎样的性质或特征,这些性质可以用于判断一个解是否符合规则或结果是否符合要求。

2. 构造候选解集:根据最优解的性质,不断构造可行的候选解集合,并通过一定的方法筛选出其中的解。

3. 选择最优解:从候选解集中选择一个最优解。

4. 验证最优解:通过验证最优解是否合法(满足约束条件)以及是否为问题的最优解,来验证贪心策略的正确性。

二、实现方式贪心算法的实现方式是比较灵活的,有些问题可以通过贪心策略来解决,有些则不行。

一般而言,如果问题的最优解具有贪心选择性质(即每一步的局部最优解能导致全局最优解),则采用贪心策略是可行的。

对于一些场景,我们可以通过规律来得到贪心策略。

例如:1. 集合覆盖问题:从未被覆盖的地方中选择一个覆盖点集最大的点,并删除所有覆盖的集合;2. 分数背包问题:选择性价比最高的物品,先吸纳尽量多的物品,再考虑其他物品。

三、应用场景1. 背包问题:针对背包问题和其变种,常见的贪心策略有分数背包(与完全和01背包有区别)和完全背包问题;2. 活动安排问题:在一些课程、项目或活动间选择,使得能够安排最多活动;3. 区间选择问题:在一些区间间选择相互不重叠的区间,使得能够选出最大的区间数;4. 集合覆盖问题:在一些集合中选择最少的集合,使得能够覆盖所有元素。

四、优缺点优点:1. 算法简单:贪心算法通常比较简单,易于理解和实现;2. 运算速度快:其时间复杂度一般较低,运算速度很快;3. 可以作为其他算法的优化:贪心策略可以应用于其他算法的优化中。

缺点:1. 不一定能够得到最优解:贪心策略仅考虑当前的局部最优解,对于全局最优解可能产生影响;2. 单一性:贪心算法的结果是唯一的,难以应对变化条件的需要,一旦局部最优解不满足当前的情况,算法就会失去原先的效果;3. 实现困难:对于有些问题,贪心算法并不是很好实现,涉及到更多的问题分析和模型的构造。

贪心算法通过每次选择局部最优解来达到全局最优

贪心算法通过每次选择局部最优解来达到全局最优

贪心算法通过每次选择局部最优解来达到全局最优贪心算法是一种常用的解决优化问题的算法。

它通过每次选择局部最优解来达到全局最优的目标。

在本文中,我们将介绍贪心算法的原理、应用场景以及优缺点。

一、原理贪心算法的基本原理非常简单:每一步都选择当前状态下的局部最优解,最终得到的结果就是全局最优解。

贪心算法不考虑过去的选择对未来的影响,只关注眼前的最佳选择。

二、应用场景贪心算法在各个领域都有广泛的应用,下面我们将以几个常见的实际问题来说明。

1. 图的最小生成树问题在一个连通无向图中,找到一个包含所有节点且权值最小的无回路子图,这个问题称为最小生成树问题。

贪心算法可以通过每次选择权值最小的边来逐步构建最小生成树。

2. 分糖果问题有一组孩子和一组糖果,每个孩子有一个需求因子和每个糖果有一个大小。

当糖果的大小不小于孩子的需求因子时,孩子可以获得该糖果。

目标是尽可能多地满足孩子的需求,贪心算法可以通过给每个孩子分配满足其需求因子的最小糖果来达到最优解。

3. 区间调度问题给定一个任务列表,每个任务有一个开始时间和结束时间。

目标是安排任务的执行顺序,使得尽可能多的任务能够被完成。

贪心算法可以通过选择结束时间最早的任务来实现最优解。

以上只是一些贪心算法的应用场景,实际上贪心算法可以用于解决各种优化问题。

三、优缺点1. 优点①简单:贪心算法的思路相对简单,容易理解和实现。

②高效:由于只考虑局部最优解,贪心算法的时间复杂度较低,通常能够在较短的时间内得到一个接近最优解的结果。

③可用于近似求解:由于贪心算法不保证得到全局最优解,但可以用于求解近似最优解的问题。

2. 缺点①不保证全局最优解:贪心算法只考虑眼前的最优选择,无法回溯和修正过去的选择,因此不能保证得到全局最优解。

②局部最优解无法转移:在某些情况下,局部最优解并不一定能够转移到全局最优解,导致贪心算法得到的结果偏离最优解。

③对问题的要求较高:由于贪心算法需要找到适合的局部最优解,因此问题必须具备一定的特殊性,而一些问题无法使用贪心算法解决。

供应链管理中配送路线规划算法的使用教程

供应链管理中配送路线规划算法的使用教程

供应链管理中配送路线规划算法的使用教程随着电子商务的兴起和物流行业的快速发展,供应链管理中的配送路线规划算法变得尤为重要。

准确的配送路线规划能够提高物流效率,降低成本,为企业节约时间和资源。

本文将介绍供应链管理中常用的一些配送路线规划算法,并详细说明它们的使用教程。

一、贪心算法贪心算法是一种简单而常用的算法,它在每一步都做出当前最优的选择,但并不保证全局最优解。

在配送路线规划中,贪心算法可以按照以下步骤进行:1.确定起点和终点:首先确定货物的起点和终点,通常是仓库和客户的地址。

2.计算距离矩阵:根据起点、终点和中间所有点的地址,计算出它们之间的距离矩阵。

3.选择最近邻居:从起点开始,选择距离最近的邻居作为下一个节点,将其添加到路径中。

4.更新路径和距离:将新节点添加到路径中,更新距离矩阵,重复步骤3,直到到达终点。

5.输出最优路径:输出路径和距离,路径即为货物的配送路线。

贪心算法的优点在于简单易懂,计算速度快。

然而,它的缺点是可能陷入局部最优解,不能保证得到最优的配送路线。

二、遗传算法遗传算法是一种模拟自然界进化过程的启发式优化算法。

在配送路线规划中,遗传算法可以按照以下步骤进行:1.初始化种群:根据货物的起点和终点,随机生成初始解作为种群。

2.计算适应度:根据候选解的质量,计算每个解的适应度值,一般可以使用总路程作为适应度函数。

3.选择操作:根据适应度值,按照一定的选择策略选出优秀的个体作为父代。

4.交叉操作:通过交叉操作生成新的子代个体,将父代的染色体片段互换,并保留优秀的基因。

5.变异操作:对子代个体进行变异操作,引入新的基因,增加算法的搜索空间。

6.更新种群:将父代和子代个体结合,形成新的种群。

7.重复步骤3-6:重复执行3-6步骤,直到满足停止准则。

8.输出最优解:输出适应度最优的个体,作为货物的配送路线。

遗传算法的优点在于能够全局搜索和优化,有较高的收敛性和适应性。

然而,它的缺点是计算复杂度较高,需要耗费更多的时间和计算资源。

贪心算法模板

贪心算法模板

贪心算法(Greedy Algorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。

贪心算法并不总是得到问题的最优解,但对许多问题它能产生整体最优解或整体最优解的近似解。

下面是一个简单的贪心算法模板,用于解决一些优化问题:pythondef greedy_algorithm(input_data):# 初始化结果变量result = []# 根据输入数据的特性进行排序或预处理sorted_data = sort_or_preprocess(input_data)# 遍历排序后的数据for item in sorted_data:# 检查是否满足某个条件,例如是否可以选择该元素if can_choose(item, result):# 如果满足条件,则选择该元素并更新结果result.append(item)# 可能还需要执行一些额外的操作,例如更新状态或计数器update_state(result, item)return result# 根据具体问题的需要,实现排序或预处理函数def sort_or_preprocess(input_data):# 对输入数据进行排序或预处理pass# 根据具体问题的需要,实现选择条件函数def can_choose(item, result):# 检查是否可以选择该元素pass# 根据具体问题的需要,实现状态更新函数def update_state(result, item):# 更新状态或计数器pass请注意,这只是一个通用的贪心算法模板,具体实现会根据问题的不同而有所变化。

在实际应用中,你需要根据问题的特点来设计合适的排序、选择和状态更新策略。

同时,也需要验证贪心策略是否能够得到全局最优解,或者是否能够得到满意的近似解。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贪心——抱歉我找不到更好的词去形 容——是个好东西。贪心是对的,贪 心是奏效的。
——电影《华尔街》
算法思想‫ﻻ‬
将问题的求解过程看作是一系列选择,每 次选择一个输入,每次选择都是当前状态下的 最好选择(局部最优解)。每作一次选择后,所 求问题会简化为一个规模更小的子问题。从而 通过每一步的最优解逐步达到整体的最优解。
真正意义要求解原问题
将原问题变成更小 子问题的步骤
理解
算法过程‫ﻻ‬
【贪心算法一般步骤】
1、设计数据找规律 2、进行贪心猜想 3、正确性证明(严格证明和一般证明)
·严格证明:数学归纳和反证法 ·一般证明:列举反例 4、程序实现
算法分析‫ﻻ‬
【适用问题】 具备贪心选择和最优子结构性质的最优化
问题
整体的最优解可通过一系列 局部最优解达到. 每次的选择 可以依赖以前作出的选择, 但 不能依赖于后面的选择
算法过程‫ﻻ‬
顾名思义,贪心算法总是作出在当前看来最 好的选择。也就是说贪心算法并不从整体最优考 虑,它所作出的选择只是在某种意义上的局部最 优选择。
【标准转化】 贪心猜想(贪心策略)
找硬币的时候:
找的硬币总数最少→使剩余金额最少


算法过程‫ﻻ‬
[贪心算法步骤]
从问题的某一初始解出发; while 能朝给定总目标前进一 步 do 求出可行解的一个解元素; 由所有解元素组合成问题的一个 可行解;
※简谈: 算法思想 算法过程 算法分析
※应用举例:
常见应用
算法思想‫ﻻ‬
引例——找零钱
找钱的方法: 25+25+10+5+1+1
我们有种直觉的倾向:
在找零钱时,直觉 告诉我们使用面值大的硬 币,剩余的金额就越少, 这样找的硬币数目最少。
算法思想‫ﻻ‬
在现实生活中,我们经常为下意 识的做贪心的选择,例如在购买商品 时候总是寻求物美价廉的物品,在质 量相同情况下,价格低的首选。
2020/11/26
11
有八种字符:a b c d e f g h ,其在通信联络中出现的概率分别为: 0.05 0.29 0.07 0.08 0.14 0.23 0.03 0.11 ,试设计哈夫曼编码。
设权 w = ( 5 , 29 , 7 ,8 , 14 , 23 ,3 , 11) n = 8
A[1]=true; int j=1; for (int i=2;i<=n;i++) {
if (s[i]>=f[j]) { A[i]=true; j=i; }
else A[i]=false; } }
常见应用‫• ﻻ‬
2、哈夫曼编码
【问题陈述】哈夫曼编码是广泛地用于数据文件压缩的十分有效的 编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字 符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表 示方式。 【算法思路】 (1)以n个字母为结点构成n棵仅含一个点的二叉树集合,字母的 频率即为结点的权。 (2)每次从二叉树集合中找出两个权最小者合并为一棵二叉树: 增加一个根结点将这两棵树作为左右子树。新树的权为两棵子树的 权之和。 (3)反复进行步骤(2)直到只剩一棵树为止。
(3)贪心算法只能确定某些问题的可行性范围。
因此,贪心算法具有局限性,并不是总能得到最优 解。
欢迎老师和同 学们批评指正!
谢谢观看
择了会议i,则它在时间区间[si, fi)内占用该资源;若[si, fi)与[sj, fj)不
相交 , 则称会议 i 与 j 是 相容 的 . 求解目标是在所给的会议集合中 选出最大相容会议子集. 【算法思路】将n个会议按结束时间非减序排列,依次考虑会议i, 若i 与已选择的会议相容,则添加此会议到相容会议子集. 【例】设待安排的11个会议起止时间按结束时间的非减序排列
的数的最大值。
826
解:如果用贪心法,每次向最大的方向 走,
得到结果为1+6+8+2+3=20。可是明明还 2 1 6 5 有另一条路,1+3+6+6+7=23。
问题出在哪?每次的选择对后面的步骤会有 3 2 4 7 6 影响!第三级选了8,就选不到第四、五 级较大的数了。
综述 贪心算法是一种分级处理方法,它得到某种度量意义下
一个问题的最优解,所做的每一次选择都是当前状态下的贪 心选择,通过一系列的选择来得到最终解。这种策略是一种 很简洁的方法,适用于许多问题,但并不能依赖于它,因为 它还有一下不足:
(1)不能保证求得的最后解是最佳的,由于贪
心策略总 是从局部看来是最优的选择,因此从整 体上考虑并不一定是最优解;
(2)贪心算法只能用来求某些最大或最小解的 问题;
问题的整体最优解 中包含着它子问题 的最优解
【常见应用】会议安排问题,哈夫曼编码问题, 等等
【算法优点】求解速度快,时间复杂性有较低的阶.
【算法缺点】需证明是最优解.
常见应用‫ﻻ‬
1、会议安排问题
【问题陈述】设有n个会议E={1,2,…,n}要使用同一资源,同一时间内 只允许一个会议使用该资源. 设会议i的起止时间区间[si, fi) ,如果选
构造过程:
5
29
7
8
14 23
3
11
0 100 1
42
0
1
58 1
0
a: 0000 c: 1000 e: 101
b :11 d: 1001 f :01
19
23
29 29 g: 0001 23h:0
1
0
8 0
11 1
209
15 7 1
14 298
14 14
2233 11 11
5
3
7
8
谈谈自己的 想法——
选择需慎重
贪心算法在对问题求解时,总是作出在当前看
来是最好的选择。也就是说,不从整体上加以考虑,
它所作出的仅仅是在某种意义上的局部最优解。
eg:数字三角形问题:有一个数字三角形 1
(如右图)。现有一只蚂蚁从顶层开始
向下走,每走下一级时,可向左下方向 6 3
或右下方向走。求走到底层后它所经 过
事件编号 1 2 3 4 5 6 7 8 9 10 11
发生时刻 1 3 0 5 3 5 6 8 8 2 12
结束时刻 4 5 6 7 8 9 10 11 12 13 14
常见应用‫ﻻ‬
会议安排问题贪心算法: void GreedySelector(int n, Type s[], Type f[], bool A[]) {
相关文档
最新文档