高等数学期末试题(含答案)
高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
高等数学下期末试题(七套附答案)

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数11z x y x y =++-的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12 D. 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分) 1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数24x y z -=的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则Lyds =⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 122三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
高等数学期末试卷及答案

高等数学期末试卷及答案一、填空题(每小题3分,共18分)1.[3分]设)arctan(y x z +=,则y z '=___________; 2. [3分]交换二次积分⎰⎰⎰⎰+121212212),(),(yydxy x f dy dx y x f dy 的积分顺序为 ; 3. [3分]已知∑∞=1!2n nn n n 收敛,则=∞→n n n n n !2lim ;4. [3分]设L 是从A(1,0)到B(-1,2)的直线段,则()x y dsL+⎰=_____________;5. [3分]设),(y x f 为连续函数, 且(1,1)6f =, 则有2222(1)(1)1lim(,)x y f x y dxdy ρρπρ→-+-≤=⎰⎰__________;6. [3分]微分方程dydx x y =-()3的通解是_________________。
二、试解下列各题(本题共3小题,每小题6分,共18分)1.[6分] 设222(,,)x yzu f x y z e ++==, 而2sin z x y =.求ux ∂∂和 u y ∂∂; 2. [6分] 求函数2yz xe =在点P(1,0)处沿从点P(1,0)到点Q(2,-1)的方向的方向导数;3. [6分] 计算⎰⎰=D xyd I σ其中D 是由抛物线x y =2及直线2-=x y 所围成的闭区域。
三、试解下列各题(本题共3小题,每小题6分,共18分)1.[6分] 求微分方程25)1(12+=+x x y dx dy -的通解;2.[6分] 将函数()1,(0)f x x x π=-≤≤展开成余弦级数;3.[6分]计算曲面积分⎰⎰∑=z dSI , 其中∑是球面2222a z y x =++被平面h z =)0(a h <<截出的顶部。
四、[本题8分]求函数z y x u 22+-=在条件x y z 2221++=下的极值。
高等数学同济版下册期末考四套试题及答案

高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、=的定义域为D= .2、二重积分的符号为。
3、由曲线及直线,所围图形的面积用二重积分表示为,其值为.4、设曲线L的参数方程表示为则弧长元素。
5、设曲面∑为介于及间的部分的外侧,则 .6、微分方程的通解为 .7、方程的通解为。
8、级数的和为。
二、选择题(每小题2分,共计16分)1、二元函数在处可微的充分条件是()(A)在处连续;(B),在的某邻域内存在;(C)当时,是无穷小;(D)。
2、设其中具有二阶连续导数,则等于()(A); (B);(C); (D)0 。
3、设:则三重积分等于()(A)4;(B);(C);(D)。
4、球面与柱面所围成的立体体积V=()(A);(B);(C);(D)。
5、设有界闭区域D由分段光滑曲线L所围成,L取正向,函数在D上具有一阶连续偏导数,则(A); (B);(C);(D)。
6、下列说法中错误的是()(A)方程是三阶微分方程;(B)方程是一阶微分方程;(C)方程是全微分方程;(D)方程是伯努利方程。
7、已知曲线经过原点,且在原点处的切线与直线平行,而满足微分方程,则曲线的方程为()(A);(B);(C);(D)。
8、设, 则( )(A)收敛; (B)发散;(C)不一定;(D)绝对收敛。
三、求解下列问题(共计15分)1、(7分)设均为连续可微函数.,求.2、(8分)设,求。
四、求解下列问题(共计15分)。
1、计算。
(7分)2、计算,其中是由所围成的空间闭区域(8分)五、(13分)计算,其中L是面上的任一条无重点且分段光滑不经过原点的封闭曲线的逆时针方向.六、(9分)设对任意满足方程,且存在,求。
七、(8分)求级数的收敛区间.高等数学同济版(下册)期末考试试卷(二)1、设,则。
2、。
3、设,交换积分次序后,。
4、设为可微函数,且则。
5、设L为取正向的圆周,则曲线积分。
6、设,则。
7、通解为的微分方程是。
《高等数学1》期末考试试卷及答案

《高等数学1》期末考试试卷及答案一、填空题(每小题3分,共15分) 1、函数ln(1)yx =-+的定义域是 。
2、极限20limxt x e dt x→=⎰。
3、设0xx =是可导函数()y f x =的极大值点,则()0f x '= 。
4、计算定积分43121sin 11x x dx x -+=+⎰ 。
5、微分方程x y xe ''=的通解是 。
二、单项选择题(每小题3分,共15分)A. 可去间断点B. 跳跃间断点C. 无穷间断点D. 振荡间断点 7、当0x→时,下列函数中与sin 2x 是等价无穷小的是( )9、下列每对积分均采用分部积分法,其u 均选为幂函数的一对是( )。
A. x xe dx ⎰与ln x xdx ⎰B. xxe dx ⎰与sin x xdx ⎰C. ln x xdx ⎰与sin x xdx ⎰D. arcsin x xdx ⎰与sin x xdx ⎰10、)(x f 在区间),(b a 内恒有()()0,0f x f x '''<<时,曲线)(x f y =在),(b a 内是( )A. 单增且是凹的;B. 单增且是凸的;C. 单减且是凸的;D. 单减且是凹的三、判断题(正确打√,错误打Ⅹ,每小题2分,共10分)11、在闭区间上的连续函数必有原函数,从而必可积。
( ) 12、设2sin x y e =,则()()()22sin 2x x y e e x ''''=。
( ) 13、设点00(,())x f x 为曲线()y f x =的拐点,则必有0()0f x ''=。
( )14、常数零是无穷小量,无穷小量就是常数零。
( )15、()22212t d x e dt x e e dx =-⎰ ( )四、极限、连续和微分解答题(每小题6分,共30分)16、求数列极限2lim nn ne-→∞17、111lim ln 1x x x →⎛⎫- ⎪-⎝⎭18、20limsin xt x e dtx→⎰19、已知(ln ,x y e =+求dy dx ,22d y dx20、求由方程x y xye -=所确定的隐函数的微分dy五、积分和微分方程解答题(每小题5分,共25分)21、2221tan x x e e x dx -⎡⎤⎛⎫++⎢⎥ ⎪⎝⎭⎣⎦⎰22、dx ⎰23、1e ⎰24、2-145dx x x +∞∞++⎰25、求微分方程2x dyy e dx-+=的通解六、应用题(每小题5分,共5分)26、求平面曲线y=2x ²与y ²=4x 所围成的图形面积A 。
高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
高数下期末考试试题及答案解析

2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A )注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( ). (A )-=0a b (B)+=0a b (C)0⋅=a b (D )⨯=0a b 2.极限2222001lim()sinx y x y x y→→+=+( ). (A) 0 (B ) 1 (C) 2 (D)不存在 3.下列函数中,d f f =∆的是( ).(A)(,)f x y xy = (B )00(,),f x y x y c c =++为实数(C )(,)f x y =(D)(,)e x yf x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A)驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D)非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=⎰⎰,2D I σ=,3DI σ=,则有( )。
(A )123I I I << (B)123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰( ). (A ) l (B ) l 3 (C) l 4 (D) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( ).(A )该级数收敛 (B)该级数发散 (C )该级数可能收敛也可能发散 (D )该级数绝对收敛 8.下列四个命题中,正确的命题是( )。
(A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散 (B )若级数21nn a ∞=∑发散,则级数1nn a ∞=∑也发散 (C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 。
高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。
二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。
(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。
(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。
(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。
2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。
原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学检测试题
一 .选择题 (每题4分,共20分) 1.
=⎰
-dx x 1
1
( )
A. 2
B. 1
C. 0
D. -1 (B )
2,极限242
(,)(0,0)2lim
x y x y
x y →=+ A ,0 B ,1 C,0.5 D ,不存在 (D ) 3.积分=-⎰
dx x
11( )
A.c x x +--1ln
B. c x x +--)1ln (2
C.c x x +-+1ln
D. -c x x +-+)1ln (2 (D )
4.设f(x)的导数在x=a 处连续,又x a
()
lim
2f x x a
→'=-,则 ( ) A.x=a 是f(x)的极小值点 B.x=a 是f(x)的极大值点 C.(a,f(a))是曲线y=f(x)的拐点 D.x=a 不是f(x)的极值点 (A)
5.已知F(x)的一阶导数(x)F'在R上连续,且0F(0)=, 则⎰=0
x (t)dt x F'd ( )
A. (x)dx xF'-
B. (x)dx xF'
C. (x)dx]xF'[F(x)+-
D. (x)]dx xF'[F(x)+-
(D )
二.填空:(每题4分,共20分)
1. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=
⎰⎰dxdy y x D ( 21
) 2、2
lim()01
x x ax b x →∞--=+,则a = 1 ,b = -1 ;
3.设由方程0=-xyz e z
确定的隐函数
()=
∂∂=x z
y x f z 则
,,( ()1-z x z )
4,设{}222(,)|D x y x y a =+≤(a >0,常数)
,若2
3D
π=,则
a= (-1)
5 数列极限
lim
(cos cos cos )→∞
-+++=2
2
2
21
n n n
n
n
n π
π
π
π .
2π
三.解答题 (每题5分,共20分)
1. 设)(x f 在[a ,b ]上连续,且]
,[)()()(b a x dt
t f t x x F x
a
∈-=⎰,试求出)(x F ''
解:
⎰⎰-=x
a
x
a
dt
t tf dt t f x x F )()()(
⎰⎰=-+='x
a
x
a
dt
t f x xf x xf dt t f x F )()()()()(
)()(x f x F =''
2. 求不定积分
=
+⎰
dx x x
1
5
9
3.求极限4
20
sin 1lim
2x tdt t x x ⎰+→(5分)
解:21
sin 21lim 42sin 1lim sin 1lim
224032404
20
2
=+=⋅+=+→→→⎰x
x x x x x x x tdt t x x x x -------(5分)
4.求表面积为a 2
而体积为最大的长方体的体积.
解 设长方体的三棱的长为x , y , z , 则问题就是在条件
2(xy +yz +xz )=a 2
下求函数V =xyz 的最大值. 构成辅助函数
F (x , y , z )=xyz +λ(2xy +2yz +2xz -a 2),
解方程组
⎪⎪⎩⎪⎪⎨⎧=++=++==++==++=22220)(2),,(0)(2),,(0)(2),,(a xz yz xy x y xy z y x F z x xz z y x F z y yz z y x F z
y x λλλ,
得
a
z y x 66===, 这是唯一可能的极值点. 因为由问题本身可知最大值一定存在,
所以最大值就在这个可能的值点处取得. 此时
3
366a V =.
四.计算题.(共20分)
1.求由曲线x
x e y e y -==,与直线1=x 所围成的平面图形面积及这个平面图形
绕x 轴旋转所成旋转体体积.(10分)
解:曲线x
e y =与x e y -=的交点为(0,1),曲线x e y =与x
e y -=和直线1=x 的交点分别为(1,e )和(1,1
-e ),所围平面图形如图阴影部分, 取x 为积分变量,其变化范围为[0,1],所求面积为
dx
e e S x x )(1
--=⎰-----
2(|)(1
10-+=+=--e e e e x x )------------- 所求旋转体体积为
)
)21
1
2dx e dx e V x x -⎰⎰-=ππ---
2(2|)2121(2
210
22-+=+=--e e e e x x ππ)-
2.计算
⎰
∞
+- 1
10
1x x dx
(10分)
解:⎰
∞
+- 1
10
1
x x dx
⎰-=1
104t 1dt t
⎰-=1 0 105t
1)
d(t
51 +=1 0
5)]arcsin(t 51[10
π
=
五.证明题:(共20分)
1..试证:⎰⎰ππ=2020
)(cos )(sin dx x f dx x f (8分) 证明: 令x=u -2
π
则⎰⎰⎰⎰==-=20
20
20
2
)(cos )(cos )(cos )(sin ππ
π
πdx x f du u f du u f dx x f
2.设函数
)(x f 在
[]
π,0上连续,且
)(0
=⎰
π
x d x f ,
cos )(0
=⎰
π
dx x x f .证明:在()π,0内方程f(x)=0至少存在两个根。
(12分)
(提示:设⎰=
x
dx x f x F 0
)()()
证:构造辅助函数:π
≤≤=⎰x dt t f x F x
0,)()(0。
其满足在],0[π上连续,在),0(π上可导。
)()(x f x F =',且0)()0(==πF F
由题设,有
⎰⎰⎰⋅+===π
π
π
π0
)(sin cos )()(cos cos )(0|dx
x F x x x F x xdF xdx x f ,
有⎰=π
0sin )(xdx x F ,由积分中值定理,存在),0(πξ∈,使0sin )(=ξξF 即
0)(=ξF
综上可知),0(,0)()()0(πξπξ∈===F F F .在区间],[,],0[πξξ上分别应用罗尔定理,知存在
),0(1ξξ∈和),(2πξξ∈,使0)(1='ξF 及0)(2='ξF ,即0)()(21==ξξf f .。