向量代数与空间解析几何期末复习题高等数学下册(上海电机学院)

合集下载

《高等数学》(下)期末考试考前复习提纲

《高等数学》(下)期末考试考前复习提纲

《高等数学》下册期末考试考前复习提纲第一部分 空间解析几何与向量代数一、向量代数 1、向量的概念 (1)向量的定义有大小有方向的线段a(自由向量) (2)向量的表示1)),,(z y x a a a a =, 为向量的直角坐标表示2)0a a a=,其中a 为向量的模(大小),222zy x a a a a ++= 0a 为a的单位向量,0(cos ,cos ,cos )(,,)y x z a a a a a a aαβγ==,)cos ,cos ,(cos γβα为a的方向余弦,1cos cos cos 222=++γβα注:若有两点:111222(,,),(,,)A x y z B x y z ,则向量AB 为 212121{(),(),()}A B x x y y z z =--- 2、向量的运算 (1)线性运算),,(z z y y x x b a b a b a b a +++=+),,(z y x a a a a λλλλ=(2)数量积(标积,点积) 1)cos ,,a b a b a b ϕϕ⋅≡≡(0)ϕπ≤≤2)z z y y x x b a b a b a b a ++=⋅特例:当b a ⊥时,0=⋅b a(两向量垂直的判据)(3)向量积(矢积,叉积)1)0sin c b a c b a ϕ=≡⨯,b a ,与c为右手螺旋关系2)()()()xy z y z z yz x x z x y y x xy zij ka b a a a i a b a b j a b a b k a b a b b b b ⨯==-+-+-特例:当b a//时,0=⨯b a ,或z y x z y x z z y y x x b b b a a a b a b a b a ::::=↔==(两向量平行的判据)3、两点的间距公式212212212)()()(z z y y x x d -+-+-=4、平面π外一点0000(,,)P x y z 到平面π的距离公式:Dd =平面π的点法式方程为: 0Ax By Cz D +++= 二、空间解析几何1、空间曲面与空间曲线 (1)方程曲面方程 0),,(=z y x F (三元方程)曲线方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F 或)(),(),(t z z t y y t x x ===(2)常见的曲面与曲线1) 柱面—— 一直线l (母线)沿着一平面曲线C (准线)作平行于一定直线L 的移动所得的曲面 母线z //轴的柱面: 0),(=y x F母线y //轴的柱面: 0),(=x z F 母线x //轴的柱面: 0),(=z y F2) 旋转面—— 一平面曲线(母线)绕着同一平面内的定直线(转轴)旋转一周所得的曲面例(,)00z y f y z x =⎧⎨=⎩绕z 不变,旋转曲面0),(22=+±z y x f 3)空间螺旋线t k z a y a x ωθθθθ====,,c o s ,s i n4)二次曲面(三元二次方程) )(a 椭球面1222222=++cz b y a x椭球面与平行于坐标面平面的交线:→⎪⎩⎪⎨⎧==++12222221z z c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b yz c c a x ; →⎪⎩⎪⎨⎧==++12222221y y c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(y y y b b c z y b b a x ; →⎪⎩⎪⎨⎧==++12222221x x c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(x x x a a c z x a a b y 分别为在1z z =,1y y =与1x x =平面内的椭圆。

高等数学 向量代数与空间解析几何题【精选文档】

高等数学 向量代数与空间解析几何题【精选文档】

第五章向量代数与空间解析几何5。

1。

1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。

因为=-,所以(a+b)。

图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。

(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。

从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。

2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。

解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。

5.2。

2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。

解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。

(完整版)高数期末复习题第八章空间解析几何与向量代数

(完整版)高数期末复习题第八章空间解析几何与向量代数

第八章一、填空题8.1.1.1、点)1,3,2(-M 关于xoy 面的对称点是)1,3,2(-- .8.1.2.3、向量)2,20(),1,4,2(-=-=b a ϖϖ,则同时垂直于b a ϖϖ,的单位向量为)1,1,1(31--±. 8.1.3.1、向量=⊥-=-=c ,),,2,1(),1,1,3( 则: 且 b a c b a ϖϖϖϖ 1 . 8.1.41、点)1,2,1(M 到平面01022=-++z y x 的距离为 1 .8.1.51、. 过点02)1,2,1(=+-z y x 与平面 平行的平面方程为12=+-z y x 8.1.6.2、平面3=y 在坐标系中的位置特点是 平行xoz 面 .8.1.7.2、过三点A (2,0,0),B (0,3,0),C (0,0,4)的平面方程为1432=++z y x . 8.1.8.2、过两点)(,(2,0,1),1,2321--M M 的直线方程是12241-==-+z y x . 8.1.9.3、过点)4,2,0(且与平面2312=-=+z y z x 及都平行的直线是14322-=-=-z y x . 8.1.10.3、曲面z y x =-22在xoz 面上的截痕的曲线方程为⎩⎨⎧==02y z x . 二、选择题8.2.1.2、点)3,0,4(在空间直角坐标的位置是 ( C )A .y 轴上; B. xoy 平面上; C. xoz 平面上; D. 第一卦限内。

8.2.2.2、设AB 与u 轴交角为α,则AB 在u 轴上的投影AB j u Pr = (C )A .αcos ; B. αsin ; C. α ; D. α.8.2.3.2、两个非零向量b a ρρ与互相垂直,则 ( B )A .其必要不充分条件是0=⋅b a ϖϖ; B. 充分必要条件是0=⋅b a ϖϖ;C .充分不必要条件是0=⋅b a ϖϖ; D. 充分必要条件是0=⨯b a ϖϖ.8.2.4.2、向量),,(z y x a a a a =ϖ, ),,(z y x b b b b =ϖ 且 0=++z z y y x x b a b a b a 则 ( C )A. b a ϖϖ//;B. λλ(b a ϖϖ=为非零常数) ;C. b a ϖϖ⊥ ;D. 0ϖϖϖ=+b a .8.2.5.2、平面0633=--y x 的位置是 ( B )A .平行xoy 面;B . 平行z 轴 ; C. 垂直z 轴; D. 通过z 轴.8.2.6.2、过点131111)1,1,1(--=+=-z y x 与直线 垂直的平面方程为 ( A ) A. 1=-+z y x ; B. 2=-+z y x ;C. 3=-+z y x ;D. 0=-+z y x .8.2.7.2、直线37423L z y x =-+=-+:与平面3224=--z y x 的位置关系是( A ) A .平行; B. 直线在平面上; C. 垂直相交; D. 相交但不垂直.8.2.8.2、xoy 面上曲线369422=-y x 绕x 轴旋转一周,所得曲面方程是( C )A .369)4222=-+y z x (; B. 36)(9)42222=+-+z y z x (; C. 36)(94222=+-z y x ; D. 369422=-y x .8.2.9.2、球面2222R z y x =++与平面a z x =+交线在xoy 平面上投影曲线方程是( D )A .2222)R z y z a =++-(; B. ⎩⎨⎧==++-0)(2222z R z y z a ; C. 2222)(R x a y x =-++; D. ⎩⎨⎧==-++0)(2222z R x a y x 8.2.10.3、方程⎩⎨⎧==++13694222y z y x 表示 ( B )A .椭球面; B. 1=y 平面上椭圆;C. 椭圆柱面;D. 椭圆柱面在平面0=y 上的投影曲线.三、计算题8.3.1.2、 一平面过点)1,0,1(-,且平行于向量)0,1,1()1,1,2(-==b a ϖϖ和,求这个平面。

《高等数学》下册期末总复习第六版.

《高等数学》下册期末总复习第六版.

《高等数学》(下册期末总复习一、向量代数与空间解析几何(一)向量代数JJJJ G G G G1、点M (x , y , z ⇔向量OM =(x , y , z =xi +yj +zk ;JJJ G 2、点A (x 1, y 1, z 1, B (x 2, y 2, z 2 ⇒向量AB =(x 2−x 1, y 2−y 1, z 2−z 1 ;G G 3、设a =(a x , a y , a z , b =(b x , b y , b z ,则G G Ga ±b =(a x ±b x , a y ±b y , a z ±b z ;λa =(λa x , λa y , λa z (λ为数); G G G G G G na ⋅b =|a |⋅|b |cos(a , b =a x b x +a y b y +a z b z ;G G G i j k G G G G G G G G G G G G G G na ×b =a x a y a z ,(|a ×b |=|a ||b |sin(a , b , a ×b ⊥b , a ×b ⊥a ;b x b y b zb x b y b z G Ga &b ⇔==(对应坐标成比例);a x a y a zG G G Ga ⊥b ⇔a ⋅b =0;G G G a ⋅b G ncos(a , b =;|a ||b |G G G G n Prj b =|b |cos(a , bG a(二)曲面、空间曲线及其方程1、曲面及其方程Σ:F (x , y , z =0,旋转曲面【绕谁不换谁,正负根号里没有谁;作图时先画母线然后绕其轴旋转之】,柱面【柱面三缺一,缺谁母线就平行于谁;作图时先画准线结合母线特点得柱面】,二次曲面【截痕法与伸缩变形法作图】;要熟悉常见的曲面及其方程并会作图 2、空间曲线及其方程:一般方程(面交式)、参数方程;3、曲线(曲面或空间立体)在坐标面上的投影:投谁便消去谁4、会作简单立体图形(三)平面方程与直线方程:1、平面方程:1)一般方程:Ax +By +Cz +D =0,其中n =(A , B , C 为其一法向量.G第 1 页共 14 页 12)点法式方程:法向量n =(A , B , C ,点M (x 0, y 0, z 0 ∈Π,则A (x −x 0 +B (y −y 0 +C (z −z 0 =0 . 3)截距式方程:Gx y z++=1 a b c⎧A 1x +B 1y +C 1z +D 1=0的平面束方程为⎩A 2x +B 2y +C 2z +D 2=04)平面束方程:过直线⎨(A 1x +B 1y +C 1z +D 1 +λ(A 2x +B 2y +C 2z +D 2 =02、直线方程:点M 0(x 0, y 0, z 0 ∈L ,则1)对称式方程(点向式方程):方向向量s =(m , n , p ,Gx −x 0y −y 0z −z 0==m n p⎧x =x 0+mt⎪2)参数式方程:⎨y =y 0+nt⎪z =z +pt0⎩3)一般式方程:⎨⎧A 1x +B 1y +C 1z +D 1=0⎩A 2x +B 2y +C 2z +D 2=03、面面、线线、线面关系:G G |n G G 1⋅n 2|n n =1 面面:cos θ=|cos(n , |=12|n 1||n 2|G GΠ1⊥Π2⇔n 1⋅n 2=0⇔A 1A 2+B 1B 2+C 1C 2=0; A 1B 1C 1G G Π1&Π(或重合)⇔n &n ⇔== 212A 2B 2C 2G G |s G G 1⋅s 2|n s == 2 线线:cos θ=|cos(s , |12|s 1||s 2|G GL 1⊥L 2⇔s 1⋅s 2=0⇔m 1m 2+n 1n 2+p 1p 2=0; m 1n 1p 1G G L 1&L (或重合)⇔s &s ⇔== 212m 2n 2p 2G G |s ⋅n |G G m 3 线面:sin ϕ=|cos(s , n |==|s ||n |A B C G GL ⊥Π⇔s &n ⇔==;m n pG GL &Π(或L 在Π上⇔s ⊥n ⇔Am +Bn +Cp =0第 2 页共 14 页24、距离点面:d =JJJJJ J G 点线:d =|M G 0M ×s ||s |,其中Gs 为直线的方向向量,M 为直线上任意一点.第 3 页共 14 页 3二、多元函数的微分学及其应用(一)极限(求法与一元函数的类似,洛必达法则除外):(x , y →(x 0, y 0limf (x , y =A ⇔∀ε>0, ∃δ>0, δ时,有|f (x , y -A |<ε(x , y →(x 0, y 0∆(二)连续性:∆limf (x , y =f (x 0, y 0⇔∀ε>0, ∃δ>0, δ时,有|f (x , y -f (x 0, y 0 |<ε(三)偏导数:1、显函数:z =f (x , y1)定义:f x (x 0, y 0 =lim∆x →0f (x 0+∆x , y 0 −f (x 0, y 0,∆xf y (x 0, y 0 =lim∆y →0f (x 0, y 0+∆y −f (x 0, y 0∆y2)求导法则:对x 求偏导,暂时视y 为常量;对y 求偏导,暂时视x 为常量3)复合函数的求导法则(链式法则):若z =f (u , v 具有连续偏导数,而u =g (x , y 与v =h (x , y 都具有偏导数,则复合函数z =f [g (x , y , h (x , y ]的偏导数为:∂z ∂z ∂u ∂z ∂v=⋅+⋅=f u ⋅u x +f v ⋅v x =f 1′⋅g x +f 2′⋅h x ;∂x ∂u ∂x ∂v ∂x∂z ∂z ∂u ∂z ∂v =⋅+⋅=f u ⋅u y +f v ⋅v y =f 1′⋅g y +f 2′⋅h y ∂y ∂u ∂y ∂v ∂y特别的,设z =f [h (x , g (x ],则dz=f 1′⋅h ′(x +f 2′⋅g ′(x dx例如,设z =f (xy , 2x +3y ,其中f 具有二阶连续偏导数:令u =xy , v =2x +3y ,则∂z ∂z=f 1′⋅y +f 2′⋅2=yf 1′+2f 2′,=xf 1′+3f 2′. ∂x ∂y∂2z ∂∂′′⋅x +f 12′′⋅3]+2(f 21′′⋅x +f 22′′⋅3 =(yf 1′ +2(f 2′ =[f 1′+y (f 11∂x ∂y ∂y ∂y′′+(3y +2x f 12′′+6f 22′′ =f 1′+xyf 11注意:1)解题时,要注意偏导数以及导数的写法. 2)其中f 1′=∂f (u , v∂u u =xyf 1′(xy , 2x +3y 】与原函数具有相同的复合结构. =f u (xy , 2x +3y 【即4v =2x +3y第 4 页共 14 页2、隐函数:1)一个方程的情形:F x dy ⎧=−⎪dx F y ⎪⎪y =y (x→⎨隐函数求导法:方程两边对x 求导,注意y =二元方程可确定一个一元隐函数:F (x , y =0⎯⎯⎯⎪微分法:方程两边取微分,F dx +F dy =0x y⎪⎪⎩y (x 为x 的函数F y ⎧F x ∂z ∂z=−, =−z =z (x , y ⎪dx F z dy F z ⎪三元方程可确定一个二元隐函数:F (x , y ,z =0⇒⎨隐函数求导法:方程两边对x (或y 求偏导,注意z =z (x , y 为x 、y 的函数⎪⎪⎩微分法:方程两边取微分,F x dx +F y dy +F z dz =0⇒dz ="2)方程组的情形:(隐函数求导法)⎧y =y (x⎨⎩z =z (x⎧F (x , y , z =0dy dz三元方程组确定两个一元隐函数:⎨⇒,对x 求导dx dx G x y z (, , =0⎩四元方程组可确定两个二元隐函数:{F (x , y , u , v =0G (x , y , u , v =0⎧u =u (x , y ⎨⎩v =v (x , y⇒对x (或y 求偏导,视y (或x 为常量,得∂u ∂v , ∂x ∂x(或∂u ∂v )∂y ∂y(四)全微分:可微函数z =f (x , y 的全微分为:dz =z x dx +z y dy . 定义为:∆z [=f (x 0+∆x , y 0+∆y −f (x 0, y 0]=A ∆x +B ∆y +o (ρ ,其中ρ=(五)应用:1、几何应用:1)曲线的切线与法平面:∆⎧x =x (t ⎪a 、若曲线Γ的方程为参数方程:⎨y =y (t ,点M (x 0, y 0, z 0 ∈Γ↔t =t 0,则⎪z =z (t ⎩G切向量为T =(x ′(t 0, y ′(t 0, z ′(t 0 ,切线方程为x −x 0y −y 0z −z 0; ==x ′(t 0 y ′(t 0 z ′(t 0法平面方程为x ′(t 0 ⋅(x −x 0 +y ′(t 0 ⋅(y −y 0 +z ′(t 0 ⋅(z −z 0 =0G ⎧y =f (x,点M (x 0, y 0, z 0 ∈Γ,则切向量为T =(1,y ′(x 0, z ′(x 0 ,从而可b 、若曲线Γ的方程为:⎨⎩z =g (x得切线方程与法平面方程.⎧F (x , y , z =0,点M (x 0, y 0, z 0 ∈Γ,则切向量为c 、若曲线Γ的方程为一般方程:⎨G (x , y , z 0=⎩第 5 页共 14 页5G dy dz T =(1,y ′(x 0, z ′(x 0 (利用隐函数求导法,方程两边对x 求导,可得, ),从而可得切线方程与法dx dxG G G G G平面方程.【另解:n 1=(F x , F y , F z |M ,n 2=(G x , G y , G z |M ,可取切向量为T =n 1×n 2】2)曲面的切平面与法线:a 、若曲面Σ的方程为F (x , y , z =0,点M (x 0, y 0, z 0 ∈Σ,则法向量为:n =(F x (x 0, y 0, z 0, F y (x 0, y 0, z 0, F z (x 0, y 0, z 0 ,切平面方程为:F x (x 0, y 0, z 0(x −x 0 +F y (x 0, y 0, z 0(y −y 0 +F z (x 0, y 0, z 0(z −z 0 =0;法线方程为:Gx −x 0y −y 0z −z 0==F x (x 0, y 0, z 0 F y (x 0, y 0, z 0 F z (x 0, y 0, z 0b 、若曲面Σ的方程为z =f (x , y ,点M (x 0, y 0, z 0 ∈Σ,则法向量为:n =(f x (x 0, y 0, f y (x 0, y 0, −1 ,切平面方程为:f x (x 0, y 0(x −x 0 +f y (x 0, y 0(y −y 0 −(z −z 0 =0;法线方程为:Gx −x 0y −y 0z −z 0==f x (x 0, y 0 f y (x 0, y 0 −1⎧f x (x , y =02、极值:1 无条件:设z =f (x , y ,由⎨解得驻点(x 0, y 0 ,f (x , y 0=⎩y令A =f xx (x 0, y 0, B =f xy (x 0, y 0, C =f yy (x 0, y 0 ,然后利用A , B , C 判定极值与否:AC −B 2>0有极值,A >0极小,A <0极大;AC −B 2<0无极值;AC −B 2=0用此法无法判定.注意:最后必须求出极值. 2)条件极值:z =f (x , y 在条件ϕ(x , y =0下的极值:构造Lagrange 函数,令⎧L x (x , y =0⎪L (x , y =f (x , y +λϕ(x , y ,联立方程⎨L y (x , y =0,其解(x 0, y 0 为⎪ϕ(x , y =0⎩是否为极值点,一般可由问题的本身性质来判定.3、方向导数与梯度:(以二元函数为例)1)、方向导数:设z =f (x , y 可微分,∂f Ge l =(cosα,cos β ,则∂l=f x (x 0, y 0 c os α+f y (x 0, y 0 cos β(x 0, y 02)梯度:grad f (x , y =(f x (x , y , f y (x , y ,方向导数的最大值为梯度的模,取得方向导数的最大值的方向为梯度的方向.三、积分 (一求法1、重积分I 、二重积分I =∫∫f (x , y d σD⎧b dx y 2(x f (x 若D :⎧⎪⎨a ≤x ≤b ⎪[X :上下]a 、直角坐标:I =∫∫f (x , y dxdy =⎪⎨∫a ∫y , y dy , 1(x⎩y 1(x ≤y ≤y 2(xD⎪⎩∫dcdy ∫x 2(yx f (x , y dx ,若D :⎧⎪⎨c ≤y ≤d 1(y ⎪x x ≤x [Y :左右] ⎩1(y ≤2(y若D 既不是X -型也不是Y -型,则适当分割之.注意:通过二重积分,可交换二次积分的积分次序,这是一类常考的题型.⎧⎨x =ρcos θb 、极坐标: I ZZZZZZ YZZZZZ ⎩y =ρsin θd σ=ρd ρd θX Z ∫∫f (ρcos θ, ρsin θ ⋅ρd ρd θDZZZZZZZZZ D :⎧⎨α≤θ≤βYZZZZZZZZ ⎩ρ1(θ ≤ρ≤ρ2(θX Z ∫βρ2(θαd θ∫ρ(θ f (ρcos θ, ρsin θ ρd ρ1II 、三重积分I =∫∫∫f (x , y , z dvΩa 、直角坐标I =∫∫∫f (x , y , z dxdydz :Ω1)投影法:i )先一后二公式: I ZZZZZZZZZZZZZZZZX YZZZZZZZZZZZZZZZZ Ω={(x , y , z |z 1(x , y ≤z ≤z 2(x , y ,(x , y ∈D xy}z 2(x , yD ∫∫dxdy ∫z f (x , y , z dz1(x , yxy⎧a ≤x ≤b Ω:⎪⎨y 1(x ≤y ≤y 2(x ii 三次积分公式:I ZZZZZZZZZZ YZZZZZZZZZ ⎪⎩z 1 (x , y ≤z ≤z 2(x , yX Z ∫b dx ∫y 2(xz 2(x , ya y (x dy ∫z 1(x , y f (x , y , z dz12)截面法:(先二后一公式)I ZZ ZZZZZZZZZZ YZZZZZZZZZZZ Ω={(x , y , z |c ≤z ≤d ,(x , y ∈D z }X Z∫dcdz ∫∫f (x , y , z dxdyD z⎧⎪x =ρcos θ⎨y =ρsin θ⎪b 、柱面坐标:I ZZZZZZ YZZZZZZ ⎩z =z dv =ρd ρd θdzX ∫∫∫f (ρcos θ, ρsin θ, z ⋅ρd ρd θdzΩ⎧α≤θ≤βΩ:⎪⎨ρ1(θ ≤ρ≤ρ2(θ ZZZZZZZZZZ YZZZZZZZZZ ⎪⎩z 1(ρ, θ ≤z ≤z 2(ρ, θX Z∫β, θαd θ∫ρ2(θρ1(θρd ρ∫z 2(ρz (ρcos θ, ρsin θ, z dz1(ρ, θf⎧⎪x =r sin ϕcos θ⎨y =r sin ϕsin θ⎪c 、球面坐标:I ZZZZZZZZ YZZZZZZZ ⎩z =r cos ϕdv =r 2sin ϕdrd ϕd θX Z ∫∫∫f (r sin ϕcos θ, r sin ϕsin θ, r cos ϕ⋅r 2sin ϕdrd ϕd θΩ⎧α≤θ≤Ω:⎪β⎨ϕ1(θ ≤ϕ≤ϕ2(θ ZZZZZZZZZX YZZZZZZZZ ⎪⎩r 1 (ϕ, θ ≤r ≤r 2(ϕ, θZ Z Z∫βϕ2(θαd θ∫ϕϕd ϕ(ϕ, θ1(θsin ∫r 2r 1(ϕ, θf (r sin ϕcos θ, r sin ϕsin θ, r cos ϕ r 2dr2、曲线积分I 、第一类(对弧长):L :⎧⎨x =x (t a 、平面曲线:∫⎩y =y (tLf (x , y ds ZZZZZ YZ ZZZZ α≤t ≤βX∫βαf [x (t , y (t ](α<β⎧x =x (tΓ:⎪⎨y =y (t b 、空间曲线:∫⎪⎩z =z (t Γf (x , y , z ds ZZZZZ YZZZZZ Xβα≤t ≤β∫αf [x (t , y (t , z (t ](α<βII 、第二类(对坐标) a 、平面曲线:I =∫L P (x , y dx +Q (x , y dyi 参数法:I ZZZZZZ L :⎧⎨x =x (tYZZZZZ ⎩y =y (tβt 由α变到βX Z ∫α{P [x (t , y (t ]x ′(t +Q [x (t , y (t ]y ′(t }dtii 与路径无关:选取特殊的路径求之,注意条件:单连通,偏导数处处连续.定理设函数P (x , y , Q (x , y 在单连通区域D 内处处具有连续的偏导数,则下列命题相互等价:(1)∫LP (x , y dx +Q (x , y dy 在D 内与路径无关;(2)沿D 内任意一条闭曲线C ,v ∫CP (x , y dx +Q (x , y dy =0;(3)在D 内恒有:∂P ∂Q∂y =∂x;(4)P (x , y dx +Q (x , y dy 在D 内为某函数u (x , y 的全微分,即存在函数u (x , y ,使得P (x , y dx +Q (x , y dy =du (x , y .这里u (x , y 可由下列三种方法求得:①曲线积分法:u (x , y =∫(x , y(x x , y dx +Q (x , y dy +C ;0, y 0P (②凑全微分法:利用微分的运算法则,将P (x , y dx +Q (x , y dy 凑成d (" ,则u (x , y =(" +C ;③偏积分法:由du =Pdx +Qdy ,得u x =P (x , y ;两边对x 求偏积分可得u (x , y =P (x , y dx =f (x , y +C (y 两边对y 求偏导可得u y =f y (x , y +C ′(y ,再由u y =Q (x , y ,可解得C (y ,从而得u (x , y . iii )Green 公式:∫v ∫P (x , y dx +Q (x , y dy =∫∫(∂Q ∂P− dxdy ;不闭则补之.注意条件:LD∂x ∂y偏导数处处连续,L 为D 的正向边界.iv )化为第一类:∫LP (x , y dx +Q (x , y dy =∫L[P (x , y cos α+Q (x , y cos β]ds b 、空间曲线:I = ∫ΓP (x , y , z dx +Q (x , y , z dy +R (x , y , z dz⎧Γ:⎪x =x (t⎨y =y (t i 参数法:I ZZZZZZ YZZZZZ ⎪⎩z =z (t t 由α变到βX Z ∫βα{P [x (t , y (t , z (t ]x ′(t +Q [x (t , y (t , z (t ]y ′(t +R [x (t , y (t , z (t ]z ′(t }dtii *与路径无关:选取特殊的路径求之,注意条件:单连通,偏导数处处连续. iii Stokes公式:cos αcos βcos γdydz dzdx dxdy v ∫ΓPdx +Qdy +Rdz =∫∫∂∂∂∂∂∂Σ∂x ∂y ∂z dS =∂x ∂y ∂z ;或∫∫ΣP Q R P Q R不闭则补之.注意方向:L 的方向与Σ的侧符合右手规则. iv 化为第一类:∫ΓPdx +Qdy +Rdz =∫Γ(P cos α+Q cos β+R cos γ ds3、曲面积分I 、第一类(对面积):⎧⎪∫∫D f [x , y , z (x , y ]Σ:z =z (x , y I =∫∫Σf (x , y , z dS =⎪xy⎪⎨⎪∫∫D f [x , y (z , x , z ]Σ:y =y (z , xzx ⎪⎪⎩∫∫D f[x (y , z , y , z ]Σ:x =x (y , z yzII 、第二类(对坐标):I =∫∫P (x , y , z dydz +Q (x , y , z dzdx +R (x , y , z dxdy Σ1) Gauss公式:w ∫∫Pdydz +Qdzdx +Rdxdy =∫∫∫(∂P ∂x +∂Q ∂RΣΩ∂y +∂zdxdydz 若不闭则补之.注意条件:偏导数处处连续及方向性:Σ为Ω的整个边界曲面的外侧. 2)投影法:注意垂直性.若不垂直,则∫∫P (x , y, z dydz Σ:x =x (y , z ±∫∫P [x (y , z , y , z ]dydz 【前正后负】ΣD yz∫∫Q (x , y , z dzdx Σ:y =y (z , x ±∫∫Q [x , y (z , x , z ]dzdx 【右正左负】ΣD zx∫∫R (x , y , z dxdy Σ:z =z (x , y ±∫∫R [x , y , z (x , y ]dxdy 【上正下负】ΣD xy3)化为第一类:∫∫Pdydz +Qdzdx +Rdxdy =∫∫(P cos α+Q cos β+R cos γ dSΣΣ4)化为单一型:∫∫Pdydz +Qdzdx +Rdxdy =∫∫(Pcos αΣΣcos γ+Q cos βcos γ+R dxdy (二应用1、面积:平面A =∫∫dxd y ;D曲面A =∫∫d S ,A =Σ∫∫dy(D ∫∫∫∫或)xy D yz D zx2、体积: V =∫∫∫dv ;V =∫∫f (x , y d σ【曲顶柱体】ΩD3、物理应用:质量、功、转动惯量、质心、引力、流量(通量)、环流量等等【自学之】设A G=(P (x , y , z , Q (x , y , z , R (x , y , z ,则散度div A G =∂P ∂x +∂Q ∂y +∂R∂z, G i Gj k G 旋度rot A G =∂∂∂∂x ∂y ∂z P Q R四、级数(一)常数项级数及其收敛性 1、定义:∑u n =1 ∞ n 收敛(发散)⇔ lim sn 存在(不存在)【部分和sn = u1 + u2 + n →∞ ∞ ∞ un 】 2、基本性质:1)∞ ∞ ∑ kun (k ≠ 0 与∑ un 具有相同的收敛性;n =1 n =1 ∞ n =1 2)∑ un 与∑ vn 都收敛⇒ ∑ (un ± vn 收敛【口诀:收加收为收,收加发为发,发加发未必发】 n =1 n =1 3)改变有限项的值不影响级数的收敛性 4)收敛的级数可以任意加括号5)若∑u n =1 n →∞ ∞ n 收敛,则 lim un = 0 ;反之未必.n →∞ ∞ 6)若lim un ≠ 0 ,则∑u n =1 n 发散 3、特殊级数的收敛性【必须牢记之】:①调和级数∑ n 发散;n =1 ∞ ∞ 1 ② p -级数∑n n =1 1 p (常数 p > 0 ):当 p > 1 时收敛,当p ≤ 1 时发散;∞ ③等比级数(几何级数)∑ aq n=0 n ,当| q |≥ 1 时发散,当 | q |< 1 时收敛,且∞ ∑ aq n=0 n = a (| q |< 1 .1− q 4、正项级数∞ ∑u n =1 ∞ n ,其中un ≥ 0(n = 1, 2, : I、∑u n =1 n 收敛⇔ {sn } 有界; II、比较:1)un ≤ vn ( n > N 【大的收,小的也收;小的发,大的也发】 2)lim un = l (0 < l < +∞ 【同敛散】n →∞ v n 11 第 11 页共 14 页III、比值(根值) lim :n →∞ un +1 = ρ (lim n un = ρ ,当ρ < 1 时收敛;当ρ > 1( ρ = +∞ 时发散;而当ρ = 1 时n →∞ un 用此法不能判定其收敛性. IV、极限:lim n un = l (0 < l < +∞ ,当 p > 1 时收敛;当p ≤ 1 时发散.p n →∞ ∞ 5、交错级数∑ (−1 u (u n n =1 n n > 0, n = 1, 2, : {un } 单调减少趋于零. 6、一般项级数∑u n =1 ∞ n=0 ∞ n ( un 为任意常数):发散或收敛(绝对收敛,条件收敛)∞ (二)幂级数∑a x n n 或∑ a (x − x n=0 n 0 n :∞ 1、Abel 定理:若幂级数∞ ∑ an x n 在当x = x0 ( x0 ≠ 0 时收敛,则∑ an x n 当 | x |<| x0 | 时必绝对收敛;反之,n=0 n=0 ∞ n=0 ∞ 若∑ an x n 当 x = x0 时发散,则∑ an x n 当 | x |>| x0 | 时必发散. n=0 ρ = 0, ⎧ +∞, an +1 ⎪: 2、收敛半径:1)若an ≠ 0 【不缺项】ρ = lim (lim n | an | , R = ⎨1/ ρ , 0 < ρ < +∞, n →∞ a n →∞ n ⎪ 0, ρ = +∞; ⎩ 2)若缺项:lim n →∞ un +1 ( x = un ( x < 1 ,解得收敛区间. 3、收敛域:先求收敛半径 R ,可得收敛区间( − R, R ,再讨论端点 x = ± R 处的收敛性可得所求的收敛域 4、幂级数和函数的求法:先求收敛域,再利用幂级数的运算性质(加减乘除四则运算,逐项求导,逐项积分,和函数的连续性)以及换元法,然后代已知的展开式,可得所求的和函数. 5、函数展开成幂级数f ( x = ∑ a (x − x n=0 n 0 ∞ n (x ∈ I : 1)直接展开法:【利用 Taylor 展开定理】求导数得系数,写出泰勒级数,求其收敛域,最后记得判定余项趋于零,便可得到所求的展开式. 2)间接展开法:利用幂级数的运算性质(加减乘除四则运算,逐项求导,逐项积分,和函数的连续性)以及换元法,然后代已知的展开式,可得所求的展开式.注:以下 7 个常用的展开式必须牢记:①e = x xn ∑ n ! (| x |< +∞ ; n =0 ∞ ② sin x = ∑ (−1n n=0 ∞ x 2 n +1 (| x |< +∞ (2n + 1! 第 12 页共 14 页 12③ cos x = ∑ (−1n n=0 ∞ x2n (| x |< +∞ ; (2n! ④ ∞ 1 = ∑ x n (| x |< 1 1 − x n=0 ∞ ∞1 ⑤ = ∑ (−1 n x n (| x |< 1 ; 1 + x n=0 x n +1 ⑥ ln(1 + x = ∑ (−1 (−1 < x ≤ 1 n +1 n =0 n⑦ (1 + x = 1 + α x + α α (α −1 2 2! x + + α (α −1 (α − n +1 n n! x + α >0 ⎧[−1,1] ⎪ (| x |< 1 【α 为常数, I = ⎨ ( −1,1] −1 < α < 0 】⎪α ≤ −1 ⎩(−1,1 (三)傅里叶级数:只复习T = 2π 情形,一般周期 T = 2l 类似. an = 1、系数:1 π 1 ∫ π f ( x cosnxdx(n = 0,1, 2, − π bn = f ( x sin nxdx(n = 1, 2, π ∫π − π 2、收敛性:条件为在一个周期上 1)处处连续或只有有限个第一类间断点;2)只有有限个极值点. f ( x ⎧ a0 ∞ ⎪ 3、和:+ ∑ (an cos nx + bn sin nx = ⎨ f ( x + + f ( x − 2 n =1 ⎪⎩ 2 4、傅里叶级数展开式: f ( x = x为f ( x的连续点 x为f ( x的间断点a0 ∞ + ∑ (an cos nx + bn sinnx , ( x ∈ C 2 n =1 f ( x+ + f ( x− } 2 其中 C = {x | f ( x = 5、函数展开成傅里叶级数: 1)若 f ( x 为T = 2π 的周期函数,则对 f ( x 验证收敛定理的条件,求出 f ( x 的间断点,利用收敛定理,写出 f ( x 的傅氏级数的收敛性,再求出傅氏系数,最后写出所求的傅氏级数展开式.注意:必须写出展开式成立的范围,在展开式不成立的点(必为间断点)必须指明傅氏级数的收敛性. 2)若 f ( x 只在[ −π , π ] 上有定义,则必须对 f ( x 进行周期延拓,然后对周期延拓后所得的函数 F ( x 的傅氏级数展开式限制在[ −π , π ] 上讨论. 3)若 f ( x 只在[0, π ] 上有定义,对 f ( x 进行奇(偶)延拓再周期延拓,可得正弦(余弦)级数.注意:间断点或连续点的判定,必须为周期函数的!第 13 页共 14 页 13五、微分方程——续(一)全微分方程:P ( x, y dx + Q ( x, y dy = 0( ∂Q∂P ,= ∂x ∂y 1)曲线积分法:通解为 u ( x, y = C ,其中u ( x, y = ∫ ( x, y ( x0 , y0 P ( x, y dx + Q( x, y dy ; 2)凑微分法:利用微分的运算法则,设法将原方程凑成 d [∆ ] = 0 ,则可得通解为∆ = C ,.(二)常系数线性微分方程: 1、齐次:y′′ + py′ + qy = 0 ,其中 p, q 都为常数 1)特征方程 r + pr + q = 0 ⇒ r1 , r2 = ? 2 ⎧C1e r1x + C2 e r2 x r1 ≠ r2 ∈⎪ r1 x r1 = r2 ∈ 2)通解: y = ⎨(C1 + C2 xe ⎪eα x (C cos β x + C sin β x r = α ± iβ ∈ 1 2 1,2 ⎩ 2、非齐次:y′′ + py′ + qy = f ( x ,其中 p, q 都为常数 1)先求出对应的齐次方程y′′ + py′ + qy = 0 的通解: Y = Y ( x ; 2)后求原非齐次方程的特解. A、 f ( x = e Pm ( x 型:令 y = x e Qm ( x ,其中 k 是特征方程含根λ 的重数λx * k λx B、f ( x = e [ P ( x cos ω x + Pn ( x sin ω x] 型: l 令 y = x e [Qm ( x cos ω x + Rm ( x sin ω x] ,其中 m = max{l , n} , k 是特征方程含根λ + iω 的* λx k λx 重数(三)线性微分方程的解的结构: 1)齐次:y′′ + P ( x y′ + Q ( x y = 0 ,通解: y = C1 y1 ( x + C2 y2 ( x ,其中 y1 ( x, y2 ( x 为该方程线性无关的两个解. 2)非齐次:y′′ + P ( x y′ + Q ( x y = f ( x 通解: y = Y ( x + y *( x ,其中 Y ( x 为对应的齐次方程的通解, y *( x 为原方程的一个特解. 3)设 y1 *( x, y2 *( x 分别为y′′ + P ( x y′ + Q ( x y = f1 ( x 与y′′ + P ( x y′ + Q ( x y = f 2 ( x 的特解,则 y* = y1 *( x + y2 *( x 为y′′ + P ( x y′ + Q ( x y = f1 ( x+f 2 ( x 的特解.第 14 页共 14 页 14。

高等数学期末复习向量代数与空间解析几何

高等数学期末复习向量代数与空间解析几何

高等数学期末复习第八章 向量代数与空间解析几何 一、内容要求1、了解空间直角坐标系,会求点在坐标面、坐标轴上的投影点的坐标2、掌握向量与三个坐标面夹角余弦关系3、会运用定义和运算性质求向量数量积4、会运用定义和运算性质求向量的向量积5、掌握向量数积和向量积的定义形式6、掌握向量模的定义与向量数量积关系7、掌握向量的方向余弦概念8、掌握向量的平行概念9、掌握向量的垂直概念10、能识别如下空间曲面图形方程:柱面,球面、锥面,椭球面、抛物面,旋转曲面,双曲面 11、掌握空间平面截距式方程概念,会化平面方程为截距式方程和求截距 12、会求过三点的平面方程,先确定平面法向量 13、会用点法式求平面方程,通常先确定平面法向量14、会求过一点,方向向量已知的直线对称式方程,通常先确定直线方向向量 15、会用直线与平面平行、垂直的方向向量法向量关系确定方程中的参数 16、掌握直线对称式方程标准形式,能写出直线方向向量 二、例题习题1、点)2,4,1(-P 在yoz 面上的投影点为( ); (内容要求1)A. )2,4,1(-QB. )2,0,1(-QC. )0,4,1(-QD. )2,4,0(Q 解:yoz 面不含x ,所以x 分量变为0,故选D2、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2,,0321πθθθ≤≤),则=++322212cos cos cos θθθ( )(A) 0 (B) 1 (C) 2 (D); 3 解:由作图计算可知,222123cos cos cos 2θθθ++=,所以选C 。

(内容要求2)3、设向量a 与三个坐标面zox yoz xoy ,,的夹角分别为321,,θθθ(2,,0321πθθθ≤≤),则=++322212cos cos cos θθθ ;解:222123coscos cos 2θθθ++=,所以填2。

(内容要求2)4、向量)3,1,1(-=a,)2,1,3(-=b ,则=⋅b a ( );A.0 B. 1 C. 2 D. )2,11,5(---解:311(1)232a b ⋅=-⨯+⨯-+⨯=,所以选C 。

《高等代数与解析几何(下) 》期末考试试卷(A 卷)

《高等代数与解析几何(下) 》期末考试试卷(A 卷)

6.(10 分) 用非退化线性替换将二次型
化为标准型.
q(x1, x2 , x3 ) = x12 − 2x1x3 + x22 + 2x2 x3 − x32
7.(13 分)设V1 与V2 分别是齐次线性方程组 x1 + x2 + + xn = 0 与 x1 = x2 = = xn
的解空间,证明 K n = V1 ⊕V2 .
5 5 λ+7 5 5 λ+7故特征向量为 Nhomakorabea2 和 3.
………………5 分
⎛ −1⎞ ⎛ −1⎞
当 λ1
=
−2 时,特征向量η1
=
⎜ ⎜
1
⎟ ⎟
,η2
=
⎜ ⎜
0
⎟ ⎟
.
⎜⎝ 0 ⎟⎠
⎜⎝ 1 ⎟⎠
………………2 分
⎛ −1⎞
当 λ2
=
3 时,特征向量η3
=
⎜ ⎜
−1⎟⎟ .
⎜⎝ 1 ⎟⎠
………………2 分
命题共 2 页第 1 页
三.解答题:(共 80 分)
⎛3 5 5⎞
1.(15 分)

A
=
⎜ ⎜ ⎜⎝
5 −5
3 −5
5
⎟ ⎟
,问矩阵
A 是否可以相似于一个对角矩阵,若可
−7 ⎟⎠
以,求一个可逆矩阵T ,使T −1AT 为对角形矩阵.
2.(10 分) 求单叶双曲面 x2 + y2 − z2 = 1上过点(-3,-2,4)的直母线的方程. 9 4 16

阵.
4. n 维线性空间V 的线性变换 A 在某个基下的矩阵为对角矩阵的充要条件是 A

向量代数与空间解析几何期末复习题高等数学下册(上海电机学院)

向量代数与空间解析几何期末复习题高等数学下册(上海电机学院)

向量代数与空间解析几何期末复习题高等数学下册(上海电机学院)第七章空间解析几何一、选择题1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面3.直线312141:1+=+=-z y x l 与??=-++=-+-0201:2z y x y x l ,的夹角是 [ C ]A. 4πB.3πC. 2πD. 04. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3)5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=C. x z y 422=+D. x z y 422±=+6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13-B.13C. 23-D.237. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22222x y z ab+=表示的是 [ B ]A.椭圆抛物面B.椭圆锥面C. 椭球面D. 球面9. 已知a={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ]A. 3B.31-C. -1D.110.已知,a b 为不共线向量,则以下各式成立的是 DA. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?=11.直线1l 的方程为03130290x y z x y z ++=??--=?,直线2l 的方程为03031300x y z x y z ++=??--=?,则1l 与2l 的位置关系是 DA.异面B.相交C.平行D.重合12.已知A 点与B 点关于XOY 平面对称,B 点与C 点关于Z 轴对称,那么A 点与C 点是 CA.关于XOZ 平面对称B.关于YOZ 平面对称C.关于原点对称D.关于直线x y z ==对称13.已知A 点与B 点关于YOZ 平面对称,B 点与C 点关于X 轴对称,那么A 点与C 点 C A.关于XOZ 平面对称 B.关于XOY 平面对称C.关于原点对称D.关于直线x y z ==对称 14. 下列那个曲面不是曲线绕坐标轴旋转而成的 CA.2221x y z ++=B.221x y z ++=C.21x y z ++=D.221x y z ++= 15. 已知,a b 为不共线向量,则下列等式正确的是CA.2a a a = B. 2()a ab a b ??= C. 2()a b b ab ??= D. 222()a b a b =? 16.已知向量(1,2,1)a =,(3,4,3)b =--,那么以,a b 为两边的平行四边形的面积是 BA.20B. C.10D.17.已知直线l 方程2303450x y z x y z ++=??++=?与平面π方程20x z -++=,那么l 与π的位置关系是CA. l 在π内B. l 垂直于πC. l 平行于πD.不能确定18.两向量,a b 所在直线夹角4π,0ab <,那么下列说法正确的是 BA. ,a b 夹角4πB. ,a b 夹角34π C. ,a b 夹角可能34π或4πD.以上都不对19.已知||1=a,||=b (,)4π=ab ,则||+=a b (D ). (A) 1(B) 1+ (C) 2(D)20.设有直线3210:21030x y z L x y z +++=??--+=?及平面:4220x y z π-+-=,则直线L ( C )。

上海电机学院高等数学考试及答案

上海电机学院高等数学考试及答案

上海电机学院高等数学考试及答案一、选择题(10分)1在yoz 坐标面上,求与三个点A(3,1,2),B(4,-2,-2),C(0,5,-1)等距离的点的坐标( )(若C 为(0,5,1)就选B ) A(0,1,-1) B(0,1,-2) C(1,0,-2) D(1,-2,0)2.直线341222--=+=-z y x 与平面x+y+z=4的关系是( A )A 直线在平面上B 平行C 垂直D 三者都不是 3.考虑二元函数f (x,y )的下面四条性质 (1)f(x,y)在点(x 0,y 0)连续(2)f x (x,y )、f y (x,y)在点(x 0,y 0)连续. (3)f(x,y)在点(x 0,y 0)可微分(4)f x (x 0,y 0)、f y (x 0,y 0)存在若用“P →Q ”表示可由性质P 推出性质Q ,则下列四个选项中正确的是( A )A (2)→(3)→(1)B (3)→(2)→(1)C (3)→(4)→(1)D (3)→(1)→(4) 4.设f (x,y )在点(x 0,y 0)处存在偏导,则limℎ→0f (x 0+2ℎ,y 0)−f(x 0−ℎ,y 0)ℎ=( D )A.0B.f x (x 0,y 0)C.2f x (x 0,y 0)D.3f x (x 0,y 0)二、填空题(40分)1.两平行平面2x-3y+4z+9=0与2x-3y+4z-15=0的距离是_√29__。

2.求过点P(2,1,3)且与直线l:X+13=y−12=z−1垂直相交的直线方程__x−22=y−1−1=z−34__________。

3.xoz平面上曲线z=e x(x>0)绕x轴旋转所得旋转曲面方程为___+−√y2+z2=e x_________。

4球面z=√4−x2−y2与锥面z=√3(x2+y2)的交线在xoy面上的投影曲面方程为__{x2+y2=1z=0_________。

5.设u=f(x,xy,xyz),f可微,则∂u∂x=__f'1+yf'2+yzf'3_____6.求z=√xy 的全微分dz=__12√xydx−√xy2y2dy________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 空间解析几何参考答案第七章空间解析几何一、选择题1. 在空间直角坐标系中,点(1,- 2,3)在 [ D ]A.第一卦限 B. 第二卦限C.第三卦限D.第四卦限2. 方程 2 x 2y 22 在空间解析几何中表示的图形为[ C ]A.椭圆B.圆C.椭圆柱面D.圆柱面3. 直线 l 1 x 1y 1z 1x y 1 0 :23与 l 2 : x yz2,的夹角是 [ C ]4A.4B.3C.D. 024. 在空间直角坐标系中,点( 1, 2,3 )关于 xoy 平面的对称点是 [ D ]A. (-1,2,3)B. (1,-2,3)C. (-1,-2,3)D. (1,2,-3)5. 将 xoz 坐标面上的抛物线z 2 4 x 绕 z 轴旋转一周,所得旋转曲面方程是[B ]A.z 24 ( x y ) B. z 2 4 x 2 y 2C. y 2z 24 xD.y 2z 24 x6. 平面 2x-2y+z+6=0 与 xoy 平面夹角的余弦是 [B ]A.1 B.1C.2 23 33D.37. 在空间直角坐标系中,点( 1, 2,3 )关于 yoz 平面的对称点是 [ A ]A. (-1,2,3)B. (1,-2,3)C. (-1,-2,3)D. (1,2,-3)228. 方程xy z 2 表示的是 [ B ]a 2b 2A. 椭圆抛物面B. 椭圆锥面C. 椭球面D. 球面9. 已知 a ={0, 3, 4}, b ={2, 1, -2},则 proj a b[ C ]A.3B.1 C. -1D. 1310.已知 a , b 为不共线向量,则以下各式成立的是 DA.a 2b 2(a b ) 2 B. a 2 b 2 ( a b ) 2C. (a b) 2(a b )2D.( a b ) 2( a b ) 2a 2b 211.直线l1的方程为x y z0,直线l 2的方程为x y z0,则l1与31 x30 y29 z30 x31 y30 z00l 2的位置关系是DA. 异面B.相交C.平行D. 重合12.已知 A 点与 B 点关于 XOY 平面对称, B 点与 C 点关于 Z 轴对称,那么 A 点与 C 点是CA. 关于 XOZ 平面对称B.关于 YOZ 平面对称C.关于原点对称D. 关于直线x y z 对称13.已知 A 点与 B 点关于 YOZ平面对称, B点与 C点关于 X 轴对称,那么 A点与 C点 CA. 关于 XOZ 平面对称B.关于 XOY 平面对称C.关于原点对称D. 关于直线x y z 对称14. 下列那个曲面不是曲线绕坐标轴旋转而成的CA. x2y 2z21B. x2y 2z 1C. x2y z 1D. x y2z 2115. 已知a , b为不共线向量 ,则下列等式正确的是C2B. a ( a b ) a 2bC. a ( b b )ab 2D. a 2b 2(a b) 2A. a a a16.已知向量a(1, 2,1),b(3, 4,3),那么以a , b为两边的平行四边形的面积是BA.20B.102C.10D.5217.已知直线l方程x 2 y 3 z0与平面方程 x z20 ,那么 l 与的位置关系3 x 4 y 5 z0是 CA. l在内B. l垂直于C. l平行于D. 不能确定18.两向量 a , b所在直线夹角4, ab0 ,那么下列说法正确的是BA. a , b夹角4B. a , b夹角3C. a , b夹角可能3或D. 以上都不对44419.已知|a|1, | b |2,且 (a , b ),则 | a b |( D).4(A)1(B) 12(C)2(D)520.设有直线L :x 3 y 2 z10: 4 x 2 y z20,则直线 L(C)。

2 x y10 z3及平面(A) 平行于(B) 在上(C)垂直于(D) 与斜交x 2z 21绕 z 轴旋转而成的旋转曲面的方程为(21.双曲线45A) .2y22222(A) xz(B)xyz414155(C)( xy) 2z 2 1(D)x 2( yz) 24541522. 点 ( a, b, c ) 关于 y 轴对称的点是( D ).(A) ( a ,b, c)(B) ( a , b, c ) (C) ( a , b , c )(D) ( a , b , c )23. 已知 a{4, 3, 4}, b{2, 2,1} ,则 Prj b (a )( A ) .(A) 2 (B)2 6(D)6(C)414124. x 2y 21 在空间表示 ( D ).(A) 双曲线(B)双曲面(C) 旋转双曲面(D) 双曲柱面25. 设 a 与 b 为非零向量,则 a b 0 是(C ).(A) ab 的充要条件(B) a b 的充要条件(C) a // b 的充要条件(D) a // b 的必要但不充分条件26.设平面方程为 A x C z D0 ,其中 A , C , D 均不为零,则平面(B ) .(A) 平行于 x 轴(B) 平行于 y 轴 (C) 经过 x 轴(D) 经过 y 轴27.已知等边三角形 ABC 的边长为1,且BCa , CAb, ABc , 则a bb cc a ( D ) .1(B)3(C)1(D)3(A) 222228.点 M(2 , -3, 1)关于坐标原点的对称点是( A)(A)(-2 ,3, -1)(B) (-2, -3 , -1) (C) (2 ,-3 , -1)(D)(-2, 3,1)29. 平面 2x-3y-5=0 的位置是 ( B)(A) 平行于 XOY 平面 (B) 平行于 Z 轴 (C)平行于 YOZ 平面(D)垂直于 Z 轴30. 点 A(-2 , 3, 1)关于 Y 轴的对称点是 ( D )(A) (2, -3, 1)(B)(-2 ,-3 , -1)(C) (2, 3, -1)(D) (2 , -3,-1)31. 过点 (0, 2, 4)且与平面 x+2z=1 和 y-3z=2 都平行的直线方程是 ( C)xz 4y 2z423yz(B)x(A)x y 2 z 4(C) 2 31(D) 2 x 3( y2) z 432.二个平面xy z 1 和 2x+3y-4z=1 位置关系是( A)234(A )相交但不垂直 ( B )重合(C. )平行但不重合( D. )垂直x 2 y4 z 7 033. 过点 (2, 0, -3) 且与直线 3 x5 y2 z1垂直的平面方程是 ( A)(A)16 ( x 2 ) 14 ( y 0 ) 11 ( z 3)(B)( x2 ) 2 ( y0 ) 4( z 3)(C)3( x 2 )5( y0)2 ( z3)(D)16 ( x 2) 14 ( y0) 11 ( z 3 )34. 向 量a, b, c 与三坐标轴的夹角分别为 , ,, 则的方向余弦中的cos=(A)bbbb2 2 2 (B) a222(A) a b cb c (C) a b c(D)a b c35. 已知曲面方程zx 2 y 2 (马鞍面),这曲面与平面zh 相截,其截痕是空间a2b2中的( B )A. 抛物线;B.双曲线; C.椭圆; D.直线。

36. 点 (3 ,1, 2)关于 XOZ 平面的对称点是 (B)(A) (-3, 1, 2)(B) (3, -1,2)(C)(3, 1, -2)(D)(-3 ,-1 , 2)22364 x 9 y37. 曲线z绕 X 轴旋转一周,形成的曲面方程是(C )(A) 222(B)2 2224 xz9 y 364 x z9 yz364 x 29 y 2z2364 x2236(C)(D)9 y38. 准线为 XOY 平面上以原点为圆心、半径为 2的圆周,母线平行于Z 轴的圆柱面方程是(B )222y 24(A)xy(B)x222 2 2(C) xy4(D) x y z 439.2y222与 xza 的 交 线 在 XOY 平 面 上 的 投 影 曲 线 方 程 是 (球 面 xzk D)az 2y 222k2za z 222kz(A)y z(B)x 22 ax2 222yk22x yaxkz(C)(D)40. 向量 α = A x , A Y , A z 、 β = B X ,B Y ,B Z 垂直的充分必要条件是( A )(A)α · β =0(B)α × β =0A x A y A z(C) B xB yB z(D)α- β =0二、填空题1. a3,b4, a b7 , 则 a b12 22. 有曲面方程xy2 z ,当 pq<0 时 , 方程表示的曲面称为双曲抛物面pq22216的柱面方程是 3 y2z23. 母线平行于 x 轴且通过曲线2 xy z16x2y2z24.已知 a , b , c 都是单位向量,且满足 a + b + c =0,则 a bb c c a3 22 z 绕 X 轴旋转,所得曲面方程为42z 25、XOZ 平面内曲线 xx y6.已知向量 O A(1, 2, 3) ,向量 OB(2, 3, 4) ,那么三角形 O A B 的面积是627、已知平面1 : x2 yz30 与2:3 xy z10 ,则其夹角为66 arccos338.点 (1, 2, 0) 在平面上 x2 yz 10 的投影为(5 2 2, , )3 3 39.设有直线 L 1 :x1 y 5 z 8与L 2 xy 6:z3 ,则L 1与L 2 的夹角为31212 y11. 已知向量a3i 2 j k与 b2 i3 j , 则 (2 a)(3b )0; a b3i2 j 13 k12、平面 x+2y-z+3=0 和空间直线x1 y 1z 2的位置关系是直线在平面上3 1113. 过点( 2,-3 ,6)且与 Y 轴垂直的平面为y3,此点关于 XOY 平面的对称点是 2 ,3, 6,它与原点的距离为7三:计算与证明1.求过点 M(3, 1 -2) 且通过直线x4 y 3 z的平面方程521解:设 N(4, -3, 0), s(5,2,1) , 由已知,MN (1, 4 ,2 ) 是所求平面内的向量又设所求平面的法向量是n ,取 nMNs ,ij k即:n 14 28 i9 j 22 k5 2 1故,所求平面的方程为:- 8(x-3)+9(y-1)+22(z+2)=0即:- 8x+9y+22z+59=0x3y5z x 10y 7 z 2. 求与直线 L 1 :31相交且与直线L 2 :4相交 , 与直线251L 3 :x 2 y 1 z3平行的直线方程871解:将 L 1 , L 2 分别化为参数方程:x 2t 3x 5 10 y3t5 ,y4 7ztz对于某个 t 及 值 , 各得 L 1, L 2 上的一点 , 分别记为 M t , M则 向量M tM=[(2t-3)-(5 +10)]i+[(3t+5)-(4 -7)]j+(t- )k=(2t-5 -13 )i+(3t-4+12)j+(t- )k令向量 M t M平行于 L 3 , 即有2t - 5 - 13 3t - 4+ 12 t -871解得 t=25 ,于是 M t (-28 ,65 , 25 )222y 65 z25x 282 2故 所求直线为:8713. 直线 L 过点 M(2, 6,3),:x-2y+3z-5=0x 2y2 z 6平行于平面且与直线 L 1 :825相交 , 求L 的方程解:过点 M 平行于的平面方程为 (x-2)-2(y-6)+3(z-3)=0即 : x-2y+3z=0再求它与直线L 1 的交点 , 将 L 1 写成参数方程 :x=2-5t, y=2-8t , z=6+2t 代入上述平面方程得 : t=-1所以交点为 P(7, 10, 4), 又 L 过 M,P 两点故: L 的方程为x 2 y - 6 z - 37 - 210-64 - 3即:x5 2 y -6 z - 34 14.求过直线 x 1y z,且平行于直线 xy z1的平面方程。

相关文档
最新文档