2021届高三二诊文科数学 答案4-1

合集下载

2021年高三二轮复习4月份质量检测数学(文)试题含答案

2021年高三二轮复习4月份质量检测数学(文)试题含答案

2021年高三二轮复习4月份质量检测数学(文)试题含答案xx.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:线性回归方程系数公式,,第I卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={2,4,5},则C U (A ∪B)等于 A .{6,8} B .{5,7} C .{4,6,7} D .{1,3,5,6,8}2.已知为虚数单位,复数z=,则复数的虚部是A .B .C .D .3.已知,则函数的零点的个数为A .1B .2C .3D .44. 已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a>0,b>0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率为 A .4+2 3 B.3-1 C.3+12D.3+15. 阅读下边的程序框图,若输出S 的值为-14, 则判断框内可填写A .i<6?B .i<8?C .i<5? D.i<7?6. 将函数的图象按向量平移,则平移后所得图象的解析式为 A . B. C . D .7. 若某空间几何体的三视图如右图所示, 则该几何体的体积是A .13B .23 C. 1 D. 28. 已知点是边长为1的等边的中心,则等于 A . B . C . D .9. 某变量x 与y 的数据关系如下:则y 对x 的线性回归方程为A .y ^=x -1B .y ^=x +1C .y ^=88+12x D .y ^=17610.在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x=0,y=0,2x+3y=30,, 则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是 A .95 B .91 C .88 D .75 11. 已知抛物线上存在关于直线对称的相异两点、,则等于A .3 B.4 C. D.12.已知数列的通项公式为(n),现将该数列的各项排列成如图的三角数阵:记表示该数阵中第a 行的第b 个数,则数阵中的偶数xx 对应于第1行 1 第2行 3 5 第3行 7 9 11 第4行 13 15 17 19…………………………………A.B. C. D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13. 函数的单调递增区间是14. 若曲线的一条切线与直线垂直,则的方程。

四川遂宁市高中2021届高三下学期第二次诊断性考试数学文试题word版含答案

四川遂宁市高中2021届高三下学期第二次诊断性考试数学文试题word版含答案

四川遂宁市高中2021届高三下学期其次次诊断性考试数学文试题一、选择题(每小题5分,共50分)1.(5分)(2021•遂宁模拟)已知集合A=,B={x|(x+3)(2x﹣1)≤0},则A∩B=()A.B.C.,∵A=,∴A∩B=,故选:B.【点评】:此题考查了交集及其运算,娴熟把握交集的定义是解本题的关键.2.(5分)(2021•遂宁模拟)在某校的一次英语听力测试中用以下茎叶图记录了甲、乙两组各5名同学的听力成果(单位:分)已知甲组数据的众数为15,乙组数据的中位数为17,则x、y的值分别为()A.2,5 B.5,5 C.5,7 D.8,7【考点】:茎叶图.【专题】:概率与统计.【分析】:依据茎叶图与题意,求出x、y的值,即可.【解析】:解:依据茎叶图知,甲组数据是9,15,10+x,21,27;∵它的众数为l5,∴x=5;同理,依据茎叶图知乙组数据是9,13,10+y,18,27,∵它的中位数为17,∴y=7.故x、y的值分别为:5,7.【点评】:本题考查茎叶图的应用问题,解题时利用茎叶图供应的数据,求出x、y的值,即可解答问题,是基础题.3.(5分)(2021•遂宁模拟)已知复数z满足:zi=2+i(i是虚数单位),则z的虚部为()A.2i B.﹣2i C. 2 D.﹣2【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.【解析】:解:由zi=2+i ,得,∴z的虚部是﹣2.故选:D.【点评】:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.(5分)(2021•遂宁模拟)为了得到函数y=sin3x的图象,可以将函数y=sin3x+cos3x的图象()A.向右平移个单位长B.向右平移个单位长C.向左平移个单位长D.向左平移个单位长【考点】:函数y=Asin(ωx+φ)的图象变换;两角和与差的正弦函数.【专题】:三角函数的图像与性质.【分析】:利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则推断选项即可.【解析】:解:函数y=sin3x+cos3x=sin(3x+),故只需将函数y=sin(3x+)的图象向右平移个单位,得到y=sin=sin3x的图象.故选:A.【点评】:本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本学问的考查.5.(5分)(2021•遂宁模拟)设a、b是实数,则“a>b>0”是“a2>b2”的()A.充分必要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件【考点】:必要条件、充分条件与充要条件的推断.【专题】:简易规律.【分析】:依据充分条件和必要条件的定义进行推断即可.【解析】:解:若a>b>0,则a2>b2成立,若a=﹣2,b=1,满足a2>b2,但a>b>0不成立,故“a>b>0”是“a2>b2”的充分不必要条件,故选:C【点评】:本题主要考查充分条件和必要条件的推断,依据不等式的关系是解决本题的关键.6.(5分)(2021•遂宁模拟)已知向量,若,则实数λ=()A. 1 B.﹣1 C. 2 D.﹣2【考点】:平面对量数量积的坐标表示、模、夹角.【专题】:平面对量及应用.【分析】:由于,可得.于是=0,解得λ即可.【解析】:解:∵,∴.∴=λ(λ+2)+1=0,解得λ=﹣1.故选:B.【点评】:本题考查了向量的平行四边形法则、向量垂直与数量积的关系,属于基础题.7.(5分)(2021•遂宁模拟)在区间上随机选取一个数M,不变执行如图所示的程序框图,且输入x的值为1,然后输出n的值为N,则M≤N﹣2的概率为()A.B.C.D.【考点】:几何概型;程序框图.【专题】:计算题;概率与统计;算法和程序框图.【分析】:计算循环中不等式的值,当不等式的值大于0时,不满足推断框的条件,退出循环,输出结果N,再以长度为测度求概率即可.【解析】:解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足推断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足推断框条件,x=3,n=2,x2﹣4x+3=0≤0满足推断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足推断框条件,输出n:N=3.在区间上随机选取一个数M,长度为5,M≤1,长度为3,所以所求概率为,故选:C【点评】:本题考查循环结构的应用,留意循环的结果的计算,考查计算力量,考查概率的计算,确定N的值是关键.8.(5分)(2021•遂宁模拟)如图所示是一个几何体的三视图,则该几何体的表面积为()A.4+2B.2+C.2+2D.4+【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,画出几何体的直观图,求出各个面的面积,可得答案.【解析】:解:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,该几何体的直观图如下图所示:由三视图可得:CD=AD=1,SD=BD=2,SD⊥底面ABC,故S△ABC=S△ASC=2,由勾股定理可得:SA=SC=AB=AC=,SB=2,故△SAB和△SBC均是以2为底,以为高的等腰三角形,故S△SAB=S△SBC =,故该几何体的表面积为4+2,故选:A【点评】:本题考查的学问点是由三视图求体积和表面积,解决本题的关键是得到该几何体的外形.9.(5分)(2021•遂宁模拟)过抛物线y2=2px的焦点F作直线交抛物线于M,N两点,弦MN的垂直平分线交x 轴于点H,若|MN|=40,则|HF|=()A.14 B.16 C.18 D.20【考点】:抛物线的简洁性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:先求MN的垂直平分线,求出MN的垂直平分线交x轴于H的坐标,进而求得|HF|=|MN|,即可得出结论.【解析】:解:设M(x1,y1),N(x2,y2),弦MN的中点为M′(x0,y0),则∴MN的垂直平分线为y﹣y0=﹣(x﹣x0)令y=0,则x H=x0+p∴|HF|=x0+∵|MN|=x1+x2+p=2x0+p∴|HF|=|MN|=20,故选:D.【点评】:本题以抛物线方程为载体,考查抛物线的性质,考查同学的计算力量,比较基础.10.(5分)(2021•遂宁模拟)函数f(x)的定义域为D,若函数f(x)满足:(1)f(x)在D上为单调函数;(2)存在区间⊆D,使得f(x)在上的值域为,则称函数f(x)为“取半函数”.若f(x)=log c(c x+t)(c>0,且c≠1)为“取半函数”,则t的取值范围是()A.(﹣,)B.(0,)C.(0,)D.(,1)【考点】:对数函数的图像与性质.【专题】:函数的性质及应用.【分析】:依据复合函数的单调性,先推断函数f(x)的单调性,然后依据条件建立方程组,转化为一元二次方程根的存在问题即可得到结论.【解析】:解:若c>1,则函数y=c x+t为增函数,y=log c x,为增函数,∴函数f(x)=log c(c x+t)为增函数,若0<c<1,则函数y=c x+t为减函数,y=log c x,为减函数,∴函数f(x)=log c(c x+t)为增函数,综上:函数f(x)=log c(c x+t)为增函数,若函数f(x)=log c(c x+t)(c>0,c≠1)是函数f(x)为“取半函数”.,所以a,b是方程log c(c x+t)=,两个不等实根,即a,b是方程c x +t=c两个不等实根,化简得出:c x+t=0,可以转化为:m2﹣m+t=0有2个不等正数根.所以求解得出:0故选:B.【点评】:本题主要考查与指数函数和对数函数有关的信息题,推断函数的单调性是解决本题的关键,综合性较强,有肯定的难度.二、填空题:(本大题共5小题,每小题5分,共25分,将答案填答题卷指定横线上)11.(5分)(2021•遂宁模拟)圆心在原点且与直线y=2﹣x 相切的圆的方程为x2+y2=2.【考点】:圆的切线方程.【专题】:计算题;直线与圆.【分析】:可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解析】:解:圆心到直线的距离:r==,所求圆的方程为x2+y2=2.故答案为:x2+y2=2.【点评】:本题考查圆的标准方程,直线与圆的位置关系,是基础题.12.(5分)(2021•遂宁模拟)已知偶函数f(x)在=;(2)f(x)=2sinx+cos2x=2sinx+1﹣2sin2x=,x∈R.则:sinx∈,当sinx=时,函数f(x)的最大值为.【点评】:本题考查的学问要点:利用三角函数的关系式求函数的值,三角函数关系式的恒等变换,复合函数的最值问题.属于基础题型.17.(12分)(2021•遂宁模拟)某学校有男老师45名,女老师15名,依据分层抽样的方法组建了一个4人的学科攻关小组.(1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数;(2)经过一个月的学习、争辩,这个学科攻关小组打算选出2名老师做某项试验,方法是先从小组里选出1名老师做试验,该老师做完后,再从小组内剩下的老师中选1名做试验,求选出的2名老师中恰有1名女老师的概率.【考点】:列举法计算基本大事数及大事发生的概率;分层抽样方法.【专题】:概率与统计.【分析】:(1)依据分层抽样的按比例抽取的方法,男女老师抽取的比例是45:15,4人中的男女抽取比例也是45:15,从而解决;(2)先算出选出的2名老师的基本大事数,有(a1,a2),(a1,a3),(a2,a3),(a 1,b),(a2,b),(a3,b),共6种;再算出恰有1名女老师大事大事数,两者比值即为所求概率.【解析】:解:(1)由题意知,该校共有老师60名,故某老师被抽到的概率为=.设该学科攻关小组中男老师的人数为x,则,解得x=3,所以该学科攻关小组中男、女老师的人数分别为3,1.(2)由(1)知,该3名男老师和1名女老师分别记为a1,a2,a3,b,则选取2名老师的基本大事有:(a1,a2),(a1,a3),(a2,a3),(a1,b),(a2,b),(a3,b),共6种,其中恰有1名女老师的基本大事有3种,所以选出的2名老师中恰有1名女老师的概率为P==.【点评】:本题主要考查分层抽样方法、概率的求法,是一道简洁的综合性的题目,解答的关键是正确理解抽样方法及样本估量的方法,属基础题.18.(12分)(2021•遂宁模拟)如图,ABCD为梯形,PD⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,DC=2AB=2a,DA=a,PD=a,E为BC中点(Ⅰ)求证:平面PBC⊥平面PDE;(Ⅱ)线段PC上是否存在一点F,使PA∥平面BDF?若有,请找出具体位置,并进行证明;若无,请分析说明理由.【考点】:平面与平面垂直的判定;直线与平面平行的判定.【专题】:空间位置关系与距离.【分析】:(Ⅰ)连结BD,由已知得BC⊥DE,BC⊥PD,从而BC⊥平面PDE,由此能证明平面PBC⊥平面PDE.(Ⅱ)连结AC,BD交于O点,AB∥CD,从而△AOB∽△COD,AB=DC,进而△CPA中,AO=AC,由PF=,得OF∥PA,由此得到当点F位于PC三分之一分点(靠近P点)时,PA∥平面BDF.【解析】:(本小题满分12分)(Ⅰ)证明:连结BD,∠BAD=∠ADC=90°,AB=a,DA=,所以BD=DC=2a,E为BC中点,所以BC⊥DE,…(3分)又由于PD⊥平面ABCD,所以BC⊥PD,由于DE∩PD=D,…(4分),所以BC⊥平面PDE,…(5分)由于BC⊂平面PBC,所以平面PBC⊥平面PDE.…(6分)(Ⅱ)解:当点F位于PC三分之一分点(靠近P点)时,PA∥平面BDF,…(7分)连结AC,BD交于O点,AB∥CD,所以△AOB∽△COD,AB=DC,所以△CPA中,AO=AC,…(10分)而PF=,所以OF∥PA,…(11分)而OF⊂平面BDF,PA⊄平面BDF,所以PA∥平面BDF.…(12分)【点评】:本题考查面面垂直的证明,考查线面平行时点的位置的确定与证明,考查同学的空间想象力量、规律推理力量和运算求解力量,是中档题.19.(12分)(2021•遂宁模拟)已知数列{a n}为等差数列,其中a1=1,a7=13(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n =,T n为数列{b n}的前n项和,当不等式λT n<n+8(n∈N*)恒成立时,求实数λ的取值范围.【考点】:数列的求和;等差数列的性质.【专题】:等差数列与等比数列.【分析】:(1)由题意和等差数列的通项公式求出公差,代入等差数列的通项公式化简求出a n;(2)由(1)化简b n =,利用裂项相消法求出T n,代入不等式λT n<n+8分别出λ,利用基本不等式求出式子的最小值,再由对于n∈N*恒成立求出实数λ的取值范围.【解析】:解:(1)设等差数列{a n}的公差为d,∵a1=1,a7=13,∴a1+6d=13,解得d=2,所以a n=a1+(n﹣1)d=2n﹣1…(5分)(2)由(1)得,b n ==(),∴T n==(1﹣)=…(8分)要使不等式λT n<n+8(n∈N*)恒成立,只需不等式=+17恒成马上可…(10分)∵,当且仅当时,即n=2取等号,∴λ<25…(12分)【点评】:本题考查等差数列的通项公式,裂项相消法求数列的和,以及利用基本不等式求最值,属于中档题.20.(13分)(2021•遂宁模拟)已知定点A(﹣2,0),F(1,0),定直线l:x=4,动点P与点F的距离是它到直线l的距离的.设点P的轨迹为C,过点F的直线交C于D、E两点,直线AD、AE与直线l分别相交于M、N 两点.(1)求C的方程;(2)试推断以线段MN为直径的圆是否过点F,并说明理由.【考点】:直线与圆锥曲线的综合问题;轨迹方程.【专题】:圆锥曲线中的最值与范围问题.【分析】:(1)设P(x,y)为E 上任意一点,依题意有=,化简即可得出;(2)设DE的方程为x=ty+1,与椭圆方程联立化为(3t2+4)y2+6ty﹣9=0,设D(x1,y1),E(x2,y2),由A(﹣2,0),可得直线AD的方程为y=,点M,同理可得N.利用根与系数的关系只要证明=0即可.【解析】:解:(1)设P(x,y)为E 上任意一点,依题意有=,化为.(2)设DE的方程为x=ty+1,联立,化为(3t2+4)y2+6ty﹣9=0,设D(x1,y1),E(x2,y2),则,t1t2=.由A(﹣2,0),可得直线AD的方程为y=,点M,同理可得N.∴======9﹣9=0.∴以线段MN为直径的圆恒过定点F.【点评】:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、斜率计算公式、向量垂直与数量积的关系、圆的性质、两点之间的距离公式,考查了推理力量与计算力量,属于难题.21.(14分)(2021•遂宁模拟)已知函数f(x)=(x+1)ln(x+1),g(x)=kxe x(k为常数,e=2.71828…是自然对数的底数),g′(x)为g(x)的导函数,且g′(0)=1,(1)求k的值;(2)对任意x>0,证明:f(x)<g(x);(3)若对全部的x≥0,都有f(x)≥ax成立,求实数a的取值范围.【考点】:导数的运算;利用导数求闭区间上函数的最值.【专题】:导数的综合应用.【分析】:(1)先求导,再代入值计算即可;(2)构造函数G(x),依据函数的单调性,即可证明;(3)构造函数令h(x)=(x+1)ln(x+1)﹣ax,求导,再分类争辩,即可求出a的取值范围.【解析】:解:(1)g'(x)=k(x+1)e x所以g'(0)=k=1…(3分)(2)证明:令G(x)=e x﹣x﹣1,G′(x)=e x﹣1,当x∈(0,+∞),G′(x)>0,所以当x∈(0,+∞)时G(x)单调递增,从而有G(x)>G(0)=0,x>0;所以e x>x+1>0⇒x>ln(x+1)>0,∴xe x>(x+1)ln(x+1),所以当x∈(0,+∞),f(x)<g(x);…(8分)(3)令h(x)=(x+1)ln(x+1)﹣ax,则h′(x)=1﹣a+ln(x+1),令h′(x)=0,解得x=e a﹣1﹣1,(i)当a≤1时,所以x=e a﹣1﹣1<0,从而对全部x>0,h′(x)>0;h(x)在…(14分)【点评】:本题考查了导数和函数的单调性的关系以及参数的取值范围,属于中档题.。

2021年四川省达州市高考数学二诊试卷(学生版+解析版)(文科)

2021年四川省达州市高考数学二诊试卷(学生版+解析版)(文科)

2021年四川省达州市高考数学二诊试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{|13}A x x =-,{|0}B x x =>,则(A B = )A .(1-,0]B .(1,0)-C .(0,3]D .(0,3)2.(5分)复数2z i =-,则||(z = ) A .1B .2C .3D .53.(5分)命题“0x ∀>,21x x +>”的否定是( )A .“00x ∃>,201x x +” B .“0x ∀,21x x +>” C .“00x ∃>,21x x +<” D .“0x ∀,21x x +”4.(5分)已知函数()f x 与()g x 的部分图象如图1,则图2可能是下列哪个函数的部分图象( )A .(())y f g x =B .()()y f x g x =C .(())y g f x =D .()()f x yg x =5.(5分)已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则f (1)(= ) A .1-B .1C .13-D .136.(5分)已知向量a ,b 满足||1a =,(2)5a a b ⋅-=-,则(a b ⋅= ) A .2B 2C 3D .37.(5分)已知函数()cos f x x =,若A ,B 是锐角三角形的两个内角,则一定有( ) A .(sin )(sin )f A f B > B .(cos )(cos )f A f B > C .(sin )(cos )f A f B >D .(cos )(sin )f A f B >8.(5分)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为正方形ABCD 内(包括边界)的一动点,E ,F 分别为棱AB ,BC 的中点,若直线1D P 与平面1EFC 无公共点,则线段1D P 的长度的最小值是( )A .5B .32C .5 D .19.(5分)已知(,)P a b 是圆221x y +=上的点,下列结论正确的是( ) A .12ab B .2222a b +最大值是22C .21||23ab -D .2||(1)lg a lg b +10.(5分)函数()sin (0f x A x A ω=>,0)ω>的部分图象如图,O 为坐标原点,M 点是该图象与x 轴的一个交点,N 点是该图象的一个最高点,且ON MN ⊥,||3MN =,则A 与ω分别为( )A 3,π B .32,π C 3,23π D .32,23π11.(5分)已知圆锥的底面圆周和顶点都在一半径为1的球的球面上,当圆锥体积为球体积的14时,圆锥的高为( ) A .12 B .131+ C .13D .151+12.(5分)已知(,0)F c -是椭圆22221(0)x y a b a b+=>>的左焦点,直线y x c =+与该椭圆相交于M ,N 两点,O 是坐标原点,P 是线段OF 的中点,线段MN 的中垂线与x 轴的交点在线段PF 上.该椭圆离心率的取值范围是( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分.13.(5分)二元一次不等式组221x y x y x --⎧⎪+⎨⎪-⎩,对应平面区域的面积是 .14.(5分)已知函数21,0(),0x x f x x x +⎧=⎨>⎩,若()()g x f x a =-仅有两个不同零点,则实数a 的取值范围是 .15.(5分)若A ,B 为双曲线221412x y -=的左,右焦点,C 为该双曲线上一点,且3cos 5ACB ∠=,则ABC ∆的周长为 .16.(5分)数列{}n a 满足11a =,1123n n n a a -+=-+,若该数列中有且仅有三项满足n a λ,则实数λ的取值范围是 .三、解答题:共70分。

四川省高考数学二诊试卷文科含答案解析

四川省高考数学二诊试卷文科含答案解析

2021年四川省广安市、遂宁市、内江市、眉山市高考数学二诊试卷〔文科〕一、选择题〔共12小题,每题5分,总分值60分〕1.i 为虚数单位,那么复数 =〔〕A .+ i B . ﹣ iC .﹣+iD .﹣ ﹣i2.集合A={x|x 2+4≤5x ,x ∈R},B={y|y >2},那么A ∩B=〔〕 .〔2,+∞〕 B .〔4,+∞〕 C .〔2,4] D .[2,4] 3.从某高中女学生中选取10名学生,根据其身高〔cm 〕、体重〔kg 〕数据,得到体重关于身高的回归方程﹣85,用来刻画回归效果的相关指数R 2, 那么以下说法正确的选项是〔 〕 A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有 60%是由身高引起的 C .身高为170cm 的学生体重一定为 D .这些女学生的身高每增加,其体重约增加1kg.等差数列 n }的前n 项和为S n ,假设S 10 ,那么 3+a 8 〔〕4{a =55 a=A .5B .C .10D .115.设a=〔 〕 ,b=〔 〕 ,c=ln ,那么a ,b ,c 的大小关系是〔〕A .a >b >cB .b >a >cC .b >c >aD .a >c >b6.执行如下图的程序框图,那么输出 b 的值为〔 〕A .2B .4C .8D .167.将函数f 〔x 〕= sinx+cosx 的图象向右平移后得到函数 g 〔x 〕的图象,那么函数g〔x〕的图象的一条对称轴方程是〔〕A.x=B.x=C.x=﹣D.x=﹣8.假设圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,那么k 的值为〔〕A.﹣1B.﹣C.﹣D.﹣39.直角梯形ABCD中,AB∥CD,AB⊥AD,AB=4,CD=6,AD=5,点E在梯形内,那么∠AEB 为钝角的概率为〔〕A.B.C.D.10.某同学在运动场所发现一实心椅子,其三视图如下图〔俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m〕,经了解,建造该3类椅子的平均本钱为240元/m,那么该椅子的建造本钱约为〔π≈〕〔〕A.元B.元C.元D.元11.某工厂拟生产甲、乙两种实销产品.每件甲产品的利润为万元,每件乙产品的利润为万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时〔单位:h〕分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41假设A设备每月的工时限额为400h,B设备每月的工时限额为300h,那么该厂每月生产甲、乙两种产品可获得的最大利润为〔〕A.40万元B.45万元C.50万元D.55万元12.假设函数g〔x〕满足g〔g〔x〕〕=n〔n∈N〕有n+3个解,那么称函数g〔x〕为“复合n3〞f〔x〕=〔其中e是自然对数的底数,+解函数.函数,k∈R〕,且函数f〔x〕为“复合5解〞函数,那么k的取值范围是〔〕A.〔﹣∞,0〕B.〔﹣e,e〕C.〔﹣1,1〕D.〔0,∞〕+二、填空题〔共4小题,每题5分,总分值20分〕13.在Rt△ABC中,D是斜边AB的中点,假设BC=6,CD=5,那么?=..假设等比数列n}的公比为2,且a3﹣a1,那么+++=.14{a=615.有以下四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有〔填写所有正确命题的编号〕.16.设抛物线C:y2=2x的焦点为F,点A在C上,假设|AF|=,以线段AF为直径的圆经过点B〔0,m〕,那么m=.三、解答题〔共5小题,总分值60分〕17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin〔A﹣〕﹣cos〔A+〕=.1〕求角A的大小;2〕假设a=,sin2B+cos2C=1,求b,c.18.某大学有甲、乙两个图书馆,对其借书的等待时间进行调查,得到下表:甲图书馆借书等待12345时间T1〔分钟〕频数150010005005001500乙图书馆借书等待12345时间T2〔分钟〕频数100050020001250250 1〕分别求在甲、乙两图书馆借书的平均等待时间;2〕以表中等待时间的学生人数的频率为概率,假设某同学希望借书等待时间不超过3分钟,请问在哪个图书馆借更能满足他的要求?19.如下图,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.〔1〕当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;〔2〕当D、E分别为线段VA、VC上的中点,且BC=1,CA=,VC=2时,求三棱锥A﹣BDE的体积.20.椭圆+ =1〔a>b>0〕过点P〔2,1〕,且离心率为.〔Ⅰ〕求椭圆的方程;〔Ⅱ〕设直线l与x轴不垂直,与椭圆相交于不同于P的两点A,B,直线PA,PB分别交y轴于M,N,假设=〔其中O为坐标原点〕,直线l是否过定点?假设不过定点,说明理由,假设过定点,求出定点的坐标.21.函数f〔x〕=lnx﹣2ax〔其中a∈R〕.〔Ⅰ〕假设函数f〔x〕的图象在x=1处的切线平行于直线x+y﹣2=0,求函数f〔x〕的最大值;〔Ⅱ〕设g〔x〕=f〔x〕+x2,且函数g〔x〕有极大值点x0,求证:x0f〔x0〕+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,那么按所做的第一题计分4-4:坐标系与参数方程].选修[(22.在直角坐标系xOy中,双曲线E的参数方程为〔θ为参数〕,设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.1〕求直线l的极坐标方程;2〕设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.函数f〔x〕=|x+a|﹣2a,其中a∈R.1〕当a=﹣2时,求不等式f〔x〕≤2x+1的解集;2〕假设x∈R,不等式f〔x〕≤|x+1|恒成立,求a的取值范围.2021年四川省广安市、遂宁市、内江市、眉山市高考数学二诊试卷〔文科〕参考答案与试题解析一、选择题〔共12小题,每题5分,总分值60分〕1.i为虚数单位,那么复=〔〕数A.+ i B.﹣i C.﹣+iD.﹣﹣i【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.应选:B.2.集合A={x|x2+4≤5x,x∈R},B={y|y>2},那么A∩B=〔〕A.〔2,+∞〕B.〔4,+∞〕C.〔2,4] D.[2,4]【考点】交集及其运算.【分析】通过二次不等式求出集合A,然后求解交集.【解答】解:∵集合A={x|x2+4≤5x,x∈R}={x|1≤x≤4},B={y|y>2},A∩B={x|2<x≤4}=〔2,4].应选C.3.从某高中女学生中选取10名学生,根据其身高〔cm〕、体重〔kg〕数据,得到体重关于身高的回归方程﹣85,用来刻画回归效果的相关指数R2,那么以下说法正确的选项是〔〕A.这些女学生的体重和身高具有非线性相关关系B.这些女学生的体重差异有60%是由身高引起的C.身高为170cm的学生体重一定为D.这些女学生的身高每增加,其体重约增加1kg【考点】线性回归方程.【分析】根据回归方程﹣85,且刻画回归效果的相关指数R2,判断这些女学生的体重和身高具有线性相关关系,这些女学生的体重差异有60%是由身高引起,计算x=170时的即可预测结果,计算身高每增加时体重约增加×.【解答】解:根据回归方程﹣85,且刻画回归效果的相关指数R2,所以,这些女学生的体重和身高具有线性相关关系,A错误;这些女学生的体重差异有60%是由身高引起,B正确;x=170时,×170﹣,预测身高为170cm的学生体重为,C错误;这些女学生的身高每增加,其体重约增加×,D错误.应选:B..等差数列n}的前n项和为S n,假设S10,那么3+a8〔〕4{a=55a=A.5 B.C.10 D.11【考点】等差数列的前n项和.【分析】利用等差数列前n项和公式得到S10=5〔a3+a8〕,由此能求出a3+a8的值.【解答】解:∵等差数列{a n的前n项和为S n,S10}=55,∴S10=〔3+a8〕=55,==5a解得a3+a8.=11应选:D.5.设a=〔〕,b=〔〕,c=ln,那么a,b,c的大小关系是〔〕A.a>b>cB.b>a>cC.b>c>aD.a>c>b【考点】对数值大小的比拟.【分析】利用指数函数、对数函数的单调性求解.【解答】解:∵0<a=〔〕<b=〔〕=,c=ln<ln1=0,b>a>c.应选:B.6.执行如下图的程序框图,那么输出b的值为〔〕A.2 B.4 C.8 D.16【考点】程序框图.【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,应选:D.7.将函数f〔x〕= sinx+cosx的图象向右平移后得到函数g〔x〕的图象,那么函数g〔x〕的图象的一条对称轴方程是〔〕A.x=B.x=C.x=﹣D.x=﹣【考点】函数y=Asin〔ωx+φ〕的图象变换.【分析】将函数化简,通过向右平移后得到函数g〔x〕的图象,根据正弦函数的对称轴方程即可求解.【解答】解:函数f〔x〕= sinx+cosx=2sin〔x+〕,图象向右平移后得:2sin〔x﹣+〕=2sin〔x﹣〕=g〔x〕,由x﹣=k,k∈Z,可得:x=k,当k=﹣1时,可得一条对称轴方程为x=.应选D.8.假设圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,那么k的值为〔〕A.﹣1B.﹣C.﹣D.﹣3【考点】直线和圆的方程的应用;过两条直线交点的直线系方程.【分析】求出圆的圆心坐标,代入直线方程求解即可.【解答】解:圆C:x2+y2﹣2x+4y=0的圆心〔1,﹣2〕,假设圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.应选:A.9.直角梯形ABCD中,AB∥CD,AB⊥AD,AB=4,CD=6,AD=5,点E在梯形内,那么∠AEB 为钝角的概率为〔〕A.B.C.D.【考点】几何概型.【分析】此题为几何概型,由题意以AB为直径半圆内的区域为满足∠AEB为钝角的区域,分别找出满足条件的点集对应的图形面积,及图形的总面积,作比值即可.【解答】解:以AB为直径半圆内的区域为满足∠AEB为钝角的区域,AB=4,故半圆的面积是2π,梯形ABCD的面积是25,∴满足∠AEB为钝角的概率为p=.应选:A.10.某同学在运动场所发现一实心椅子,其三视图如下图〔俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m〕,经了解,建造该3类椅子的平均本钱为240元/m,那么该椅子的建造本钱约为〔π≈〕〔〕A.元B.元C.元【考点】由三视图求面积、体积.D.元【分析】由三视图可知:该几何体为圆柱的.【解答】解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造本钱约为=×240≈元.应选:C.11.某工厂拟生产甲、乙两种实销产品.每件甲产品的利润为万元,每件乙产品的利润为万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时〔单位:h〕分别如表所示.甲产品所需工时乙产品所需工时A设备B设备2 43 1假设A设备每月的工时限额为400h,B设备每月的工时限额为300h,那么该厂每月生产甲、乙两种产品可获得的最大利润为〔〕A.40万元B.45万元C.50万元D.55万元【考点】简单线性规划的应用.【分析】先设甲、乙两种产品月产量分别为x、y件,写出约束条件、目标函数,欲求生产收入最大值,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数Z与直线截距的关系,进而求出最优解.【解答】C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是由约束条件画出可行域,如下图的阴影局部由,结合图象可知,在A处取得最大值,由可得A〔50,100〕,此时××100=50万元,应选:C.12.假设函数g〔x〕满足g〔g〔x〕〕=n〔n∈N〕有n+3个解,那么称函数g〔x〕为“复合n3〞f〔x〕=〔其中e是自然对数的底数,+解函数.函数,k∈R〕,且函数f〔x〕为“复合5解〞函数,那么k的取值范围是〔〕A.〔﹣∞,0〕B.〔﹣e,e〕C.〔﹣1,1〕D.〔0,∞〕+【考点】分段函数的应用.【分析】由题意可得f〔f〔x〕〕=2,有5个解,设t=f〔x〕,f〔t〕=2,当x>0时,利用导数求出函数的最值,得到f〔t〕=2在1,∞〕有2个解,[+,当x<0时,根据函数恒过点〔0,3〕,分类讨论,即可求出当k>0时,f〔t〕=2时有3个解,问题得以解决.【解答】解:函数f〔x〕为“复合5解“,∴f〔f〔x〕〕=2,有5个解,设t=f〔x〕,∴f〔t〕=2,∵当x>0时,f〔x〕= =,∴f〔x〕=,当0<x<1时,f′〔x〕<0,函数f〔x〕单调递减,当x>1时,f′〔x〕>0,函数f〔x〕单调递增,∴f〔x〕min=f〔1〕=1,∴t≥1,∴f〔t〕=2在[1,+∞〕有2个解,当x≤0时,f〔x〕=kx+3,函数f〔x〕恒过点〔0,3〕,当k≤0时,f〔x〕≥f〔0〕=3,t≥3f〔3〕=>2,∴f〔t〕=2在[3,+∞〕上无解,当k>0时,f〔x〕≤f〔0〕=3,∴f〔t〕=2,在〔0,3]上有2个解,在〔∞,0]上有1个解,综上所述f〔f〔x〕〕=2在k>0时,有5个解,应选:D二、填空题〔共4小题,每题5分,总分值20分〕13.在Rt△ABC中,D是斜边AB的中点,假设BC=6,CD=5,那么? = 32.【考点】平面向量数量积的运算.【分析】运用直角三角形斜边的中线等于斜边的一半,可得AD=BD=5,即AB=10,再由勾股定理可得AC,再由向量数量积的定义,计算即可得到所求值.【解答】解:在Rt△ABC中,D是斜边AB的中点,假设BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,那么? =| |?| |?cosA=5×8×=32.故答案为:32.n}的公比为2,且a3﹣a1,那么+﹣.14.假设等比数列{a=6++=1【考点】数列的求和.【分析】等比数列{a n2a3﹣a11221=6a1}的公比为,且=6,可得a〔﹣〕,解得.可∴得a n=2n.再利用等比数列的求和公式即可得出.【解答】解:等比数列{a n}的公比为2,且a3﹣a1=6,a1〔22﹣1〕=6,解得a1=2.a n=2n.那么+ + + =+ + ==1﹣.故答案为:1﹣.15.有以下四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有②④〔填写所有正确命题的编号〕.【考点】命题的真假判断与应用.【分析】利用正方体中的线面、面面、线线位置关系进行判定.,【解答】解:如图在正方体ABCD﹣A′B′C′中D,′对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④16.设抛物线C:y2=2x的焦点为F,点A在C上,假设|AF|=,以线段AF为直径的圆经过点B〔0,m〕,那么m= 1或﹣1.【考点】抛物线的简单性质.【分析】利用抛物线的焦点弦公式,求得A点坐标,分类,分别求得线段AF为直径的圆的圆心与直径,利用两点之间的距离公式即可求得m的值.【解答】解:抛物线C:y2=2x的焦点为F〔,0〕,设A〔x,y〕,由抛物线的焦点弦公式可知:|AF|=x+=x+=,那么x=2,那么y=±2,那么A〔2,2〕或A〔2,﹣2〕,当A点坐标〔2,2〕,以线段AF为直径的圆圆心M〔,1〕,半径为,经过点B〔0,m〕,那么丨BM丨=,即=,解得:m=1,同理A点坐标〔2,﹣2〕,以线段AF为直径的圆圆心M〔,﹣1〕,半径为,经过点B〔0,m〕,那么丨BM丨=,=,解得:m=﹣1,故m为1或﹣1,故答案为:1或﹣1.三、解答题〔共5小题,总分值60分〕17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin〔A﹣〕﹣cos〔A+〕=.1〕求角A的大小;2〕假设a=,sin2B+cos2C=1,求b,c.【考点】余弦定理.【分析】〔1〕由诱导公式、两角差的正弦、余弦函数化简的等式,由内角的范围和特殊角的三角函数值求出角A的大小;2〕由二倍角余弦公式的变形化简sin2B+cos2C=1,由正弦定理化简后,由条件和余弦定理列出方程求出b,c的值.【解答】解:〔1〕因为sin〔A﹣〕﹣cos〔A+〕=,所以sin〔A﹣〕﹣cos〔A﹣〕=,那么sinA﹣cosA﹣〔cosA+ sinA〕=,化简得cosA=,又0<A<π,那么A=;2〕因为sin2B+cos2C=1,所以sin2B+1﹣2sin2C=1,即sin2B=2sin2C,由正弦定理得,b2=2c2,那么b=c,又a=,由余弦定理得,a2=b2+c2﹣2bccosA,那么5=2c2c2﹣2c2×,解得c=1,+那么b=c=.18.某大学有甲、乙两个图书馆,对其借书的等待时间进行调查,得到下表:甲图书馆借书等待12345时间T1〔分钟〕频数150010005005001500乙图书馆借书等待12345时间T2〔分钟〕频数100050020001250250 1〕分别求在甲、乙两图书馆借书的平均等待时间;2〕以表中等待时间的学生人数的频率为概率,假设某同学希望借书等待时间不超过3分钟,请问在哪个图书馆借更能满足他的要求?【考点】众数、中位数、平均数.【分析】〔1〕分别求出T1和T2的平均数,判断结论即可;〔2〕设事件A为:“在甲图书馆借书的等待时间不超过3分钟〞,设事件B为“在乙图书馆借书的等待时间不超过3分钟〞,分别求出P〔A〕和P〔B〕,比拟即可.【解答】解:〔1〕由题意得:T1的平均数为:=,同理,可得T2的平均数为:=,故,甲图书馆借书的平均等待时间是分钟,乙图书馆借书的平均等待时间是分钟;〔2〕设事件A为:“在甲图书馆借书的等待时间不超过3分钟〞,那么P〔A〕=P〔T1≤3〕=P〔T1=1〕P〔T1=2〕P〔T1=3〕=++;++设事件B为“在乙图书馆借书的等待时间不超过3分钟〞,那么P〔B〕=P〔T2≤3〕=P〔T2=1〕P〔T2=2〕P〔T2=3〕=++,++故P〔B〕>P〔A〕,由上可知,在乙图书馆借书的总等待时间不超过3分钟的概率更高一些,故在乙图书馆借更能满足该同学的要求.19.如下图,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.〔1〕当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;〔2〕当D、E分别为线段VA、VC上的中点,且BC=1,CA=,VC=2时,求三棱锥A﹣BDE的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】〔1〕当DE⊥平面VBC时,DE⊥VC,推导出VC⊥AC,从而DE∥AC,由此能证明直线DE∥平面ABC.〔2〕三棱锥A﹣BDE的体积为V A﹣BDE=V B﹣ADE,由此能求出三棱锥A﹣BDE的体积.【解答】解:〔1〕直线DE∥平面ABC.证明如下:VC?平面VBC,∴当DE⊥平面VBC,DE⊥VC,AC?平面ABC,VC⊥平面ABC,∴VC⊥AC,VC,DE,AC?平面VAC,∴DE∥AC,AC?平面ABC,DE?平面ABC,∴直线DE∥平面ABC.2〕VC⊥平面ABC,∴VC⊥BC,又BC⊥AC,在平面VAC内,VC∩AC=C,∴BC⊥平面VCA,∴三棱锥A﹣BDE的体积为V A﹣BDE=V B﹣ADE=,∵D,E分别是VA,VC上的中点,∴DE∥AC,且DE=AC=,∴DE⊥VC,S△ADE△CDE==,=S∴三棱锥A﹣BDE的体积V A﹣BDE=V B﹣ADE===.20.椭圆+ =1〔a>b>0〕过点P〔2,1〕,且离心率为.〔Ⅰ〕求椭圆的方程;〔Ⅱ〕设直线l与x轴不垂直,与椭圆相交于不同于P的两点A,B,直线PA,PB分别交y轴于M,N,假设=〔其中O为坐标原点〕,直线l是否过定点?假设不过定点,说明理由,假设过定点,求出定点的坐标.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】〔Ⅰ〕由可得,解得a2,b2.〔Ⅱ〕设直线AB的方程:y=kx+t,A〔x1,y1〕,B〔x2,y2〕.由,可得〔4k2+1〕x2+8ktx+〔4t2﹣8〕=0.△=16〔8k2﹣t2+2〕>0,.写出直线PA、的方程,求出M、N坐标,由 =得〔2﹣4k〕x1x2﹣〔2﹣4k+2t〕x1+x2〕+8t=0.把①代入②化简得〔t+2〕〔2k+t﹣1〕=0.得t.【解答】解:〔Ⅰ〕由可得,解得a2=8,b2=2.∴椭圆的方程为:〔Ⅱ〕设直线AB的方程:.y=kx+t,A〔x1,y1〕,B〔x2,y2〕.由,可得〔4k21〕x28ktx〔4t2﹣8〕=0.+++△=16〔8k2﹣t22〕>0,①+直线PA的方程,∴M〔0,〕同理N〔0,〕.由=得,〔2﹣4k〕x1x2﹣〔2﹣4k+2t〕〔x1+x2〕+8t=0②把①代入②化简得〔t+2〕〔2k+t﹣1〕=0.因为直线不过点P,∴2k+t﹣1≠0,∴t=﹣2故直线l是否过定点Q〔0,﹣2〕21.函数f〔x〕=lnx﹣2ax〔其中a∈R〕.〔Ⅰ〕假设函数f〔x〕的图象在x=1处的切线平行于直线x+y﹣2=0,求函数f〔x〕的最大值;〔Ⅱ〕设g〔x〕=f〔x〕+x2,且函数g〔x〕有极大值点x0,求证:x0f〔x0〕+1+ax020.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】〔I〕令f′〔1〕=﹣1解出a,得出f〔x〕的解析式,在利用导数判断fx〕的单调性,得出最值;II〕令g′〔x〕=0有解且x0为g〔x〕的极大值点可得出a与x0的关系和x0的范围,令h〔x〕=xf 〔x〕+1+ax2,判断h〔x〕的单调性即可得出结论.【解答】解:〔I〕f′〔x〕=﹣2a,f〔x〕的图象在x=1处的切线平行于直线x+y﹣2=0,∴f′〔1〕=1﹣2a=﹣1,即a=1.∴f〔x〕=lnx﹣2x,f′〔x〕=,令f′〔x〕=0得x=,当0时,f′〔x〕>0,当x时,f′〔x〕<0,f〔x〕在〔0,]上单调递增,在〔,+∞〕上单调递减,f〔x〕的最大值为f〔〕=﹣1﹣ln2.〔II〕g〔x〕=lnx﹣2ax x2,g′〔x〕=x+﹣2a=,+令g′〔x〕=0得x2﹣2ax+1=0,①当△=4a2﹣4≤0即﹣1≤a≤1时,x2﹣2ax+1≥0恒成立,即g′〔x〕≥0,g〔x〕在〔0,+∞〕单调递增,∴g〔x〕无极值点,不符合题意;②当△=4a2﹣4>0时,方程g′〔x〕=0有两解x1,x0,∵x0是g〔x〕的极大值点,∴0<x0<x1,又x1x0=1,∴x1+x2=2a>0,∴a>1,0<x0<1.又g′〔x0〕=x0+﹣2a=0,∴a=.∴x0f〔x0〕+1+ax02=x0lnx0﹣,设h〔x〕=xlnx﹣,那么h′〔x〕=﹣x2++lnx,h″〔x〕=﹣3x+=,∴当0<x<时,h″〔x〕>0,当x时,h″〔x〕<0,h′〔x〕在〔0,〕上单调递增,在〔,+∞〕上单调递减,h′〔x〕≤h′〔〕=ln<0,h〔x〕在〔0,1〕上单调递减,∴h〔x0〕>h〔1〕=0,即x0lnx0﹣>0,x0f〔x0〕+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为〔θ为参数〕,设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.1〕求直线l的极坐标方程;2〕设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】〔1〕由双曲线E的参数方程求出双曲线E的普通方程为.从而求出直线l在直角坐标系中的方程,由此能求出l的极坐标方程.〔2〕由题意A、O、F、P四点共圆等价于P是点A,O,F确定的圆〔记为圆C,C为圆心〕与直线l的交点〔异于原点O〕,线段AF为圆C的直径,A是过F与l垂直的直线与y轴的交点,从而C的半径为2,圆心的极坐标为〔2,〕,由此能求出点P的极坐标.【解答】解:〔1〕∵双曲线E的参数方程为〔θ为参数〕,∴,,∴==1,∴双曲线E的普通方程为.∴直线l在直角坐标系中的方程为y=,其过原点,倾斜角为,∴l的极坐标方程为.〔2〕由题意A、O、F、P四点共圆等价于P是点A,O,F确定的圆〔记为圆C,C为圆心〕与直线l的交点〔异于原点O〕,AO⊥OF,∴线段AF为圆C的直径,由〔Ⅰ〕知,|OF|=2,又A是过F与l垂直的直线与y轴的交点,∴∠AFO=,|AF|=4,于是圆C的半径为2,圆心的极坐标为〔2,〕,∴圆C的极坐标方程为,此时,点P的极坐标为〔4cos〔〕,〕,即〔2,〕.[选修4-5:不等式选讲]23.函数f〔x〕=|x+a|﹣2a,其中a∈R.1〕当a=﹣2时,求不等式f〔x〕≤2x+1的解集;2〕假设x∈R,不等式f〔x〕≤|x+1|恒成立,求a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】〔1〕当a=﹣2时,分类讨论,即可求不等式f〔x〕≤2x+1的解集;2〕假设x∈R,不等式f〔x〕≤|x+1|恒成立,|a+a|﹣|x+1|≤2a恒成立,求出左边的最大值,即可求a的取值范围.【解答】解:〔1〕当a=﹣2时,不等式f〔x〕≤2x+1为|x﹣2|﹣2x+3≤0.x≥2时,不等式化为x﹣2﹣2x+3≤0,即x≥1,∴x≥2;x<2时,不等式化为﹣x+2﹣2x+3≤0,即x≥,∴≤x≤2,综上所述,不等式的解集为{x|x≥};2〕x∈R,不等式f〔x〕≤|x+1|恒成立,即|a+a|﹣|x+1|≤2a恒成立,∵|a+a|﹣|x+1|≤|a﹣1|,∴|a﹣1|≤2a,∴.2021年4月5日。

安徽省马鞍山市2021届高三第二次教学质量监测(二模)文科数学试题(word含答案)

安徽省马鞍山市2021届高三第二次教学质量监测(二模)文科数学试题(word含答案)

马鞍山市2021年高三第二次教学质量监测文科数学试题本试卷4页,满分150分。

考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的准考证号、姓名和座位号填在答题卡上。

将条形码横贴在答题卡“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,监考员将试题卷和答题卡一并收回。

一、选择题:本题共12个题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U=R,集合A={x|x2≤x},B={-1,0,1,2},则(C U A)∩B=A.{2}B.{1,2}C.{-1,2}D.{-1,0,1,2}2.已知复数z满足iz=z+2i,则复数z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.相传在17世纪末期,莱布尼兹在太极八卦图的启示下,发明了二进制的记数方法.他发现,如果把太极八卦图中“连续的长划”(阳爻:)看作是1,把“间断的短划”(阴爻:)看作是0,那么,用八卦就可以表示出从0到7这八个整数.后来,他又作了进一步的研究,最终发明了二进制的记数方法。

下表给出了部分八卦符号与二进制数的对应关系:请根据上表判断,兑卦对应的八卦符号为4.函数f(x)=xcosx-1x在(-π,π)上的图象大致为5.已知变量x,y满足约束条件10,30,310.x yx yx y-+≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数z=2x-3y的最小值为A. -7B.-4C.-1D.16. 5.已知sin(3π-α3,则cos(3π+2α)的值为 A. 23 B. 13 C.- 13 D.- 237.某同学计划暑期去旅游,现有A,B,C,D,E,F 共6个景点可供选择,若每个景点被选中的可能性相等,则他从中选择4个景点且A 被选中的概率是 A.15 B. 16 C. 35 D. 258. 已知函数f(x)=sin(ωx+φ)(ω>0, 0≤φ≤π)的部分图象如图所示.则函数f(x)的图象可由函数 y=sinx 的图象经过下列哪种变换得到A.向左平移3π个单位长度,再将横坐标变为原来的12倍(纵坐标不变)B.向左平移6π个单位长度,再将横坐标变为原来的12倍(纵坐标不变)C.向左平移6π个单位长度,再将横坐标变为原来的2倍(纵坐标不变)D.向左平移3π个单位长度,再将横坐标变为原来的2倍(纵坐标不变)9.已知双曲线C: 2224x y b+=1(b>0),以C 的焦点为圆心,3为半径的圆与C 的渐近线相交,则双曲线C 的离心率的取值范围是A.(1,3213) C.( 32, 131310.3,底面半径为1,O 为底面圆心,OA,OB 为底面半径,且∠AOB=2,3πM 是母线PA 的中点。

2021届山西省普通高中高三下学期4月高考考前适应性考试(二模)文科数学试卷及答案

2021届山西省普通高中高三下学期4月高考考前适应性考试(二模)文科数学试卷及答案

2021届山西省普通高中高三下学期4月高考考前适应性考试(二模)文科数学试卷★祝考试顺利★(含答案)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={1,2,3,4},B ={x ∈Z|12<2x <4},则(∁R A)∩B = A.{1,2,3,4} B.{0,1} C.{1} D.{0}2.已知复数z 满足zi =2为虚数单位),z 为复数z 的共轭复数,则z ·z =3.已知p :a ∈(1,3),q :f(x)=log a x 在(0,+∞)单调递增,则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设一组样本数据x 1,x 2…,x n 的方差为100,则数据0.1x 1,0.1x 2…,0.1x n 的方差为A.0.1B.1C.10D.1005.若椭圆2219x y m +=与双曲线2219y x -=有相同的焦点,则实数m 的值为 A.3 B.6 C.12 D.156.已知a =40.3,b =log 0.34,c =0.34,则a ,b ,c 三者之间的关系为A.b<a<cB.b<c<aC.c<a<bD.c<b<a7.平行四边形ABCD 中,E 为AD 边上的中点,连接BE 交AC 于点G ,若AG AB AD λμ=+,则λ+μ= A.1 B.56 C.23 D.138.如图所示,在三棱锥P -ABC 中,PA ⊥BC 且PA =BC =1,PB =AC PC 题不正确...的是A.平面PAB ⊥平面PBCB.平面PAB ⊥平面ABCC.平面PAC ⊥平面PBCD.平面PAC ⊥平面ABC9.三国时期,吴国数学家赵爽绘制“勾股圆方图”证明了勾股定理(西方称之为“毕达哥拉斯定理”)。

如图,四个完全相同的直角三角形和中间的小正方形拼接成一个大正方形,角α为直角三角形中的一个锐角,若该勾股圆方图中小正方形的面积S 1与大正方形面积S 2之比为1:25,则cos(α+34π)=A.210B.-210C.210D.-210 10.将函数y =sin(2x +3π)的图象沿x 轴向右平移φ(φ>0)个单位长度得到y =cos2x 的图象,则φ的值可能为A.1112πB.512πC.56πD.116π 11.已知F 为双曲线C :22221x y a b-=(a>0,b>0)的右焦点,以点F 为圆心,1为半径的圆与C 的渐近线相切于点45t),则C 的离心率为 A.32512.已知函数f(x)=alnx +1x-1(a ∈R),若f(x)的最小值为0,则a 的值为 A.1 B.-1 C.0 D.-2二、填空题:本题共4小题,每小题5分,共20分。

2021届江西省南昌市高三二模文科数学试题扫描版附答案

NCS20210607项目第二次模拟测试卷「’ 文科数学木试卷共4页,23小题,满分150分.考试时间120分钟.注意事项:1. 答卷前,考生务必将自己的姓名、准•考证号填涂在答题卡上.并在相应位置贴好条形码.2•作答选择题时.选出每小題答案后,用2B铅笔把答题卡上对应题目的答案信息涂黑:如需改动,用橡皮擦干净后•再选涂其它答案.3•非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液•不按以上要求作答无效.4•考生必须保证答题卡整洁.考试结束后,将试卷和答题卡一并交回.选择番本题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数Z = l + V3i,则z2在复平面上所对应的点在A・第一彖限B・第二象限 C.第三象限 D.第四象限2. 己知集合/ = {(XJ)|(X + y + l)(2x_y + l) = 0},则集合/中元素个数是A.0个B.1个C.2个D无数个’3. 从编号依次为01,02,…,20的20人中选取5人,现从随机数表的第一行第3列和第4列数字开始,由左向右依次选取两个数字,则_______________________________5308 3395 5502^ 6215 2702 4369 3218826^ 099£_7846_i充莎刁?莎乙丽巧両亍9527 _肓匕_药方_而厂'A709B^of C^l'5 D. 184. 在平面直角坐标系x®中,若点/与点8(2,1)关于直线y = x对称,则血乙46等于A.15. 己知/⑴二竺二1,则5+勺=:0"是“/(州)+ /(兀)二0”的e” + 1A・充分不必要条件B.必要不充分条件C.充要条件D.坯不充分也不必要条件6 •函数/(x) = sin伽+讣⑺>0)部分图象如图所示, 若厶ABC的面积为?则血二7. 己知F是抛物线y2=4x的焦点,P是抛物线上的一个动点, 值为A. 2 + 275B. 4 +亦C. 3 + V?8. 直线l:y = k(x±2)上存在两个不同点到原点距离等丁1,则斤的取值范围是D.2龙川3,1),则AJPF周长的最小D・6+7勺A. (-2,2)B. (-73,73) 'C. (-1J)—高三文科数学(模拟二)第2页(共4页)一B9.已知/(x ) = F" ,"(()」),若/(x )= 1有两解,则a 的取值范圈是 log, AXE [L2) -A. (0,—)B.(0,才C.(1,2]D.(1,2)10・如图是默默无"蚊”的广告创意图,图中网格是单位正方形,阴影部分由若干个牡两迈首尾相连组成的图形.最外层的半圆弧与矩形相切• 从矩形屮任取一点,则落在阴影部分的概率是 TCB. 3rr28A.C.5TID ・71567H •如图,正四棱锥P —ABCD 的高为12, AB = 6近• 分别为PA 、PC 的中点,过点B.E.F二.填空题:本题共4小题,每小题5分■共20分.13. 已知7 = (—1、2),乙=(3,—1),则与a-b 同方向的单位向疑足 ________ • Y 2 1 14. 若曲线y = J — 在X = 处的切线的斜率为三,则勺二 ______________ ・‘ 4 215. 四面体 A BCD 中,Z.ABC = Z.BCD = 90°, AB = BC = CD = 2,AD= 2^3,则该四面体的 外接球表面积为 ________ •16. 如图,平面凹四边形A BCD ,其中力〃 =5, BC = &ZMBC = 60°, AZ.ADC = 120°则四边形A BCD 血积的最小值为―__・12. 将双曲线绕其对称中心旋转,会得到我们熟悉的函数图彖,例如将双曲线--^1 = 1的图象22绕原点逆时针旋转45°后,能得到反比例函数尹=丄的图象x(其渐近线分别为X 轴和y 轴):同样的,如图所示,常见 的“对勾函数° =加:+巴(加> 0〃 > 0)也能由双曲线的x 图象绕原点旋转得到(其渐近线分别为『=加兀和y 轴)・ 设m 二写小二屈・则此“对勾函数”所对应的双曲线的实轴长为A.価B. 4C. 2&D. 2^7的截面交PD 于点A/ , 将四棱锥分成上下两个部分, 规定丽为主视图方向,则几何体CDAB — FME 的俯视图为A B三.解答题:共70分.解答应写出文•字说明、证明过程或演算步骤.第17il21题为必考题,每个试题考生都必须作答;第22. 23题为选考题.考生根据要求作答.(一)必考题:共60分.17. (12 分〉己知数列何}中,=2,a2=l(we N*).(1 )求鸟,兔的值;(H)求{%}的前2021项和S?⑵.18. (12分)春节期间,防疫常态化要求减少人员聚集,某商场为了应对防疫要求,但又不影响群众购物.采取推广使用••某某到家'•线上购物APP,再由物流人员送货到家.下左图为从某区随机抽取100位年龄在卩0,70)的人口年龄段的频率分布直方图,下右图是该样本中使用了柱某某到家"线上购物APP人数占抽取总人数比的频率柱状图•(1 )从年龄段在[60,70)的样本中,随机抽取两人•估计都不使用••某某到家"线上购物APP的概率;:U1)若把年龄低于40岁(不含)的人称为^青年人S为确定是否有99.9%的把握认为••青年人” 更愿童使用"某某到家"线上购物APP,填写下列2x2联表,并作出判断.参考数据:-bc\(a 4 6)(c + 〃)(a + c)(b + 〃)其中n-a^b^c^d・19. (12分)如图,菱形ABCD 的边长为6,对角线交于点E, ZABC =芒~,将△/4DC 沿FC 折起得到三棱锥D - ABC ,点D 在底面ABC 的投影为点O ・20. (12分)已知椭圆E:-^- + ^- = l(a>6>0)的离心率,椭圆£与“轴交干人B 两点, 与夕轴交于C,D 两点,四边形ACBD 的面积为4.(I )求椭圆E 的方程;(H)若P 是椭圆E 上一点(不在坐标轴上),直线PC.PD 分别与乂轴相交于两点,设 PC,PD,OP 的斜率分别为人也扎,过点P 的直线/的斜率为且k& = kk 、,直线/与x 轴 交于点Q,求|M0 — |N0|的值.21. (】2分)已知函数f(x) = e\g(x) = x 9直线y = a(a> 0)分别与函数y = f(x).y = g(x)的 图象交于儿B 两点,O 为坐标原点. (I )求I FBI 长度的最小值;(H)求最大整数使得k<OA OB 对*(0,xo)恒成立.(二)选考题:共10分请考生在第22. 23题中任选一题作答.如果多做,则按所做的第一题计分. 22. (10分)选修4-4:坐标系与参数方程x = 2 cos 0r-在直角坐标系xOr 中,曲线G 的参数方程为彳 — a(。

2021届高三第二次模拟考试卷 文科数学(四) 解析版

4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若复数 ,则 ()
A.2B. C.1D.
2.已知全集 ,集合 , 是 的子集,且 ,则下列结论中一定正确的是()
A. B. C. D.
3.已知等比数列 的前n项和为 ,则“ ”是“ 单调递增”的()
【解析】(1)由题意知

令 , ,则 , ,
所以 的单调递增区间为 , .
(2)因为 ,所以 ,所以 ,
所以 或 , ,即 或 , .
又 为锐角三角形,故 ,
因为 ,所以由正弦定理可知, , .
所以

因为 是锐角三角形,所以 , ,
所以 ,所以 , ,
所以 .
19.【答案】(1)茎叶图见解析,男: ,女: ;(2)列联表见解析,有90%把握认为;(3) .
2021届高三第二次模拟考试卷
文科数学(四)
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
故选B.
3.【答案】D
【解析】 ,例如 ,但是数列 不单调递增,故不充分;
数列 单调递增,例如 ,但是 ,故不必要,
故选D.
4.【答案】C
【解析】当输入 时,则 , , 成立;
当输入 时,则 , , 成立;

江苏省南通市2021届高三下学期4月诊断考试数学【文】试题及答案

高三年级2021年4月诊断考试数学(文科)试卷第I 卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则=N M C R )(( ) A. {|}x x <-2 B. {|}x x -<<21 C. {|}x x <1 D. {|}x x -≤<21 2.复数22iz i-=+(i 为虚数单位)在复平面内对应的点所在象限为( ) A .第一象限B .第二象限 C .第三象限 D .第四象限 3.已知命题x x R x p lg 2,:>-∈∃,命题0,:2>∈∀x R x q ,则( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题 C.命题)(q p ⌝∧是真命题 D.命题)(q p ⌝∨是假命题 4.某程序框图如右图所示,现输入如下四个函数, 则可以输出的函数是( )A .2()f x x =B .()sin f x x =C .()xf x e = D .1()f x x=5.设变量x ,y 满足约束条件30,03,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则2z x y =+的最大值为()A.21B.15C.-3D.-156.已知实数1, m ,4构成一个等比数列,则圆锥曲线221x y m+=的离心率为( ) A .22B .3 C.22或3 D .12或3 7.某三棱锥的三视图如右图所示,则该三棱锥的体积是()A.4B.38C.2D.348.设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =( ) A .3πB .34πC .56πD .23π9.直线()31-=-x k y 被圆22(2)(2)4x y -+-=所截得的最短弦长等于( ) 3B.322510.将函数sin()6y x π=+图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移3π个单位,那么所得图像的一条对称轴方程为( ) A .2x π=-B .4x π=-C .8x π=D .4x π=11.已知双曲线2212y x -=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( ) A .43B .53C 3.3312.已知11,1()4ln ,1x x f x x x ⎧+≤⎪=⎨⎪⎩>函数则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是(注:e 为自然对数的底数)( )A.10,e ⎛⎫ ⎪⎝⎭ B.⎪⎭⎫⎢⎣⎡e1,41 C.⎥⎦⎤ ⎝⎛41,0 D.1,4e ⎛⎫ ⎪⎝⎭第II 卷(共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答。

陕西省西安地区八校联考联盟2021届高三毕业班下学期第二次高考模拟联考数学(文)试题及答案

14.已知 的三个内角A、B、C所对的边分别是a、b、c,且 ,则 的最小角的余弦值为__________.
15.已知椭圆 长轴的一个顶点到直线 的距离不小于2,则椭圆的离心率的取值范围为__________.
16.已知 , , .则 的取值范围为__________.
三、解答题(共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,第22、23题为选考题,考生根据要求作答.)
小于m
不小于m
合计
朗读记忆(人数)
默读记忆(人数)
合计
0.100
0.050
0.010
0.001
k
2.706
3.841
6.635
10.828
20.在直角坐标系 中,已知圆 ,A、B是抛物线 上两点, 的重心恰好为抛物线S的焦点F,且 的面积为 .
(1)求p的值;
(2)求 与抛物线S 公切线的方程.
21.已知函数 (e为自然对数的底数, ).
2021届高三毕业班下学期第二次高考模拟联考测试
数学(文)试题参考答案
【1题答案】
【答案】B
【2题答案】
【答案】C
【3题答案】
注意事项:
1.答题前,考生务必先将自己的姓名、准考证号填写在答题纸上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题纸上的指定位置上.
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
(1)分别计算“朗读记忆”和估算“默读记忆”(估算时,用各组的中点值代替该组的平均值)记忆这篇文的平均时间(单位:min);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2021届高三学业质量调研抽测(第二次)文科数学参考答案及评分意见 一、选择题:15:;610:;1112:DCBCD BDAAC DD . 二、填空题:13.14.13.1- 15.π4165 三、解答题:17.解:(Ⅰ)由表中数据,计算 ,1(120110907060)905y =++++=,...............2分 则5152221419559.59032453.7559.5i ii i i x y nx y b xnx ==--⨯⨯===--⨯-∑∑,90329.5394a y bx =-=+⨯=, 所以关于的线性相关方程为32394y x =-+...........................................6分 (Ⅱ)设定价为元,则利润函数为(32394)(7.7)y x x =-+-,其中,................8分 则232640.43033.8y x x =-+-,所以640.4102(32)x =-≈⨯-(元),.........................11分 为使得销售的利润最大,确定单价应该定为元.........................................12分18.解:(Ⅰ)因为121n n a S +=+,所以2n ≥,121n n a S -=+,.............................2分 两式相减化简得13n n a a +=(2)n ≥,.....................................................4分 又11a =,所以23a =,213a a =符合上式,所以{}n a 是以1为首项,以3为公比的等比数列,所以13n n a -=...........................6分 (Ⅱ)由(Ⅰ)知31log ()n n n b a a +=13log 3321n n n -=⨯=-,所以2(121)2n n n T n +-==,.....8分 所以22212111111111......1...121223(1)n T T T n n n+++=+++<++++⋅⋅-.......................10分 11111111...222231n n n=+-+-++-=-<-............................................12分19.解:(Ⅰ)证明:作DH AF ⊥于H ,3π1(8.599.51010.5)9.55x =⨯++++=y x x 7.7x ≥10∵,,∴,∴,...............2分∵,∴,∴,∴,即,................4分∵面面,为两个面的交线,∴面........................6分 (Ⅱ)因为平面平面,,所以平面,,所以,又AD DF ==,..............9分 ∴,BDF S =A 到面BDF 的距离为h ,则1133h =,h =......12分 20.解:(Ⅰ)∵对于任意实数,恒成立,∴若,则为任意实数时,恒成立;....................................1分 若,恒成立,即在上恒成立,........................2分 设,则,......................................3分 当时,,则在上单调递增;当时,,则在上单调递减;所以当时,取得最大值,,所以的取值范围为,综上,对于任意实数,恒成立的实数的取值范围为.................5分 (Ⅱ)依题意,, 所以,....................................6分 设,则,.........................................8分 当,,故在上单调增函数,AF FE ⊥222AF EF DE ===1HF DH ==45HDF ∠=︒2AF =1AH =45ADH ∠=︒90ADF ∠=︒DF AD ⊥ABCD ⊥ADEF AD FD ⊥ABCD ABCD ⊥ADEF AB AD ⊥AB ⊥ADEF 111||1||333B ADF ADF V S AB AB -∆=⨯⨯=⨯⨯=1AB=BD =0x ≥()0f x >0x =a ()0xf x e =>0x >()0xf x e ax =+>xe a x >-0x >()x e Q x x =-22(1)()x x xxe e x e Q x x x --⋅'=-=(0,1)x ∈()0Q x '>()Q x (0,1)(1,)x ∈+∞()0Q x '<()Q x (1,)+∞1x =()Q x max ()(1)Q x Q e ==-a (,)e -+∞0x ≥()0f x >a (,)e -+∞()ln x xM x e x e x =-+1()ln 1(ln 1)1x x x x e M x e x e x e x x'=+-+=+-⋅+1()ln 1h x x x =+-22111()x h x x x x-'=-+=[1,]x e ∈()0h x '≥()h x [1,]e因此在上的最小值为,即,...................10分 又,所以在上,, 所以在上是增函数,即在上不存在极值..............12分21.解:(Ⅰ)设圆的半径为,题意可知,点满足:,,所以,由椭圆定义知点的轨迹是以为焦点的椭圆,.................................3分 所以 ,故轨迹方程为:. .................................................5分(Ⅱ)直线的方程为,联立 消去得. 直线恒过定点,在椭圆内部,所以恒成立,设,,则有, ..................7分 设的中点为,则,, 直线的斜率为(由题意知0k ≠),又P 为直线上的一点,所以 , ......................................9分 当为等边三角形时,, ()h x [1,]e (1)0h =1()ln 1(1)0h x x h x=+-≥=0xe >[1,]e 1()(ln 1)10x M x x e x '=+-⋅+>()M x [1,]e ()()()M x g xf x =-[1,]e I r I ||IC r =||IM r=||||IC IM +=I ,C M 2a c ==b =E 22162x y +=l (2)y k x =-2212(62)x y y k x ⎧+=⎪⎨⎪=-⎩y ()222231601212k x k x k +--+=(2)y k x =-(2,0)0∆>11(,)A x y 22(,)B x y 21221231k x x k +=+212212631kk x x -⋅=+21221)|||31k AB x x k +=-==+AB 00(,)Q x y 202631k x k =+02231k y k =-+PQ 1k-3x =3P x =2023(1)|||31P k PQ x x k +=-=+ABP ∆||||PQ AB =解得,即直线的方程为或........................12分22.解:(Ⅰ)将222x t y ⎧=+⎪⎪⎨⎪=⎪⎩中参数消去得20x y --=,............................2分 将代入2sin 8cos ρθθ=,得28y x =, ∴直线和曲线的直角坐标方程分别为20x y --=和28y x =.........................5分(ii )将直线的参数方程代入曲线的普通方程,得2320t --=,设、两点对应的参数为、,则,,且12t t +=,1232t t =-, ∴16,.............................. ..........8分 ∴12=...............................10分 23.解:(Ⅰ)当时,()|1||24||1|5f x x x x +-=++-≥,则得; .................................................2分 得; ..................................................3分 得, ....................................................4 分 所以的解集为....................................5分 (Ⅱ)对于任意实数,不等式成立,即恒成立,又因为,................................7分 要使原不等式恒成立,则只需,由得所以实数的取值范围是. ...................................................10分 22223(1)1)31231k k k k ++=++1k =±l 20x y --=20x y +-=t cos sin x y ρθρθ=⎧⎨=⎩l C l C A B 1t 2t 1||||MA t =2||||MB t =1212||||||8t t t t +=-==1212121212||||||11111||||||||||||t t t t MA MB t t t t t t +-+=+===2a =22415x x x <-⎧⎨---+≥⎩83x ≤-212415x x x -≤≤⎧⎨+-+≥⎩01x ≤≤12415x x x >⎧⎨++-≥⎩1x >()15f x x +-≥8(,][0,)3-∞-+∞x 23()2x f x a +-<22322x x a a +-+<2222322323x x a x x a a +-+≤+--=-232a a -<2232a a a -<-<13a <<a (1,3)。

相关文档
最新文档