高中数学必修二第一章第二章习题合集

合集下载

(人教版)高中数学必修二-知识点、考点及典型例题解析(全)

(人教版)高中数学必修二-知识点、考点及典型例题解析(全)

必修(bìxiū)二第一章空间(kōngjiān)几何体知识点:1、空间(kōngjiān)几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥(yuánzhuī)、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些(zhèxiē)面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、长方体的对角线长;正方体的对角线长3、球的体积公式:,球的表面积公式:4、柱体,锥体,锥体截面积比:5、空间几何体的表面积与体积⑴圆柱侧面积;⑵圆锥(yuánzhuī)侧面积:典型(diǎnxíng)例题:★例1:下列命题(mìng tí)正确的是( )A.棱柱(léngzhù)的底面一定是平行四边形B.棱锥(léngzhuī)的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A 倍B 倍C 2倍D 倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱正视侧视俯视★★例4:一个(yīɡè)体积为的正方体的顶点(dǐngdiǎn)都在球面上,则球的表面积是A.B. C. D.二、填空题★例1:若圆锥(yuánzhuī)的表面积为平方米,且它的侧面展开图是一个半圆,则这个(zhè ge)圆锥的底面的直径为_______________.★例2:球的半径(bànjìng)扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.1知能演练轻松闯关

2014届北师大版高中数学必修二(高一)章节测试题:第二章§1.1知能演练轻松闯关

1.以下两点确定的直线的斜率不存在的是( )A .(4,2)与(-4,1)B .(0,3)与(3,0)C .(3,-1)与(2,-1)D .(-2,2)与(-2,5)解析:选D.选项D 中两点的横坐标相同,所以这两点确定的直线与x 轴垂直,因此直线的斜率不存在.2.下列叙述中不正确的是( )A .若直线的斜率存在,则必有倾斜角与之对应B .若直线的倾斜角为α,则必有斜率与之对应C .每一条直线都有唯一的倾斜角与之对应D .与x 轴垂直的直线的斜率不存在解析:选B.每一条直线都有倾斜角且倾斜角唯一,但并不是每条直线都有斜率;垂直于y 轴的直线的倾斜角为0°,垂直于x 轴的直线的倾斜角为90°;仅当倾斜角α不为90°时,直线的斜率存在,换句话说,当倾斜角为90°时,斜率不存在.故选B.3.直线l 的斜率为k =ln 12,则直线l 的倾斜角α的取值范围是( ) A .0°≤α≤90° B .0°<α≤90°C .90°≤α<180°D .90°<α<180°解析:选D.由k =ln 12<0及直线倾斜角的范围是[0°,180°),可知选D. 4.已知直线l 1的倾斜角为α,将直线l 1绕直线与x 轴的交点逆时针旋转45°,得直线l 2,则l 2的倾斜角为( )A .α+45°B .α-45°C .α-135°D .α+45°或α-135°解析:选D.当0°≤α<135°时,l 2的倾斜角为α+45°;当135°≤α<180°时,l 2的倾斜角为:α-135°.5.如图所示,直线l 1、l 2、l 3的斜率分别是k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 1<k 3<k 2D .k 3<k 2<k 1解析:选C.由图知k 2>k 3>0>k 1.6.已知直线l 的斜率k 满足-1≤k <1,则它的倾斜角α的取值范围是________. 解析:当0>k ≥-1时,α∈[135°,180°);当0≤k <1时,α∈[0°,45°).答案:[0°,45°)∪[135°,180°)7.直线过l 过A ⎝⎛⎭⎫-2,⎝⎛⎭⎫t +1t 2,B ⎝⎛⎭⎫2,⎝⎛⎭⎫t -1t 2两点,其中t ≠0,则此直线的斜率为________,倾斜角为________.解析:k AB =⎝⎛⎭⎫t -1t 2-⎝⎛⎭⎫t +1t 22-(-2)=-1,由tan α=-1,得α=135°.答案:-1 135° 8.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值等于________. 解析:三点共线,则k AB =k AC ,即22-a=2-b 2, 整理知2a +2b =ab ,同除以ab ,有2b +2a=1, ∴1a +1b =12. 答案:129.已知三点A (2,1),B (-2,m ),C (6,8)在同一条直线上,求m 的值.解:k AB =m -1-2-2=1-m 4,k AC =8-16-2=74. ∵A ,B ,C 三点共线,∴k AB =k AC ,即1-m 4=74,∴m =-6. 10.已知M (2m +3,m ),N (m -2,1).(1)当m 为何值时,直线MN 的倾斜角为锐角?(2)当m 为何值时,直线MN 的倾斜角为直角?(3)当m 为何值时,直线MN 的倾斜角为钝角?解:当2m +3≠m -2,即m ≠-5时,k MN =m -1(2m +3)-(m -2)=m -1m +5(m ≠-5). (1)当k MN >0,即m -1m +5>0时,解得m >1或m <-5,直线MN 的倾斜角为锐角. (2)当k MN 不存在,即m =-5时,直线MN 的倾斜角为直角.(3)当k MN <0时,解得-5<m <1,直线MN 的倾斜角为钝角.1.(2013·九江同文中学期中测试)斜率为2的直线经过(3,5)、(a,7)、(-1,b )三点,则a 、b 的值是( )A .a =4,b =0B .a =-4,b =-3C .a =4,b =-3D .a =-4,b =3解析:选C.由斜率公式可得:⎩⎪⎨⎪⎧ 7-5a -3=2b -5-1-3=2,解得a =4,b =-3.2.已知实数x ,y 满足方程x +2y =6,当1≤x ≤3时,y -1x -2的取值范围是________. 解析:y -1x -2的几何意义是过M (x ,y ),N (2,1)两点的直线的斜率,因为点M 在函数x +2y =6的图像上,且1≤x ≤3,所以可设该线段为AB ,且A (1,52),B ⎝⎛⎭⎫3,32,由于k NA =-32,k NB =12,所以y -1x -2的取值范围是(-∞,-32]∪[12,+∞). 答案:(-∞,-32]∪[12,+∞) 3.在坐标轴上有一点B ,已知点A (3,4),且k AB =2,求点B 的坐标.解:若点B 在x 轴上,设点B 的坐标为(x,0),由题意可知4-03-x=2,解得x =1,即B (1,0). 若点B 在y 轴上,设点B 的坐标为(0,y ),由题意可知4-y 3-0=2,解得y =-2,即B (0,-2), 故点B 的坐标为(1,0)或(0,-2).4.已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1)求直线l 的斜率k 的取值范围;(2)求直线l 的倾斜角α的取值范围(注:tan 135°=-1).解:如图所示,由题意可知k P A =4-0-3-1=-1,k PB =2-03-1=1. (1)要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞).(2)由题意可知,直线l 的倾斜角介于直线PB 与P A 的倾斜角之间,又PB 的倾斜角是45°,P A 的倾斜角是135°,所以α的取值范围是[45°,135°].。

高中数学必修2知识点加例题加课后习题

高中数学必修2知识点加例题加课后习题

高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(完整word版)高中数学必修二第二章经典练习试题整理

(完整word版)高中数学必修二第二章经典练习试题整理

完美格式整理版A. 相交 B .异面 C .平行 D •异面或相交第I 卷(选择题) 请修改第I 卷的文字说明6.设四棱锥P- ABCD 勺底面不是平行四边形,用平面(如图),使得截面四边形是平行四边形,则这样的平面a ( )1.在空间,下列哪些命题是正确的( )•① 平行于同一条直线的两条直线互相平行 ② 垂直于同一条直线的两条直线互相平行 ③ 平行于同一个平面的两条直线互相平行 ④ 垂直于不一个平面的两条直线互相平行 A •仅②不正确 B.仅①、④正确 C .仅①正确 D.四个命题都正确2. 如果直线a 是平面a 的斜线,那么在平面%内( )A不存在与a 平行的直线 B不存在与a 垂直的直线C 与a 垂直的直线只有一条D 与a 平行的直线有无数条A.不存在B .只有1个C •恰有4个D.有无数多个高一数学必修二第二章经典练习题a 去截此四棱锥 3.平面a 内有一四边形 ABCD P 为a 外一点, P 点到四边形ABCD 各边的距离相等,则这个四边形 A 必有外接圆 BD 必是正方形必有内切圆( )C既有内切圆又有外接圆4.已知六棱锥PA ±平面 ABC PA= 2AB , 则下列结论正确的是( )A . PB 丄ADBC .直线BC//平面PAED 平面PABL 平面PBC直线PD 与平面ABC 所成的角为45 7.设P 是厶ABC 所在平面外一点, 到厶ABC 各边的距离也相等,那么△ A 是非等腰的直角三角形 BC 是等边三角形DP 到厶ABC 各顶点的距离相等,而且 PABC ( ) 是等腰直角三角形不是A 、B 、C 所述的三角形8.已知正四棱锥S ABCD 的侧棱长与底面边长都相等 点,则AE , SD 所成的角的余弦值为 ,E 是SB 的中 A. 13B.-23 C-33D. 23完美格式整理版5•若a , b是异面直线,直线c // a,则c与b的位置关系是(完美格式整理版侧面BB 1C 1C 的中心,贝V AD 与平面BB 1C 1C 所成角的大小是()15.在正方体ABCD A 1B 1C 1D 1中,0为正方形ABCD 中心,则厲0与平 面ABCD所成角的正切值为() A.、2B.—2C.1D.二323A . 30°B . 45°C . 60°D . 90° w.w.w.k.s.5.u.c.o.m 12.已知直线I 、m ,平面、,且| , m ,则//是I m 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.在正方体 ABCDAB 1C 1D 1中,若E 是A 1C 1的中点,则直线 CE 垂直于( )A ACBBD C A ,D DA 1D 117.四条不共线的线段顺次首尾连接,可确定平面的个数是()A. 1 B . 3 C . 4D. 1 或 49.正方体 ABC —ABCD 中,E 、F 分别是 AA 与CG 的中点,则直线 与DF所成角的大小是 ()EDA .B 。

人教A版高中数学必修二-章节练习题

人教A版高中数学必修二-章节练习题

第二章单元测试1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面βB .如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成 60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是( ) A .①②③ B .②④ C .③④ D .②③④9.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组13.(12分)已知正方方体111'D C B A ABCD -,求:(1)异面直线11CC BA 和的夹角是多少? (2)B A 1和平面11B CDA 所成的角?(3)平面11B CDA 和平面ABCD 所成二面角的大小?AB CDEFMN C A 1B 11P A BCDCABPMN14.(12分)如图,在三棱锥P —ABC 中,PA 垂直于平面ABC ,AC ⊥BC . 求证:BC ⊥平面PAC .15.(10分)如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥16.(12分)如图,在四棱锥P —ABCD 中,M ,N 分别是AB ,PC 的中点,若ABCD 是平行四边形.求证:MN ∥平面PAD .,M N 分别是17. 如图:S 是平行四边形ABCD 平面外一点,,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SCDA BCP O17.(14分)如图正方形ABCD 中,O 为中心,P O ⊥面ABCD ,E 是PC 中点, 求证:(1)PA ||平面BDE ; (2)面PAC ⊥面BDE.18.(14分)如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.19.在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23- D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 三、解答题(本大题共3小题,每小题10分,共30分)15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.必修2第四章《圆与方程》单元测试题一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A)5 (B) 3 (C)10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6π B 、4π C 、3π D 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共4小题,每小题5分,共20分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 . 2+y 2-8x=0的弦OA 。

高中数学必修二第二章练习题

高中数学必修二第二章练习题

第二章点、直线、平面之间的位置关系A组一、选择题1.设α,β为两个不同的平面,l,m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若 α∥β,则l∥m;②若l⊥m,则 α⊥β.那么().A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是().A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°(第2题) 3.关于直线m,n与平面 α,β,有下列四个命题:①m∥α,n∥β 且 α∥β,则m∥n;②m⊥α,n⊥β 且 α⊥β,则m⊥n;③m⊥α,n∥β 且 α∥β,则m⊥n;④m∥α,n⊥β 且 α⊥β,则m∥n.其中真命题的序号是().A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是().A.1 B.2 C.3 D.45.下列命题中正确的个数是().①若直线l上有无数个点不在平面 α 内,则l∥α②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为().A.90°B.60°C.45°D.30°8.下列说法中不正确的....是().A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面③如果两条直线都平行于一个平面,那么这两条直线互相平行④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直其中真命题的个数是().A.4 B.3 C.2 D.110.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为().A.[30°,90°]B.[60°,90°]C.[30°,60°]D.[30°,120°]二、填空题11.已知三棱锥P-ABC的三条侧棱P A,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,则这个三棱锥的体积为.12.P是△ABC所在平面 α 外一点,过P作PO⊥平面 α,垂足是O,连P A,PB,PC.(1)若P A=PB=PC,则O为△ABC的心;(2)P A⊥PB,P A⊥PC,PC⊥PB,则O是△ABC的心;(3)若点P 到三边AB ,BC ,CA 的距离相等,则O 是△ABC 的 心; (4)若P A =PB =PC ,∠C =90º,则O 是AB 边的 点; (5)若P A =PB =PC ,AB =AC ,则点O 在△ABC 的 线上. 13.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为 .14.直线l 与平面 α 所成角为30°,l ∩α=A ,直线m ∈α,则m 与l 所成角的取值范围 是 .15.棱长为1 的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为 .16.直二面角 α-l -β 的棱上有一点A ,在平面 α,β 内各有一条射线AB ,AC 与l 成45°,AB ⊂α,AC ⊂β,则∠BAC = .三、解答题17.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形.(1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离等于3,求二面角A -BC -D 的正弦值;(3)设二面角A -BC -D 的大小为 θ,猜想 θ 为何值时,四面体A -BCD 的体积最大.(不要求证明)J(第13题)(第17题)18. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.19*.如图,在底面是直角梯形的四棱锥S-ABCD 中,AD ∥BC ,∠ABC =90°, SA ⊥面ABCD ,SA =AB =BC =1,AD =21. (1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值. (提示:延长 BA ,CD 相交于点 E ,则直线 SE 是 所求二面角的棱.)(第19题)(第18题)20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在AA1上取一点P,过P作棱柱的截面,使AA1垂直于这个截面.)(第20题)第二章点、直线、平面之间的位置关系参考答案A组一、选择题1.D解析:命题②有反例,如图中平面 α∩平面 β=直线n,l⊂α,m⊂β,且l∥n,m⊥n,则m⊥l,显然平面 α 不垂直平面β, (第1题)故②是假命题;命题①显然也是假命题,2.D解析:异面直线AD与CB1角为45°.3.D解析:在①、④的条件下,m,n的位置关系不确定.4.D解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D.5.B解析:学会用长方体模型分析问题,A1A有无数点在平面ABCD外,但AA1与平面ABCD相交,①不正确;A1B1∥平面ABCD,显然A1B1不平行于BD,②不正确;A1B1∥AB,A1B1∥平面ABCD,但AB⊂平面ABCD内,③不正确;l与平面α平行,则l与 α 无公共点,l与平面 α 内的所有直线都没有公共点,④正确,应选B.(第5题) 6.B解析:设平面α 过l1,且l2∥α,则l1上一定点P与l2确定一平面β ,β 与α 的交线l3∥l2,且l3 过点P. 又过点P与l2平行的直线只有一条,即l3有唯一性,所以经过l1和l3的平面是唯一的,即过l1且平行于l2的平面是唯一的.7.C解析:当三棱锥D-ABC体积最大时,平面DAC⊥ABC,取AC的中点O,则△DBO是等腰直角三角形,即∠DBO =45°.8.D解析:A .一组对边平行就决定了共面;B .同一平面的两条垂线互相平行,因而共面;C .这些直线都在同一个平面内即直线的垂面;D .把书本的书脊垂直放在桌上就明确了.9.B解析:因为①②④正确,故选B . 10.A解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30° 角,否则 b ’ 与 c ’ 所成的角的范围为(30°,90°],所以直线b 与c 所成角的范围为[30°,90°] .二、填空题 11.313212S S S .ABC 的垂心; ABC 的内心;(5)由(1)知,O 在 BC 边的垂直平分线上,或说 O 在∠BAC 的平分线上. 13.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°. 14.[30°,90°].解析:直线l 与平面 α 所成的30°的角为m 与l 所成角的最小值,当m 在 α 内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°.15.36. 解析:作等积变换:4331⨯×(d 1+d 2+d 3+d 4)=4331⨯·h ,而h =36. 16.60°或120°.解析:不妨固定AB ,则AC 有两种可能. 三、解答题17.证明:(1)取BC 中点O ,连结AO ,DO . ∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O , ∴BC ⊥平面AOD .又AD ⊂平面AOD ,∴BC ⊥AD . (第17题)解:(2)由(1)知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =θ,则过点D 作DE ⊥AD ,垂足为E .∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO , ∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3. 又DO =23BD =23, 在Rt △DEO 中,sin θ=DODE =23,故二面角A -BC -D 的正弦值为23. (3)当 θ=90°时,四面体ABCD 的体积最大.18.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABC D -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC .(2)解:如图,过E 在平面11DCC D 中作EO ⊥DC于O .在长方体ABCD -1111D C B A 中,∵面ABCD ⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -D B -C 的平面角.利用平面几何知识可得OF =51, (第18题) 又OE =1,所以,tan ∠EFO =5.19*.解:(1)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅)(+21=43=1221+1⨯, ∴四棱锥S —ABCD 的体积是V =31·SA ·M 底面=31×1×43=41.(2)如图,延长BA ,CD 相交于点E ,连结SE ,则SE 是所求二面角的棱. ∵AD ∥BC ,BC =2AD , ∴EA =AB =SA ,∴SE ⊥SB∵SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线. 又BC ⊥EB ,∴BC ⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE ,∠BSC 是所求二面角的平面角. ∵SB =22+AB SA =2,BC =1,BC ⊥SB , ∴tan ∠BSC =22=SB BC , (第19题)即所求二面角的正切值为22. 20*.解:如图,设斜三棱柱ABC —A 1B 1C 1的侧面BB 1C 1C 的面积为10,A 1A 和面BB 1C 1C 的距离为6,在AA 1上取一点P 作截面PQR ,使AA 1⊥截面PQR ,AA 1∥CC 1,∴截面PQR ⊥侧面BB 1C 1C ,过P 作PO ⊥QR 于O ,则PO ⊥侧面BB 1C 1C ,且PO =6. ∴V 斜=S △PQR ·AA 1=21·QR ·PO ·AA 1=21·PO ·QR ·BB 1 =21×10×6 =30.(第20题)。

高中数学必修2第一、二章练习题

高中数学必修2第一、二章练习题

重庆市永川北山中学高中2019级高二上期数学学科(文)课时作业(五)主要内容:必修2第一单元及2.1,2.2 编写人:彭亚审核人:何家斌完成时间:第四周班级_______________ 姓名___________________ 总分:________________1.下列命题中正确的是()A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是() A.32πB.16πC.12πD.8π3.一个棱柱是正四棱柱的条件是()A、底面是正方形,有两个侧面是矩形B、底面是正方形,有两个侧面垂直于底面C、底面是菱形,且有一个顶点处的三条棱两两垂直D、每个侧面都是全等矩形的四棱柱4.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是()A. 23B.76C.45D.565.半径为R的半圆卷成一个圆锥,则它的体积为()A. 3RB. 3RC. 3RD. 3R6. 如图,在△ABC中,AB=2,BC=1.5,∠A BC=120o,若使绕直线BC旋转一周,则所形成的几何体的体积是()A. 92π B. 72π C.52π D. 32π7.下列命题中正确的是()A 平行于同一平面的两条直线平行B 同时与两条异面直线平行的平面有无数个C 如果一条直线上有两点在一个平面外,则这条直线与这个平面平行D 直线l与平面α不相交,则α//l8. 某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为()A .24B .80C .64D .240(第7题)9.正方体ABCD -A 1B 1C 1D 1中与A 1B 是异面直线的棱有_______条10.和两条异面直线中的一条平行的直线与另一条的位置关系有______________11. 下列说法:①一条直线和一个平面平行,则它和这个平面内的无数条直线平行②一条直线和一个平面平行,则它和这个平面内的任何直线无公共点③过直线外一点,有且只有一个平面和已知直线平行④如果一条直线和一个平面平行,则过这个平面内一点和这条直线平行的直线在这个平面内,其中正确的有______________12. 正四棱锥S —ABCDS 、A 、B 、C 、D 都在同一个球面上,则该球的体积为_________13.如图,四面体ABCD 中,AC ⊥BD,且AC =2,BD=M 、N 分别是AB 、CD 的中点,求MN 和BD 所成角大小。

北师大版高中数学选择性必修第二册课后习题 第一章 1.1 数列的概念

北师大版高中数学选择性必修第二册课后习题 第一章 1.1 数列的概念

第一章数列§1 数列的概念及其函数特性1.1 数列的概念 课后篇巩固提升必备知识基础练1.已知数列{a n }的通项公式为a n =1+(-1)n+12,n ∈N +,则该数列的前4项依次为( )A.1,0,1,0B.0,1,0,1C.12,0,12,0D.2,0,2,0n 分别等于1,2,3,4时,a 1=1,a 2=0,a 3=1,a 4=0. 2.数列1,3,6,10,…的一个通项公式是( ) A.a n =n 2-n+1 B.a n =n (n -1)2C.a n =n (n+1)2D.a n =n 2+1n=1,2,3,4,代入A,B,C,D 检验,即可排除A,B,D,故选C. 3.已知数列{a n }的通项公式为a n =n 2-n-50,n ∈N +,则-8是该数列的( )A.第5项B.第6项C.第7项D.非任何一项n 2-n-50=-8,得n=7或n=-6(舍去). 4.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.22234项可知,数列的一个通项公式为a n =2n 2n+1,n ∈N +,当n=10时,a 10=2×102×10+1=2021.5.(浙江湖州期中)在数列0,14,…,n -12n,…中,第3项是 ;37是它的第项.7,设该数列为{a n },则数列的通项公式为a n =n -12n,则其第3项a 3=3-12×3=13,若a n =n -12n=37,可解得n=7.6.数列3,5,9,17,33,…的一个通项公式是 .n =2n +1,n ∈N +7.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,….符号问题可通过(-1)n 或(-1)n+1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n-5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =891-110n.8.已知数列{a n }的通项公式为a n =-n 2+n+110. (1)20是不是{a n }中的一项? (2)当n 取何值时,a n =0.令a n =-n 2+n+110=20,即n 2-n-90=0,∴(n+9)(n-10)=0, ∴n=10或n=-9(舍). ∴20是数列{a n }的第10项. (2)令a n =-n 2+n+110=0, 即n 2-n-110=0, ∴(n-11)(n+10)=0, ∴n=11或n=-10(舍),∴当n=11时,a n =0.关键能力提升练9.数列12,14,-58,1316,-2932,6164,…的一个通项公式是( )A.2n -32nB.-2n -32nC.(-1)n 2n -32nD.(-1)n+12n -32n21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,….故原数列的一个通项公式为a n =(-1)n·2n -32n.10.设a n =1n+1+1n+2+1n+3+…+12n(n ∈N +),那么a n+1-a n 等于( )A.12n+1B.12n+2C.12n+1+12n+2D.12n+1−12n+2a n =1n+1+1n+2+1n+3+…+12n ,∴a n+1=1n+2+1n+3+…+12n+12n+1+12n+2,∴a n+1-a n =12n+1+12n+2−1n+1=12n+1−12n+2.11.如图是由7个有公共顶点O的直角三角形构成的图案,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为( )A.a n=n,n∈N+B.a n=√n+1,n∈N+C.a n=√n,n∈N+D.a n=n2,n∈N+OA1=1,OA2=√2,OA3=√3,…,OA n=√n,…,∴a1=1,a2=√2,a3=√3,…,a n=√n,….12.(多选题)已知数列0,2,0,2,0,2,…,则前六项适合的通项公式为( )A.a n=1+(-1)nB.a n=2cos nπ2C.a n=2sin(n+1)π2D.a n=1-cos(n-1)π+(n-1)(n-2)解析对于选项A,由a n =1+(-1)n 得前六项为0,2,0,2,0,2,满足条件;对于选项B,由a n =2cos nπ2得前六项为0,-2,0,2,0,-2,不满足条件;对于选项C,由a n =2sin(n+1)π2得前六项为0,2,0,2,0,2,满足条件;对于选项D,由a n =1-cos(n-1)π+(n -1)(n-2)得前六项为0,2,2,8,12,22,不满足条件. 13.(多选题)下列选项中能满足数列1,0,1,0,1,0,…的通项公式的有( ) A.a n =1+(-1)n+12B.a n =sin 2nπ2C.a n =cos 2(n -1)π2D.a n ={1,n 是奇数0,n 是偶数,当n 为奇数时,选项ABCD 中的通项公式均得出1,当n 为偶数时,选项ABCD 中的通项公式均得出0. 14.已知数列{a n }的通项公式a n =(-1)n -1·n2n -1,n ∈N +,则a 1= ;a n+1= .(-1)n·(n+1)2n+11=(-1)1-1×12×1-1=1,a n+1=(-1)n+1-1·(n+1)2(n+1)-1=(-1)n·(n+1)2n+1.15.323是数列{n(n+2)}的第 项.a n =n 2+2n=323,解得n=17,或n=-19(舍去).∴323是数列{n(n+2)}的第17项.16.在数列{a n }中,a 1=2,a 17=66,通项公式a n =kn+b,其中k≠0. (1)求{a n }的通项公式;(2)判断88是不是数列{a n }中的项?∵a 1=2,a 17=66,a n =kn+b,k≠0,∴{k +b =2,17k +b =66, 解得{k =4,b =-2.∴a n =4n-2,n ∈N +. (2)令a n =88,即4n-2=88, 解得n=22.5∉N +.∴88不是数列{a n }中的项.学科素养创新练17.已知数列{a n }的通项公式是a n ={2-n ,n 是奇数,11+2-n,n 是偶数(n ∈N +),则a 3+1a 4= .3=2-3=18,a 4=11+2-4=1617, ∴1a 4=1716,∴a 3+1a 4=1916.18.已知数列9n 2-9n+29n 2-1,n ∈N +.请问在区间13,23内有无数列中的项?若有,有几项;若没有,请说明理由.a n =9n 2-9n+29n 2-1=(3n -1)(3n -2)(3n+1)(3n -1)=3n -23n+1,令13<3n -23n+1<23,∴{3n +1<9n -6,9n -6<6n +2,∴{n >76,n <83.∴76<n<83, ∴当且仅当n=2时,上式成立, 故区间13,23内有数列中的项,且只有一项为a 2=47.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体(习题)一、选择题1.如下图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )A.12倍 B .2倍 C.24倍 D.22倍 3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4.正方体的体积是64,则其表面积是( )A .64B .16C .96D .无法确定5.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的2倍C .不变D .缩小到原来的166.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍 C.95倍 D.74倍 7.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 28.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .39.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )A.24 B.80C.64 D.240二、填空题1.圆台的底半径为1和2,母线长为3,则此圆台的体积为_______________ 2.一个几何体的三视图如图所示,则这个几何体的体积为________________三、解答题1.画出如图所示几何体的三视图.2.圆柱的高是8cm ,表面积是130πcm 2,求它的底面圆半径和体积.空间几何体(习题2)一、选择题1.如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( ) A 长方体或圆柱 B 正方体或圆柱 C 长方体或圆台 D 正方体或四棱锥2.下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直3.若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积 的( ) A21倍 B 42倍 C 2倍 D2倍4.如右图所示的一个几何体,,在图中是该几何体的俯视图的是( )A BCD5.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( )Aππ221+ B ππ441+ C ππ21+ D ππ241+6.已知圆锥的母线长为8,底面圆周长为π6,则它的体积是( ) A π559 B 955 C π553 D 5537.若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是( ) A 2 B 2.5 C 5 D 108.若圆锥的侧面展开图是圆心角为1200,半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A 3:2B 2:1C 4:3D 5:39.设正方体的表面积为24,一个球内切于该正方体,则这个球的体积为( ) Aπ6 Bπ332 C π38 D π3410.已知长方体一个顶点上三条棱分别是3、4、5,且它的顶点都在同一个球面上,则这个球的表面积是( )A 220B π225C π50D π200 二、填空题1.半径为15cm ,圆心角为2160的扇形围成圆锥的侧面,则圆锥的高是———————2.棱长为a,各面均为等边三角形的四面体(正四面体)的表面积为—————————————体积为—————————————3.下列有关棱柱的说法中正确的有——————————————①棱柱的所有的面都是平的②棱柱的所有棱长都相等③棱柱的所有的侧面都是长方形或正方形④棱柱的侧面的个数与底面的边数相等⑤棱柱的上、下底面形状、大小相等4.已知棱台两底面面积分别为802cm,截得这个棱台的棱锥高度为35cm,则棱台的cm和2452体积是———————————三、解答题1.用斜二测画法画出下列两个三角形的直观图2.一个三棱柱的三视图如图所示,试求此三棱柱的表面积和体积。

3.一空间几何体的三视图如图所示,则该几一空间几何体的三视图如图所示,求该几何体的体积为何体的体积正(主)视图侧(左)视图点、直线、平面之间的位置关系(习题2)一、判断下列公理定理是否真确,对的打√,错的打×并且把正确的订正在下方横线上。

1.空间中过三个点,有且只有一个平面()2.空间中如果两个角的两边分别对应平行,那么这两个角相等()3.如果两个平行平面同时和第三个平面相交,那它们的交线平行()4.一条直线与一个平面平行,则过这条直线的任一平面的交线与该直线平行()5.一条直线与平面α内的一条直线平行,则该直线与此平面平行()6.一个平面内的两条直线都与另一个平面平行,则这两个平面平行()7.一条直线与一个平面内的两条直线都垂直,则该直线与此平面垂直()8.一个平面过另一个平面的垂线,则这两个平面垂直()9.垂直于同一个平面的两条直线垂直()10.两个平面垂直,则一个平面内垂直于交线的直线与另一个平面平行()二、选择填空。

1.若直线a 不平行于平面α,则下列结论成立的是( )A. α内所有的直线都与a 异面;B. α内不存在与a 平行的直线;C. α内所有的直线都与a 相交;D. 直线a 与平面α有公共点.2.给出下列命题:(1)直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (2)直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (3)若直线a 和b 共面,直线b 和c 共面,则a 和c 共面其中错误命题的个数为( ). A.0 B. 1 C.2 D.3 3.直线a,b,c 及平面α,β,γ,下列命题正确的是( ).A.若a ⊂α,b ⊂α,c ⊥a, c ⊥b ,则c ⊥αB.若b ⊂α, a//b ,则 a//αC.若a//α,α∩β=b ,则a//bD.若a ⊥α, b ⊥α 则a//b4.平面α与平面β平行的条件可以是( ).A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行5.已知直线a//平面α,平面α//平面β,则a 与β的位置关系为6.下面四个命题:①空间中如果有两个角的两边分别对应平行,那么这两个角相等 ②一个平面内两条直线与另外一个平面平行,则这两个面平行③一条直线与一个平面的两条相交直线都垂直,则该直线与此平面垂直 ④两个平面垂直于交线的直线与另一个平面垂直 其中,正确命题的题号为7. 已知直线m ,n ,平面βα,,给出下列命题: ①若βαβα⊥⊥⊥则,,m m ; ②若βαβα//,//,//则m m ; ③若βαβα⊥⊥则,//,m m ;④若异面直线m ,n 互相垂直,则存在过m 的平面与n 垂直. 以上正确的命题的题号为8.设l m n 、、是三条不同的直线,αβγ、、是三个不同的平面 下面有四个命题: ①,l l βαβα若∥∥,则∥;②,l n m n l m 若∥∥,则∥;③,l l αβαβ⊥⊥若∥,则; ④,,l m αβ⊥⊥若,.l m αβ⊥⊥则 其中错误的命题的题号为__________三、解答题9.如图,PA ⊥平面ABC ,平面PAB ⊥平面PBC,∠PBC 为直角,求证:AB ⊥BC.10.如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC ,AF ⊥PC,PA=AB=BC=2 (1)求证:平面AEF ⊥平面PBC ; (2)求二面角P —BC —A 的大小;P A BCPF空间点、直线、平面之间的位置关系(习题)1.下面推理过程,错误的是( )(A ) αα∉⇒∈A l A l ,//(B ) ααα⊂⇒∈∈∈l B A l A ,,(C ) AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,(D ) βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,,2.以下命题正确的有( )(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面;(2)若a ∥α,则a 平行于平面α内的所有直线;(3)若平面α内的无数条直线都与β平行,则α∥β;(4)分别和两条异面直线都相交的两条直线必定异面A 1个B 2个C 3个 D4个3.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( )(A ) 2 (B ) 3 (C ) 6 (D ) 124.以下命题中为真命题的个数是( )(1)若直线l 平行于平面α内的无数条直线,则直线l ∥α;(2)若直线a 在平面α外,则a ∥α;(3)若直线a ∥b ,α⊂b ,则a ∥α;(4)若直线a ∥b ,α⊂b ,则a 平行于平面α内的无数条直线。

A 1个B 2个C 3个D 4个5.若三个平面两两相交,则它们的交线条数是( )A 1条B 2条C 3条 D1条或3条6.下列命题正确的是( )A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面7.下列命题中正确的个数是( )①若直线l 上有无数个点不在平面α内,则l α∥.②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. ④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.A 1个B 2个C 3个D 4个8.若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )A .α内的所有直线与a 异面B .α内不存在与a 平行的直线C .α内存在唯一的直线与a 平行D .α内的直线与a 都相交9.三条直线相交于一点,可能确定的平面有( )A.1个 B.2个 C.3个 D.1个或3个1.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。

2.在空间中① 若四点不共面,则这四点中任何三点都不共线。

② 若两条直线没有公共点,则这两条直线是异面直线。

以上两个命题中为真命题的是3. 已知a ,b ,c 是三条直线,角a b ∥,且a 与c 的夹角为θ,那么b 与c 夹角为4. 已知a 、b 两条直线平行,a α平面∥则b 与α的位置关系是点、直线、平面之间的位置关系(证明题练习)(证明线面平行)1.如图,在正方体1111ABCD A B C D 中,E 是1AA 的中点,求证:1//A C 平面BDE(证明面面平行)2.如图:三棱锥P-ABC, D,E,F 分别是棱PA ,PB ,PC 中点,A 1 E D 1 C 1B 1 D CB A求证:平面DEF∥平面ABC。

相关文档
最新文档