微机保护实验报告
微机线路保护实习报告

电气工程综合实习报告学院:专业:班级:姓名:学号:目录一.实习目的--------------------------------------------------------------------------1 二.实习要求--------------------------------------------------------------------------1 三.实习内容--------------------------------------------------------------------------11. 绘制微机线路保护原理图----------------------------------------------11.1信号采集与检测电路设计-----------------------------------------11.2多路转换和A/D转换----------------------------------------------21.3 80c196kc单片机最小工作系统----------------------------------21.4内部存储器扩展------------------------------------------------------41.5光电隔离电路---------------------------------------------------------41.6 I/O口扩展--------------------------------------------------------------51.7 键盘及显示------------------------------------------------------------6 2.微机保护逻辑图------------------------------------------------------------63. 微机保护端子图------------------------------------------------------------84. ZB26微机线路保护功能------------------------------------------------105. 输电线路微机过电流保护实验-----------------------------------------115.1 微机阶段是电流保护实习-----------------------------------------11 5.2 微机过电流与自动重合闸后加速保护实习------------------11 四.实习心得----------------------------------------------------------------------------12 五.附表-----------------------------------------------------------------------------------12一.实习目的培养学生掌握基本的实习方法与操作技能。
微机保护装置测试实训报告

微机保护装置测试实训报告一、实训目的本次实训旨在通过对微机保护装置的测试,使学生能够掌握微机保护装置的工作原理、测试方法和技巧,提高学生的实际操作能力和解决问题的能力。
二、实训内容1. 微机保护装置概述微机保护装置是电力系统中用于监测、控制和保护电力设备的重要组成部分。
它采用微处理器技术,具有高可靠性、高精度、高速度等特点,在电力系统中起着至关重要的作用。
2. 微机保护装置测试方法(1)检查仪器设备是否齐全,并进行初步准备;(2)进行接线,确保接线正确无误;(3)进行参数设置,包括选择被测设备类型、输入被测设备参数等;(4)进行测试操作,并记录测试结果;(5)分析测试结果,判断被测设备是否正常工作。
3. 微机保护装置测试技巧(1)仪器使用前应认真阅读说明书,并按照要求进行初步准备;(2)在接线前应先了解被测设备的型号和参数,并根据需要进行相应设置;(3)在测试过程中应注意观察仪器显示情况,并及时记录测试结果;(4)在分析测试结果时应结合被测设备的实际情况进行判断和分析。
三、实训步骤1. 实验前准备(1)检查仪器设备是否齐全,包括微机保护装置、电源、测试线等;(2)进行初步准备,包括插头安装、接线等。
2. 微机保护装置参数设置根据被测设备的型号和参数进行相应设置,包括选择被测设备类型、输入被测设备参数等。
3. 微机保护装置测试操作按照要求进行测试操作,包括开关操作、参数调节等。
4. 测试结果记录与分析在测试过程中及时记录测试结果,并结合被测设备的实际情况进行判断和分析。
四、实训心得体会通过本次实训,我深刻认识到微机保护装置在电力系统中的重要性。
同时,我也掌握了微机保护装置的工作原理、测试方法和技巧,并提高了自己的实际操作能力和解决问题的能力。
在以后的工作中,我将继续努力学习和掌握更多的知识和技能,为电力系统的稳定运行做出自己的贡献。
微机保护实验报告

实验十一微机变压器差动速断特性实验一、实验目的1、掌握微机变压器差动速断的检验方法。
2、掌握微机保护综合测试仪的使用方法。
3、掌握微机变压器差动速断的构成方法。
二、实验项目1、微机变压器差动速断保护的测试。
三、实验步骤1、实验接线图如下图所示:2、将接线图中的IA、IB、IC、IN分别接到保护屏端子排对应的5(I-1)、6(I-2)、7(I-3)、12(I-8)号端子;UA、UB、UC、UN分别接到保护屏端子排对应的1(I-13)、2(I-14)、3(I-15)、4(I-16)号端子;K1、K2分别接到保护屏端子排对应的33(I-33)、34(I-34)号端子;n1、n2分别接到保护屏端子排对应的72(220VL)和73(220VN)号端子。
3、微机变压器差动速断保护的测试,方法如下:⑴,连接好测试线(包括电压线、电流线及开关量信号线的连接,包括电压串联和电流并联),打开测试仪,选择测试主界面,可选择用“装置定检”中的差动测试、“任意测试”中的“连续输出”方式、“常用测试”中的“静态测试”等方式来完成。
(具体参见M2000使用手册)。
这里以选择“任意测试”方式来完成,其主界面如下:⑵、触发方式测试方法:第一步:连接好需要测试项目的电流线、电压线及开关量信号线(不需要的可以不接)(下同);第二步:进入任意测试,选择触发测试方式。
第三步:参数设置。
设置故障前电流电压值;故障前时间、最长故障时间、故障后时间,设置动作开关量通道及动作方式;第四步:设置故障态参数。
选择故障类型,设置故障时的各相参数及Vz的输出参数,选择是否需要输出开关量。
第五步:开始测试。
点击测试按钮或者点键盘的F5键。
测试自动完成。
⑶、手动测试方法第一步:接好线,打开测试仪。
选择手动测试,设置参数电流(幅值)、电压(幅值)、频率、相位的变化步长,是否选择联动及设置需要联动相;第二步:设置各相输出的初始值,是否为直流等,Vz.的输出方式;第三步:开始测试。
输电线路电流微机保护实验报告.

实验报告姓名: 班级: 学号:实验二 输电线路电流微机保护实验一、实验目的1.学习电力系统中微机型电流、电压保护时间、电流、电压整定值的调整方法。
2.了解电磁式保护与微机型保护的区别。
二、基本原理1.试验台一次系统原理图试验台一次系统原理图如图3-1所示。
2.电流电压保护基本原理1)三段式电流保护当网络发生短路时,电源与故障点之间的电流会增大。
根据这个特点可以构成电流保护。
电流保护分无时限电流速断保护(简称I 段)、带时限速断保护(简称II 段)和过电流保护(简称III 段)。
下面分别讨论它们的作用原理和整定计算方法。
(1) 无时限电流速断保护(I 段)单侧电源线路上无时限电流速断保护的作用原理可用图3-2来说明。
短路电流的大小I k 和短路点至电源间的总电阻R ∑及短路类型有关。
三相短路和两相短路时,短路电流I k 与R ∑的关系可分别表示如下:lR R E R E I s ss k 0)3(+==∑ 图3-1 电流、电压保护实验一次系统图lR R E I s s k 0)2(*23+=式中, E s ——电源的等值计算相电势;R s —— 归算到保护安装处网络电压的系统等值电阻;R 0—— 线路单位长度的正序电阻;l —— 短路点至保护安装处的距离。
由上两式可以看到,短路点距电源愈远(l 愈长)短路电流L k 愈小;系统运行方式小(R s 愈大的运行方式)I k 亦小。
I k 与l 的关系曲线如图3-2曲线1和2所示。
曲线1为最大运行方式(R s 最小的运行方式)下的I K = f (l )曲线,曲线2为最小运行方式(Rs 最大的运行方式)下的I K = f (l )曲线。
线路AB 和BC 上均装有仅反应电流增大而瞬时动作的电流速断保护,则当线路AB 上发生故障时,希望保护KA 2能瞬时动作,而当线路BC 上故障时,希望保护KA 1能瞬时动作,它们的保护范围最好能达到本路线全长的100%。
但是这种愿望是否能实现,需要作具体分析。
变电站10kV保护装置试验检报告(微机保护)1

10kV 备用705 开关二次设备投运前试验报告绝缘测量
. 装置信息
三. 外观检查外观及接线检查:正确。
四. 开入试验
试验人员:赵丽春、魏顺和、陈石飘、梁向明、杨凯、盘良森
五. 开出传动检查:
六.保护装置零漂检查
七. 交流电流、电压通道测试
1.交流电压通道平衡度及线性度检查(U An=U Bn=U Cn=57.7V ,U Xn =100V)
2.交流电流通道平衡度及线性度检查
(In=1.0A)
试验人员:赵丽春、魏顺和、陈石飘、梁向明、杨凯、盘良森
3.交流电流、电压通道测试结果
1).交流电流通道测试结果: 合格。
2) .交流电压通道测试结果: 合格。
八. 控制字检查
九. 定值传动试验
Izd =4.0A,T=0S)
1.电流速断保护(整定值:
过流Ⅰ段保护(整定值:Izd =1.3A,T=0.5S)
过流Ⅱ段保护保护(整定值:=,=)
4. 过负荷保护(整定值:I =1.0A,T=9.0S)
试验人员:赵丽春、魏顺和、陈石飘、梁向明、杨凯、盘良森
试验人员:赵丽春、魏顺和、陈石飘、梁向明、杨凯、盘良森
用户名称: 110kV 裕丰站 十 . 核对压板 1.外部硬压板检查
2.内部软压板检查
十一 . 整组试验
给装置加入 额定直流电压。
十二. 遥信试验
十三. 遥测试验
十五.CT 回路检查
1.10kV 开关CT 回路检查
试验人员:赵丽春、魏顺和、陈石飘、梁向明、杨凯、盘良森
六.小电流接地选线试验
试验人员:赵丽春、魏顺和、陈石飘、梁向明、杨凯、盘良森。
微机差动保护实习报告

一、实习目的通过本次实习,使学生了解微机差动保护的基本原理、装置结构、工作过程和调试方法,掌握微机差动保护的操作技能,提高学生实际操作能力,为今后从事电力系统保护工作打下坚实基础。
二、实习内容1. 微机差动保护基本原理微机差动保护是利用电流互感器(CT)对被保护设备的电流进行检测,通过比较两侧电流的差值来实现对设备内部故障的检测。
当被保护设备发生故障时,两侧电流的差值会超过设定的动作阈值,触发保护装置动作,切断故障电路,保护设备安全。
2. 微机差动保护装置结构微机差动保护装置主要由以下几部分组成:(1)电流互感器(CT):将高压侧电流转换为低压侧电流,便于微机保护装置处理。
(2)微机保护装置:包括模拟输入模块、数字信号处理器(DSP)、通信模块等,负责对电流信号进行处理、分析、判断和动作。
(3)执行机构:包括继电器、断路器等,负责切断故障电路。
3. 微机差动保护工作过程(1)正常运行时,微机保护装置检测到两侧电流的差值小于设定阈值,保护装置不动作。
(2)当被保护设备发生故障时,两侧电流的差值超过设定阈值,微机保护装置启动保护程序,判断故障类型,发出动作信号。
(3)执行机构根据动作信号切断故障电路,保护设备安全。
4. 微机差动保护调试方法(1)检查电流互感器接线是否正确,确保二次回路接地点可靠。
(2)检查微机保护装置各模块是否正常,包括电源、通信、模拟输入等。
(3)设置保护参数,包括动作阈值、时间延时等。
(4)进行模拟试验,验证保护装置的动作性能。
三、实习过程1. 了解微机差动保护的基本原理和装置结构。
2. 观察现场微机差动保护装置,了解其外观和功能。
3. 学习微机差动保护调试方法,包括检查接线、设置参数、模拟试验等。
4. 在指导下,进行微机差动保护装置的调试,包括接线、设置参数、模拟试验等。
5. 分析调试过程中出现的问题,查找原因,解决问题。
四、实习收获1. 深入了解了微机差动保护的基本原理和装置结构。
微机保护实验报告

电气信息学院微机保护实验报告实验内容:实验七:微机线路相间方向距离保护实验实验八:微机接地方向距离保护特性实验实验九:微机零序方向距离保护特性实验实验十:微机线路保护屏整组特性实验专业:电气工程及其自动化班级:姓名:学号:指导教师:阻抗特性搜索五、微机保护与传统模拟保护区别:微机可靠性更高,满足各种运行条件微机更灵活,更能适应现在电力系统的需要微机保护性能比传统模拟保护更高微机保护功能容易获得扩充微机保护维护调试方便,工作量小微机保护利于实现综合自动化微机保护的成本相比传统模拟保护来说更小微机保护基于传统保护的理论基础之上,结合现在较为普遍的计算机技术,实现更多更复杂传统保护所达不到的要求和功能,更加适用于自动化程度越来越高的现代电力系统。
六、实验心得:通过这次微机保护实验及老师的讲解,跟同学们在实验过程中的交流,使我对微机保护、继电保护这两门门课都有了新的认识。
之前觉得这微机保护很抽象,甚至有点无聊。
但是在实验中改变了我一直以来的认识。
自身的动手操作,发现理论跟实际操作部是那么简单的样子,很多适用操作都不会,都得请教实验指导老师,操作过程中也会遇到很多问题,跟同学们交流、跟老师请教后发现微机保护对现代电力系统有着很重要的作用和很高的地位。
在现代化、自动化程度越来越高的电力系统中,传统的继电保护作用在微机保护的配合下,性能越来越好,也越来越重要。
这次的实验使我对真正的微机保护有了新的认识,对它的作用和重要性也有了重新的认识。
虽然这次实验的内容都是很自动化的,操作都是在电脑上进行,与传统意义上的实验有些不同,不过实验的目的已经达到:对理论知识有了新的理解,增强了自己的动手能力,对现代电力系统中最为重要的继电保护模块有了大体上的感知,也指导把使理论知识与实际相结合起来是很重要。
10KV母联微机保护试验报告

10KV母联微机保护试验报告
保护名称:PSP641U 保护编号:GDNZ2096910111015
一、外观及接线检查检查结果:良好
二、绝缘测试检查
交流电流---地:120 MΩ交流电压---地:100 MΩ直流---地:110 MΩ交流电流---直流:120 MΩ交流电压---直流:80 MΩ
三、CT试验:CT变比:4000/1
四、软件版本及程序校验码的检查检查结果:正确
五、装置菜单功能及功能键检查检查结果:良好
六、开关量输入回路检查检查结果:正确
七、输出接点和信号检查检查结果:正确
八、交流回路相序.相角检查检查结果正确
九、交流模拟量输入精度校验
十、保护定值校验及整组传动
1、充电保护定值校验定值:1.45A 0S
十一、带断路器操作及传动试验
1.在CT一次侧通额定电流,查看保护装置显示电流及监控机显示电流值,显示的电流值均正确。
2.控制开关把手手动分. 合良好。
3.模拟开关合闸瞬间通入永久性ABC相短路故障,通入充电保护电流值,保护正确动作.跳闸.良好,故障信息. 音响均表示正确。
4.开关防跳功能良好。
5.‘控制回路断线’故障信息音响表示正确。
6.‘电压回路断线’故障信息音响表示正确。
7.‘装置异常’故障信息音响表示正确。
8.模拟各种输入信号通.断,保护装置及后台表示正确。
试验人:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微机保护实验报告试验一 变压器差动保护试验一、 试验目的1.熟悉变压器纵差保护的组成原理及整定值的调整方法。
2.了解差动保护制动特性的特点,加深对微机保护的认识。
3.学习微机型继电保护试验测试仪的测试原理和方法 差动保护作为变压器的主保护,配置有波形对称原理的差动保护和差动电流速断保护。
其中,差动电流速断保护能在变压器区内严重故障时快速跳开变压器的各侧开关。
二、试验原理电力变压器是电力系统中不可缺少的电力设备。
其故障分为内部故障和外部故障两种。
电流差动保护不但能够正确的区分区内外故障,而且不需要与其他元件的保护配合,就可以无延时地切除区内各种故障,具有独特的特点而被广泛的用作变压器的主保护。
图1所示为三绕组变压器差动保护的原理接线图。
图2为工况下,变压器相关电气量的向量关系图。
这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT 接成△,把低压侧的二次CT 接成Y 型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT 变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。
而微机保护要求接入保护装置的各侧CT 均为Y 型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。
变压器差动保护软件移相均是移Y 型侧,对于∆侧电流的接线,TA 二次电流相位不调整。
电流平衡以移相后的Y 型侧电流为基准,△侧电流乘以平衡系数来平衡电流大小。
若∆侧为△-11接线,软件移相的向量图如图2。
1I 、2I 分别为变压器一次侧和二次侧的电流,参考方向为母线指向变压器;'1I 、'2I 分别为相应的电流互感器二次侧电流。
流入差动继电器KD 的电流为:''12r I I I =+ 保护动作的判据为:图1差动保护接线图 图2工况向量关系图r set I I ≥设变压器的变比12T U n U =,并且选择电流互感器的变比,使得21TA T TA n n n =,则经推算可得:122T r TA n I I I n +=忽略变压器的损耗,正常运行和区外故障时,一次电流的关系为210T I n I +=。
正常运行和外部故障时,变压器的差动电流为0,保护不会动作;变压器内部任何一点故障时,相当于变压器内部多了一个故障之路,流入差动继电器的电流等于故障电流。
只要故障电流大于继电器的动作电流,差动保护就能迅速动作。
这就是差动保护的基本原理。
三、实验过程在本次试验中,用“继保之星”来模拟产生电力变压器差动保护信号,把信号输入继电保护开关柜进行信号处理,判断出保护是否动作出口跳闸。
试验接线图如下所示。
1、按图3-1接线,将保护柜上的差动保护压板1XB 投入,确认接线正确后合上保护柜直流电源。
2、打开PC 机,与保护装置进行通信连接;打开测试仪电源,与PC 机连接。
3、操作装置键盘,按←┛键,进入主菜单,选择“定 值”对话框,选择图3 差动动作值测试实验接线“显示和打印”命令控件。
4、按←┛键,选择差动保护模件,查找到差动定值1A和差动速断定值7A。
5、用测试仪(选交流试验模块)依次在装置的高、中、低压侧的A、B、C 相加入单相电流(整定值),使差动动作,记录实验数据。
注意高、中压侧电流为动作电流的倍(这是由CT二次电流的相位校正产生的)。
差流越限的整定值为差动电流整定值的0.57倍。
差流越限实验,经延时后装置发差流越限信号。
四、实验数据:实验二距离保护的模拟短路实验一、实验目的1、加深对距离保护原理的理解;2、清楚事件报告中每一项事件消息产生的原因,并了解事件消息产生在时间上的顺序性;3、分析录波图,比较永久性故障和瞬时性故障引起的保护动作上的差异。
4、熟悉阶段式距离保护及方向距离保护的工作原理和基本特性。
二、实验原理1.距离保护的作用和原理电力系统的迅速发展,使系统的运行方式变化增大,长距离重负荷线路增多,网络结构复杂化。
在这些情况下,电流、电压保护的灵敏度、快速性、选择性往往不能满足要求。
电流、电压保护是依据保护安装处测量电流、电压的大小及相应的动作时间来判断故障是否发生以及是否属于内部故障,因而受系统的运行方式及电网的接线形式影响较大。
针对被保护的输电线路或元件,在其一端装设的继电保护装置,如能测量出故障点至保护安装处的距离并与保护范围对应的距离比较,即可判断出故障点的位置从而决定其行为。
这种方式显然不受运行方式和接线的影响。
这样构成的保护就是距离保护。
以上设想,表示在图4中。
图中线路A 侧装设着距离保护,由故障点到保护安装处间的距离为l ,按该保护的保护范围整定的距离为zd l ,如上所述,距离保护的动作原理可用方程表示:zd l l ≤。
满足此方程时表示故障点在保护范围内,保护动作;反之,则不应动作。
图4 距离保护原理说明 Z —表示距离保护装置距离比较的方程两端同乘以一个不为零且大于零的1z (输电线每千米的正序阻抗值)得到:11d zd Z z l z l =≤ ( 1 )式(1)称为动作方程或动作条件判别式。
表明距离保护是反应故障点到保护安装处间的距离(或阻抗)并与规定的保护范围(距离或阻抗)进行比较,从而决定是否动作的一种保护装置。
当1d zd Z z l <时,表明故障发生在保护范围内,保护应动作;当1d zd Z z l >时,表明故障发生在保护范围外,保护不应动作;当1d zd Z z l =时,表明故障发生在保护范围末端,保护刚好动作。
所以,距离保护又称为低阻抗保护。
设故障点d (或1d 等)发生金属性三相短路,则保护安装处的母线电压变为d U IZ =,自母线流向线路的电流为I ,则/d U I Z =;再设法取得1zd z l 。
按式(1)即可实现距离保护。
对于高电压、大电流的电力系统,母线电压与线路电流必须经过互感器后送入距离保护的测量元件(阻抗继电器),其值为j U 和j I 。
假设保护用的电压互感器和电流互感器的变比均为1,则测量元件感受到的测量阻抗//J J J d Z U I U I Z ===。
又因变比为1,在阻抗继电器上设置的整定阻抗1zd zd Z z l =。
故得出阻抗继电器(也称距离保护)的动作方程/d J J J zd Z Z U I Z ==≤( 2 )从式(2)可知,距离保护是由阻抗继电器来实现阻抗(即距离)的测量,当满足式(2)时,说明故障在内部,保护应动作。
三、试验步骤本次试验中,用“继保之星”模拟线路的故障,并把相应的电气信息输入继电保护柜。
继保之星与保护柜的接线图如图6所示。
图5 瞬时距离Ⅰ段内AB两相接地短路实验接线1.(零序Ⅰ段退出)、1LP17(零序Ⅱ段退出)、1LP18(零序总投入退出),其余压板全部投入。
确认接线正确后合上保护柜直流电源。
将1QK打到综重位置;重合闸控制字整定为检无压;距离保护控制字中与永跳相关的控制字均改成永跳退出;11QK1、11QK2打到本线。
2. 打开PC机,与保护装置进行通信连接;打开测试仪电源,与PC机连接。
3. 按←┛键,进入主菜单,选择“定值”对话框,选择“显示和打印”命令控件。
4. 按←┛键,选择距离零序保护模件,查找到距离Ⅰ段阻抗定值为4Ω,线路正序阻抗角为80°,零序电阻、电抗补偿系数均为0.67。
5. 打开“继保之星”中的“整组试验”;在整定阻抗栏填入距离Ⅰ段阻抗定值4Ω,线路正序阻抗角为80°,零序电阻、电抗补偿系数均为0.67,短路阻抗设为0.7倍的整定阻抗,故障类型选为“AB相接地”,故障方向选正向,故障类型选瞬时性,PT位置选母线侧,选定接点控制,开关断开延时设为40ms, 开关合闸延时设为50ms ,实验持续时间设为200ms。
6. 开始试验,注意装置信号灯的变化;结束试验后,复归信号,并打印距离保护的故障录波。
7. 将故障性质改为永久性,其它条件不变,再作一次试验,并打印故障录波,将两次事件进行比较分析,加深理解。
四、实验结果及分析时间ms 继保之星事件保护动作情况0 综重电流启动;高频保护启动1 后被保护启动试验结果分析:距离保护的动作时延t与故障点到保护安装处的距离之间的关系成为距离保护的时延特性。
目前,距离保护广泛采用三段式的阶梯时延特性,如图6所示。
距离保护一段为无时延的速动段;2段为带有固定时延的速动段,固定时延一般为0.3-0.6s;3段延时需要与相邻下级线路的2段保护配合,在其时延的基础上再加上一个时延级差t 。
在第二组实验中,故障时瞬时性的,重合闸成功,之后系统进入正常运行。
由于继保之星与保护柜之间的时间不严格同步,测试结果在时间是上之间有部分误差,如用红色部分标出的部分,跳闸动作先于跳闸出口信号。
三段式距离保护各自的特点为: 距离Ⅰ段:(1)保护本线路全长的80~85%; (2)瞬时动作,即动作时限为0s 。
距离Ⅱ段:(1)保护本线路全长,但不超过下一条线路距离Ⅰ段的保护范围; (2)延时∆t 动作,一般动作时限为0.5s 。
距离Ⅲ段:(1)保护本线路全长,下一级线路全长,甚至更远;(2)延时动作,一般动作时限为: 图6 距离保护的时延特性 t t t ∆'''='''+21。