2017实验六 互补对称功率放大器

合集下载

互补对称功率放大电路克服交越失真

互补对称功率放大电路克服交越失真

互补对称功率放大电路克服交越失真随着现代通信技术的快速发展,射频功率放大器在通信系统中起着至关重要的作用。

然而,传统的单端功率放大器在处理高频信号时往往会出现交越失真的问题,这对通信系统的性能和稳定性带来了挑战。

为了克服这一问题,互补对称功率放大电路被广泛研究和应用。

互补对称功率放大电路采用了NPN晶体管和PNP晶体管相结合的方式,利用它们互补对称的特性可以有效地抑制交越失真,提高功率放大器的线性度和稳定性。

针对这一主题,本文将着重介绍互补对称功率放大电路克服交越失真的原理和优势,并结合具体的实验数据和案例进行探讨,旨在全面深入地了解互补对称功率放大电路的工作原理和实际应用。

1. 互补对称功率放大电路的原理互补对称功率放大电路是利用NPN晶体管和PNP晶体管的互补对称特性,将它们灵活地组合在一起,以实现正半周和负半周信号的放大。

在这种电路结构中,NPN晶体管和PNP晶体管分别承担正负信号的放大任务,可以实现信号的互补放大和恢复,从而有效地抑制了交越失真。

2. 互补对称功率放大电路的优势互补对称功率放大电路相比传统的单端功率放大器具有诸多优势:1) 有效抑制了交越失真。

由于互补对称功率放大电路采用了NPN和PNP晶体管的互补对称结构,可以在一定程度上抵消NPN和PNP晶体管的非线性特性,从而有效地抑制了交越失真的发生,提高了功率放大器的线性度和稳定性。

2) 提高了整体的效率。

由于互补对称功率放大电路能够实现信号的互补放大和恢复,可以提高功率放大器的整体效率,减少功率损耗,提高系统的能效比。

3) 扩展了功率放大器的应用范围。

互补对称功率放大电路不仅可以用于射频功率放大器,还可以应用于音频功率放大器以及其他需要高稳定性和线性度的放大器中,具有较广泛的应用前景。

3. 实验数据和案例分析为了验证互补对称功率放大电路的性能优势,我们进行了一系列的实验和案例分析。

通过对比传统的单端功率放大器和互补对称功率放大电路在不同频率和功率下的输出波形和失真程度,我们发现了以下几点:1) 在高频信号下,互补对称功率放大电路能够有效地抑制交越失真,输出波形更为清晰,失真程度更低。

互补对称功率放大器

互补对称功率放大器
电以外,在VT1、VT2共同的输出端与负载电阻RL之
间串联一只大容量电容器C。在没有输入信号时,
调整基极电路的参数,使得电容C两端电压为VCC/2。 在输入信号的正半周时,VT1导通,电流自VCC经 VT1为电容C充电,经过负载电阻RL到地,在RL上产
生正半周的输出电压(电流方向如图中实线所指)。
在输入信号的负半周时, VT2导通,电容C
POm7.0573.6%
PV 9.58
(3)根据最大输出功率与最大管耗之间的关系, 可得到最大管耗为:
P T 1 m P T 2 m 0 .2 P O m 0 .2 7 .0 1 5 .41
(三)OTL甲乙类互补对称 电路
1.工作原理 2.典型电路分析
1.工作原理
图4-6所示电路与上述电路(图4-5)的不同之 处是,除了采用单电源(即将VT2集电极接地)供
真,如图4-4所示。
(2)基本甲乙类互补对称电路
为了减小和消除交越失真,通常在两基极间加二 极管(或电阻或二极管与电阻串联),给VT1和VT2两
管提供一定的稍大于UBE(th)的正向偏置,使两管有一适
当的静态电流,这样两管合成的特性就克服了输入特 性启始部分的非线性影响,从而消除了交越失真,这 就构成了甲乙类放大器。图4-5所示为基本甲乙类互补 对称功率放大电路。
管饱和压降UCES=1V,ICEO=0,RL=16Ω,VCC=32V,
求:
(1)电路的最大不失真输出功率POm。
(2)电路的效率η。
(3)单管最大管耗PTm。
解 (1)求电路的最大不失真输出功率,在考虑管 子的饱和压降时,电路的最大不失真输出电压幅 度为:
U cem V 2 CC U CE S1 23 2115

实验六 互补对称功率放大电路

实验六 互补对称功率放大电路

实验六互补对称功率放大电路
一、实验电路
图6.1 互补对称功率放大器
二、预习要求
1.分析图6.1电路中各三极管工作状态及交越失真情况。

2.电路中若不加输入信号,V2、V3的功耗是多少。

3.电阻R4,R5的作用是什么?
4.根据实验内容自拟实验步骤及记录表格。

三、实验仪器及材料
l.信号发生器
2.示波器
四、实验内容
1.调整直流工作点,使M点电压为0.5V CC。

2.想法使二极管D1和D2短路时,观察输出波形的交越失真情况。

3.改变电源电压(例如由+12V变为+9V和+6V)电压放大倍数。

4.测量放大电路在带8Ω负载(扬声器)时电压放大倍数。

五、实验报告
1.分析实验结果,计算实验内容要求的参数。

2.总结功率放大电路特点及测量方法。

本电路由两部分组成,一部分是由V1组成的共射放大电路,为甲类功率放大;一部分是互补对称功率放大电路,用D1、D2、R4,R5的R5来使V2、V3处于临界导通状态,以消除交越失真现象,为准乙类功率放大电路。

实验结果如下:
1、V CC=12V,V M=6V时测量静态工作点(静态工作点时要关闭输入信号),然后输入频率为5KHz 的Vi约为250mV时正弦波,然后适当调整输入信号保证输出无失真(以下输入输出值均为峰值)
2、V CC=9V,V M=4.50V时测量静态工作点(静态工作点时要关闭输入信号),然后输入频率为5KHz的Vi约为180mV时正弦波(以下输入输出值均为峰值)
3、V CC=6V,V M=3V时测量静态工作点(静态工作点时要关闭输入信号),然后输入频率为5KHz。

实验六_互补对称功率放大电路解读

实验六_互补对称功率放大电路解读

实验十四互补对称功率放大电路学院:信息科学与技术学院专业:电子信息工程姓名:刘晓旭学号:2011117147一.实验目的1.了解功率放大电路的交越失真现象。

2.熟悉功率放大电路的工作原理及特点。

二.实验仪器及材料信号发生器示波器三.实验原理功率放大电路如图。

功率放大电路中的三极管具有甲类、乙类、甲乙类三种工作状态。

实际互补对称功率放大器中的三极管工作在甲乙类状态,适当的调节功率放大器中的RP电阻,就可以改变功率放大器的静态工作点,以减小功率放大器的交越失真。

本电路由两部分组成,一部分是由V1组成的共射放大电路,为甲类功率放大;一部分是互补对称功率放大电路,用D1、D2、R4,R5的R5来使V2、V3处于临界导通状态,以消除交越失真现象,为准乙类功率放大电路。

四.实验内容及步骤1.调整直流工作点,使M点电压为0.5Vcc。

2.测量最大不失真输出功率与效率。

3.改变电源电压(例如由+12V变为+6V),测量并比较输出功率和效率。

4.比较放大器在带5.1K和8Ω负载(扬声器)时的功耗和效率。

5.根据实验内容自拟实验步骤及记录表格。

五.实验结果1.连接电路图如下,调整电路使M点电压为0.5Vcc:2.当Vcc=12V时,测得各部分静态工作点的电压值如下:Vb VC VEV1 1.028V 5.363V0.248VV2 6.77V12V 6.037VV3 5.363V0V 6.013V输入频率为1kHz,振幅为10mv的正弦波测得数据如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真129.92mV129.23mV30.11mV AV18.3718.27 4.26理论计算: Po=0.5*Vo2/RL Pv=0.5*Vcc*Ic η=Po/Pv得Po= 1.95mW Pv=0.0454W η=4.3%3.改变电源电压为6V,可测得各静态工作点的电压为:Vb VC VEV1825.36mV 3.265V74.49mV V2 4.43V6V 3.77V V3 3.265V0V 3.77V输入频率为1kHz,振幅为10mv的正弦波,测得数据及波形如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真104.51mV94.87mV11.57mV AV14.7812.3 1.64计算: Po=0.5*Vo2/RL Pv=0.5*Vcc*Ic η=Po/Pv得Po= 0.2mW Pv=7.86mW η=2.54%4.当电源电压为9V时可得,各静态工作点电压为:Vb VC VEV1952.99mV 3.883V178.99mVV2 5.228V9V 4.515VV3 3.883V0V 4.506V输入频率为1kHz,振幅为10mv的正弦波,测得数据及波形如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真125.662mV124.41mV21.66mV AV17.7717.59 3.065、比较放大器在带5.1KΩ和8Ω负载(扬声器)时的功耗和效率。

模电实验—互补对称功率放大电路

模电实验—互补对称功率放大电路

实验四互补对称功率放大电路
一、实验目的
(1)观察乙类对称功放电路输出波形,学习克服输出中交越失真的方法。

(2)学习是最大输出电压的范围。

(3)进一步掌握用Multisim进行瞬态分析和直流分析的方法。

二、实验内容
1.实验电路图
2.设置瞬态分析
3.仿真
由图可见,Vo出现了交越失真。

4.求电压传输特性
(1)设置直流扫描分析。

(2)电压传输特性。

由图可知,交越失真发生的范围是-709.03mV~675.585mV。

5.克服交越失真
(1)变换电路。

(2)瞬态分析得到输入、输出波形。

由图可见,Vo已基本不出现交越失真。

(3)直流扫描分析,得出电压传输特性曲线。

(4)求最大输出电压范围。

此时电压传输特性为:
由图可得,最大输出电压范围为:-5.0081V~4.9436V。

6.甲乙类互补对称功放电路的输出功率
(1)利用示波器得到vi、Vo波形。

由图可得Vom=4.643V (2)启动后处理程序。

得出输出功率曲线:
由图可知,最大输出功率Pm=0.53W (3)直流电源功率曲线为:
由图可见,直流电源提供的功率Pv=1.7645W. (4)功率放大电路的效率图像为:
由图可见,功放电路的效率为30.14%。

(5)功率管的管耗曲线为:
由图得每个功率管的管耗为0.611W.。

第二节-互补对称式功率放大电路资料

第二节-互补对称式功率放大电路资料

π
RL
4= 78.5% 与OCL一样
25
上页 下页 首页
第二节 互补对称式功率放大电路
(3)功率三极管的极限参数 ▼ 集电极最大允许电流ICM
Icm
VCC
UCES RL
VCC RL
Icm
VCC
/ 2 UCES RL
VCC 2 RL
ICM
VCC 2 RL
▼ 集电极最大允许反向电压U(BR)CEO
3.对于OCL或OTL电路,当负载电阻 减小时,最大输出功率( 增加 ) 。 4.当功率管的饱和压降VCES增大时, 各 指 标 的 变 化 为 Pomax( 减小 ) , ηmax( 减小 )。
ηmax =
pomax = π pVmax 4
V2 om max VCC2
28
第二节 互补对称式功率放大电路
(2)效率
当输出最大功率时,放大电路的效率等于最大输
出功率Pom与直流电源提供的功率PV之比。
PV =
VCC
×
1 π
π
0 Icmsinωtd(ωt) =
2VπCCIcm≈
2V2CC πRL
当忽略饱和管压降UCES 时,OCL乙类和甲乙类互补 对称电路的效率为
η=
Pom PV

π 4= 78.5%
如果考虑三极管的饱和管压降UCES ,则OCL乙类和 甲乙类互补对称电路的效率将低于此值。
则:Vom
=
2 π VCC
0.6VCC
即VOm= 0.6VCC时PT1最大,所以每管的最大管耗为
PT1m
=
1 VCC2 π2 RL
0.2Pom
注:Pom
VCC2 2RL

互补对称功率放大器实验

互补对称功率放大器实验

5.10 互补对称功率放大器实验1.实验目的(1)进一步理解互补对称(OTL)功率放大器的工作原理(2)掌握互补对称(OTL)电路的调试及主要性能指标的测试方法2.实验设备与器件(1)+5V直流电源(2)数字万用表(3)函数信号发生器(4)双踪示波器(5)晶体三极管 3DG6 (9011) 3DG12 (9013) 3CG12 (9012) 晶体二极管IN4007 8Ω扬声器、电阻、电容若干(6)分立功放电路模块3.预习要求(1)复习OTL电路的工作原理。

(2)了解自举电路,思考为什么引入自举电路能扩大输出电压的动态范围?(3)理解功放电路产生交越失真的原因是什么?怎样克服交越失真?(4)电路中电位器RW2如果开路或短路,对电路工作有怎样的影响?(5)为了不损坏输出管,调试中应注意什么问题?(6)若电路出现自激现象,该如何消除?4.实验原理图5.10.1所示为互补对称(OTL )低频功率放大器。

图5.10.1 互补对称功率放大器其中,由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。

由于每一个管子都接成射极输出器形式,因此具有输出电阻低、带负载能力强等优点,适合于作功率输出级。

T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。

I C1 的一部分流经电位器R W2及二极管D ,给T 2、T 3提供偏压。

调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。

静态时要求输出端中点A 的电位CC A V 21U ,可以通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。

当输入正弦交流信号V i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,V i 的负半周使T 3管导通(T 2管截止),有电流通过负载R L ,同时向电容C 0充电,在V i 的正半周,T 2导通(T 3截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。

互补对称功率放大电路实验报告

互补对称功率放大电路实验报告

互补对称功率放大电路实验报告《互补对称功率放大电路实验报告》嗨,小伙伴们!今天我要给大家讲讲我做的那个超级有趣又有点小挑战的互补对称功率放大电路实验。

一、实验前的准备我一听到要做这个实验,心里就像揣了只小兔子,既兴奋又有点紧张。

老师在课上讲这个实验的时候,我就感觉像是在听一个神秘的故事。

那些电路元件就像是故事里的小角色,每一个都有自己独特的作用。

我来到实验室,看到桌子上摆满了各种各样的元件,有晶体管、电阻、电容啥的。

我就像一个即将出征的小战士,在心里默默给自己打气。

旁边的同学也都一脸严肃又带着期待的表情。

我同桌还小声跟我说:“哎呀,这实验看起来好复杂,咱们能做好吗?”我拍拍胸脯说:“怕啥,就像搭积木一样,一块一块来呗。

”二、实验电路的搭建我拿起那些小小的晶体管,感觉它们就像一个个小士兵,等待着我把它们安排到合适的位置。

我先仔细地对照着电路图,找到对应的位置,把电阻一个一个地安上去。

这时候可不能马虎呀,要是放错了位置,就像把士兵派错了战场,那整个电路可就乱套了。

电容也很重要呢。

我拿着电容,就感觉像是拿着一个小小的能量储存罐。

我小心翼翼地把它插好,心里想着:“你可一定要好好工作呀。

”在搭建的过程中,我还和同组的小伙伴互相检查。

他看着我接的线,突然皱起眉头说:“你看这儿,这根线好像有点歪,会不会接触不良呀?”我一听,赶紧调整了一下,还笑着说:“多亏你眼尖,不然这电路要是出了问题,就像汽车少了个轮子,根本跑不起来。

”三、测试阶段当电路搭建好之后,就到了紧张刺激的测试阶段啦。

我就像一个探险家,即将探索一个未知的领域。

我轻轻地打开电源开关,眼睛紧紧地盯着示波器。

那屏幕上的波形就像是神秘的密码,等待着我去解读。

刚开始的时候,波形有点奇怪,歪歪扭扭的,不像老师给我们演示的那样漂亮。

我心里“咯噔”一下,这可咋办呢?我和小伙伴们开始仔细地检查电路。

我想,这电路就像一个小生命,肯定是哪里不舒服了。

我们就像医生一样,一个元件一个元件地排查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五互补对称功率放大器
一、实验电路
图5-1互补对称功率放大器
二、预习要求
1、分析图5-1电路中各三极管工作状态及交越失真情况。

2、电路中若不加输入信号,V2、V3管的功耗是多少。

3、电阻R
4、R
5、IN4001的作用是什么?
4、根据实验内容自拟实验步骤及记录表格。

三、实验仪器及材料
1、信号发生器
2、示波器
四、实验内容
1、调整直流工作点,使M点电压为0.5V CC。

2、测量最大不失真输出功率与效率。

3、改变电源电压 (例如由+12V变为+6V),测量并比较输出功率和效率。

4、比较放大器在带5K1和8Ω负载 (扬声器)时的功耗和效率。

五、实验报告
1、分析实验结果,计算实验内容要求的参数。

2、总结功率放大电路特点及测量方法。

相关文档
最新文档