近世代数(吴品三)习题解答第一章 基本概念

合集下载

近世代数高代选讲大纲

近世代数高代选讲大纲

沈阳师范大学教学日历数学与应用数学专业课程名称:近世代数《近世代数》课程教学大纲第一部分大纲说明一、总则1.本课程的目的和要求:近世代数不仅在数学中占有及其重要的地位,而且在学科中也有广泛的应用,如理论物理、计算机学科等。

其研究的方法和观点,对其他学科产生了越来越大的影响。

群、环、域、模是本课程的基本内容,要求学生熟练掌握群、环、域的基本理论和方法,并对模的概念有所理解。

2.本课程的主要内容:本课程讲授代数中典型的代数系统:群、环、域。

要求学生能了解群的各种定义,循环群,n阶对称群,变换群,陪集,不变子群的定义及其性质,了解环、域、理想、唯一分解环的定义。

能够计算群的元素阶,环中可逆元,零因子、素元,掌握Lagrange定理,群、环同态和同构基本定理,掌握判别唯一分解环的方法。

3.教学重点与难点:重点:群、正规子群、环、理想、同态基本原理.难点:商群、商环。

4.本课程的知识范围及与相关课程的关系集合论初步与高等代数(线性代数)是学习本课程的准备知识。

本课程学习以后可以继续研读:群论、环论、模论、李群、李代数、计算机科学等。

二、课程说明1.课程基本情况(中文)近世代数(英文)Abstract Algebra专业必修课2.适用专业:数学与应用数学适用对象:本科3.首选教材:《近世代数基础》,张禾瑞,人民教育出版社,1978年修订本。

二选教材:《近世代数》,吴品三,高等教育出版社,1978年修订本。

4.考核方式和成绩记载说明考核方式为考试。

严格考核学生出勤情况,达到学籍管理规定的旷课量则取消考试资格。

综合成绩根据平时成绩和期末考试成绩评定,平时成绩占20%,期末考试成绩占80%。

三、教学安排《近世代数》课程的讲授为一个学期,共72学时,内容包括第1章到第4章的内容。

学时分配四、教学环节该课程是理论性较强的学科,由于教学时数所限,本课程的理论推证较少,因此必须通过做练习题来加深对概念的理解和掌握,熟悉各种公式的运用,从而达到消化、掌握所学知识的目的。

近世代数知识点教学文稿

近世代数知识点教学文稿

近世代数知识点近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。

●满射:像集合中每个元素都有原像。

Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。

1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。

第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。

ii.若半群中的元素可交换,即a b=b a,则称为交换半群。

2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。

ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。

iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。

ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。

iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。

4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元⇔ e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。

近世代数习题解答

近世代数习题解答

近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如A B=E与A B=AB—A—B.4.5.近世代数题解§1. 41.2.3.解1)略2)例如规定4.5.略近世代数题解§1. 51. 解1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-a,对G中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H 是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个子群且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对H中任意元素a和任意正整数m都有a m∈H.由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知⎪⎪⎭⎫ ⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b的阶有限,都是2,但易知其乘积⎪⎪⎭⎫⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证. 5.证 因为(m ,n )=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4 循 环 群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a 有且仅有一个k 阶子群kn a.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有ϕ个生成元而且a k是生成元⇔(k n)=1);两个生成元,n阶循环群a有)(n2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n(n =1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群 G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且连M的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M 上的全体变换作成的集合T (M ),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M >1时T (M )只能作成半群,而不能作成群.三、习题§2. 5解答1. 解 作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解 G 作成群:因为易知4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…i k)-1=(i k,…,i2,i1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换σ,τ求置换στσ-1的方法.n次对称群s n的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。

近世代数课后题答案修改版

近世代数课后题答案修改版
a1=56/8=7, b1=88/8=11, m1=96/8=12. 用辗转相除法求 p,q 满足 p a1+q m1=1,得 p=-5。 所 以 方 程 的 解 为 x ≡ pb1 (mod m1) ≡ -5 × 11(mod12) ≡ 5(mod12)。 或 x=5+12k(k 为任意整数)。 6. 解同余方程组: x≡3(mod5) x≡7(mod9) 解 按解同余方程组的三个步骤: 首先,计算 M=5×9=45, M1=9, M2=5. 其次,解两个一次同余式,由于这两个同余式有其特殊性:右端 都是 1,且(a,m)=1。因而 有时可用观察法得到 pa+qm=1,从而得到 p。 1) 9x≡1(mod5), 观察得到 -9+2×5=1, p=-1. 所以此一次同余式的一个特解为 c=-1≡4(mod5). 2)5x≡1(mod9), 观察得到 2×5-9=1, p=2. 所以此一次同余式的一个特解为 c=2(mod9). 最后,将得到的一次同余式的一个特解代入公式,得到同余方程 组的解: x=b1c1M1+b2c2M2=3×4×9+2×7×5(mod45)=43(mod45)。 7. 5 行多 1,6 行多 5,7 行多 4,11 行多 10,求兵数。
(2)在乘法表中任取一个 1,在同一列中必有一个 x,在同一行 中必有一个 y,设第四个顶点的元素为 z,见下图,
�
..........a-1.........................c...................
......
...........................................................
......

(完整版)近世代数讲义(电子教案)(1)

(完整版)近世代数讲义(电子教案)(1)

《近世代数》课程教案第一章基本概念教学目的与教学要求:掌握集合元素、子集、真子集。

集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。

理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n的剩余类。

教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n的剩余类。

教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n的剩余类.教学措施:网络远程。

教学时数:8学时.教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。

集合中的每个事物叫做这个集合的元素(简称元)。

定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。

(1)集合的要素:确定性、相异性、无序性。

(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素. 若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,. 表示集合通常有三种方法: 1、枚举法(列举法):例:A ={1,2,3,4},B ={1,2,3,…,100}. 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。

近世代数第一章答案

近世代数第一章答案

近世代数第一章基本概念答案§ 1 . 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 由题设以及真子集的定义得,A 的每一个元都属于B ,因此B A ⊂.于是由A B ⊂ B A ⊂得B A =.所以上述情况在A=B 时才能出现.2. 假设B A ⊂,?=⋂B A ?=⋃B A解 (i ) 由于B A ⊂,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的共同元,因而由交集的定义得B A A ⋂⊂但显然有A B A ⊂⋂所以A B A =⋂(ii) 由并集的定义,B A ⋃的每一个元素都属于A 和B 之一,但B A ⊂,所以B A ⋃的每一元素都属于B :B B A ⊂⋃另一方面B A B ⋃⊂,所以B B A =⋃.§ 2 . 映射1. A ={1,2,…,100}.找一个A A ⨯到A 的映射.解 用()b a ,表示A A ⨯的任意元素,这里a 和b 都属于A .按照定义做一个满足要求的映射即可,例如 Φ: ()b a ,→a 就是这样的一个,因为Φ替A A ⨯的任何元素()b a ,规定了一个唯一的象a ,而A a ∈.读者应该自己再找几个A A ⨯到A 的映射. 2.在你为习题1所找的映射之下,是不是A 的每一个元都是A A ⨯的一个元的象?解 在上面给出的映射Φ之下,A 的每一个元素都是A A ⨯的一个元的象,因为()b a ,中的a 可以是A 的任一元素.你自己找到的映射的情况如何?有没有出现A 的元素不都是象的情况?假如没有,找一个这样的映射.§ 3 .代数运算1. A ={所有不等于零的偶数}.找一个集合D ,使得普通除法是A A ⨯到D 的代数运算.是不是找得到一个以上的这样的D ?解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数.所以取 D ={所有不等于零的有理数} 普通除法就是一个A A ⨯到D 的代数运算.可以找得到一个以上的满足要求的D .读者可以自己找几个. 2.{}c b a A ,,=.规定A 的两不同的代数运算.解 (i )我们用运算表来给出A 的一个代数运算: a b ca a a ab a a ac a a a按照这个表,通过 ,对于A 的任何两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A ,所以 是A 的人一个代数运算.这个代数运算也可以用以下方式来加以描述 : ()y x a y x o =→, 对一切A y x ∈, (ii)同理: ()y x x y x o =→, 对一切A y x ∈,也是A 的一个代数运算.读者可用列表的方法来给出这个代数运算.读者应自己给出几个A 的代数运算.§4 .结合律1. A ={所有不等于零的实数}, 是普通的除法:ba b a =o 这个代数运算适合不适合结合律?解 这个代数运算 不适合结合律.例如, 当4=a 2==c b时()122224224)(====o o o o o c b a ()()414224224==⎪⎭⎫ ⎝⎛==o o o o o c b a所以当a ,b 和c 取上述值时()()c b a c b a o o o o ≠2. A ={所有实数},代数运算: (a,b )→a+2b=a b适合不适合结合律?解读者可以用解上一题的方法来证明,所给代数运算不适合结合律.3.A={a,b,c}.由表a b ca ab cb bc ac c a b给出的代数运算适合不适合结合律?解所给代数运算 适合结合律.为了得出这个结论,需要对元素a,b,c的27(=33)种排列(元素允许重复出现)加以验证.但是利用元素a的特性,可以把验证简化.仔细考察运算表,我们发现以下规律:对集合A的任意元素x来说,都有a x=x a=x由此得出,对于有a出现的排列,结合律都成立.这一点读者可以自己验证.还剩下a不出现的排列.这样的排列共有8(=32)种.我们在这里验证4种,其余4种读者可以自己验证.(b b) b=c b=ab (b b)=b c=a所以(b b) b=b (b b)(b b) c=c c=bb (b c)=b a=b所以 (b b) c=b (b c)(b c) b=a b=bb (c b)= b a=b所以 (b c) b=b (c b)(b c) c=a c=cb (c c)=b b=c所以 (b c) c=b (c c)§5.交换律1.A={所有实数}. 是普通减法:a b= a b这个代数运算适合不适合交换律?解容易验证,当a = 1,b = 2时a b b a ≠ 所以这个代数运算不适合交换律. 2. A ={a , b ,c , d},由表 a b c da abcd b b d a c c c a b d d d c a b所给的代数运算适合不适合交换律?解 要回答这个问题,只须考察一下运算表,看一看关于主对角线对称的位置上,有没有不相同的元素.易知此运算表不对称,所以此代数运算不适合交换律。

《近世代数》作业参考详细标准答案

《近世代数》作业参考详细标准答案

《近世代数》作业参考答案一.概念解释1.代数运算:一个集合B A ⨯到集合D 地映射叫做一个B A ⨯到D 地代数运算.2.群地第一定义:一个非空集合G 对乘法运算作成一个群,只要满足:1)G 对乘法运算封闭;2)结合律成立: )()(bc a bc a =对G 中任意三个元c b a ,,都成立.3)对于G 地任意两个元b a ,来说,方程b ax =和b ya =都在G 中有解.3.域地定义:一个交换除环叫做一个子域.4.满射:若在集合A 到集合A 地映射Φ下,A 地每一个元至少是A 中地某一个元地象,则称Φ为A 到A 地满射.5.群地第二定义:设G 为非空集合,G 有代数运算叫乘法,若:(1)G 对乘法封闭;(2)结合律成立; (3)单位元存在; (4)G 中任一元在G 中都有逆元,则称G 对乘法作成群.6.理想:环R 地一个非空子集N 叫做一个理想子环,简称理想,假若:(1)N b a N b a ∈-⇒∈, (2)N ar N ra N r N a ∈∈⇒∈∈,,7.单射:一个集合A 到A 地映射,a a →Φ: ,A a A a ∈∈,,叫做一个A 到A 地单射. 若:b a b a ≠⇒≠.8. 换:一个有限集合地一个一一变换叫做一个置换.9. 环:一个环R 若满足:(1)R 至少包含一个不等于零地元.(2)R 有单位元.(3)R 地每一个非零元有一个逆元,则称R 为除环.10.一一映射:既是满射又是单射地映射,叫做一一映射.11.群地指数:一个群G 地一个子群H 地右陪集(或左陪集)地个数,叫做群H 在G 里地指数.12.环地单位元:设R 是一个环,R e ∈,若对任意地R a ∈,都有a ae ea ==,则称e 是R 地单位元.二.判断题1.×; 2.×;3. √;4.×;5.√;6.√ ;7.√; 8,√;9.√;10.√;11.×;12.√13、√ 14、× 15、√三.证明题1. 证:G 显然非空,又任取A ,B G ∈,则1,1±=±=B A ,于是AB 是整数方阵,且1±=⋅=B A AB , 故G AB ∈,即G 对乘法封闭.结合律显然成立,且E 是G 单位元.又设G A ∈,由于A 是整数方阵,故A 地伴随矩阵*A 也是整数方阵; 又,1±=A 故**-±==A A A A11,即1-A 也是整数方阵,即G 中每一个元在G 中都有逆元,从而证得G 作 成一个群.2.证:设∞=a ,则当n m ≠时,n m a a ≠,于是映射Φ:m a m →就是G=(a )到整数加群Z 地一个一一映射.又n m a a a n m n m +→=⋅+,故Φ是G 到Z 地同构映射.即G=(a )与整数加群Z 同构.3.证:i ±±,1显然是Z[i]地单位,设x=a+bi 是Z[i]中地任意单位,则存在y=c+di ][i Z ∈使xy=(a+bi)(c+di)=1 而(a+bi)(c+di)=ac-bd+(bc+ad)i 既有:ac-bd=1,ad+bc=0 (1)从而 a abd c a =-2 又ad= –bc 代入前式有:(a c b a =+)(22,即)(22b a +|a 若a=0,则由(1)有bd= –1,只有b=1±,即i x ±=.若0≠a ,则由)(22b a +|a 得b=0, a=1±,即x=1±,因此证得:Z[i] 地单位元只有i ±±,1.4.证:由题设可列乘法表:a b c d a a b c db b a d cc cd a bd d c b a由此表可知:方阵普通乘法是G 地代表运算,a 是G 地单位元,又由于对角线位置上地元素相等,故乘法可以交换,且每个元素G 中都有逆元,结合率显然成立.故G 对方阵普通乘法作成一个交换群.5.证:设e 是群G 地单位元,则e 显然满足方程另外设,G a ∈且a a =2,则有a a a a 121--= 即a=e, 即只有e 满足方程x x =2.6.证:因为5212=±i 为素数,则i 21±(以及i i i ±-±±-2,2,21)是Z[i]地不可约元,且显然有分解:)21)(21(5i i -+= 若设i n a a a a (521 =不可约) 则2222125n a a a ⋅=且25,122≠≠i ia a ,这只有2=n ,且52=i a 不妨设 5=ab 且522==b a 则只能b a =,即5=a a ,即5有唯一分解.7.证:由乘法表可知,G 对所给乘法封闭,e 是单位元,又e e =-1,b a =-1,a b =-1,即每个元素在G 中都有逆元,因此要证G 是一个群,只要再证结合律成立即可.任取G y x ∈,,则显然有:)()()(ye x xy ey x xy e ===)()(xx x x xx =其次令},{,b a y x ∈,且y x ≠,则由乘法表知:e yx xy x yy y xx ====,,,可知结合律成立.8.证:1)设21,e e 分别是环R 地左右单位元,则由此有:1e 22e e = ,1e 2e =1e ,从而1e =2e ,即它是R 地单位元.2)设1e ,2e 是R 地两个互异地左单位元,则对任意地0,≠∈a R a ,有a e a a e 21== 或(1e -2e )a =0,但1e -2e ≠0,故a 是R 地一个右零因子.同理,若R 有至少两个右单位元,则R 地每一个非零元都是R 地左零因子.9. 证:任取A ,B ∈F ,且令⎪⎪⎭⎫ ⎝⎛-=a b b a A ,⎪⎪⎭⎫ ⎝⎛-=c d d c B ,显然F B A ∈-,又当 0≠B 时,实数c,d 不全为零,于是022≠+=d c B ,且F bd ac bc ad ad bc bd ac AB ∈⎪⎪⎭⎫ ⎝⎛+--+=-1,故F 是M (R )地一个子域.10.证:显然所给运算是G 地一个代数运算,又任取,,,G c b a ∈则 cu b au c b au c b a 111)()()(---== )()()(111c bu au c bu a c b a ---== 而G 是群.)()(1111c bu au c u b au ----= 即)()(c b a c b a = 即G 对新代数运算结合律成立.又任取G a ∈, a auu u a ==-1 ,即u 是右单位元.又u u ua au u ua a ==---)()(111 ,即u ua 1-是a 地右逆元.由群地定义知,G 对新运算也作成一个群.11.证:设E AB =,由于R 可交换,得:1===A B B A AB ,从而A 可逆,设*A 是A 地伴随矩阵,则由R 有单位元1可知:E A AA A A ==** 于是*--=A A A 11 故若:E AB =,则:A ABA =E A A ABA A ==--11 ,即E BA = 同理可由E AB E BA =⇒=,证毕.12.证:不妨设A 含有单位元e ,任取A a a ∈21,,R r B b b ∈∈,,21,由题设A ,B 都是R 地理想,得: B b a b a ∈-2211B A b a b a e b a e b a e b ea b ea b a b a ∈-=-=-=-)()()()()(221122112211221113.1、)}132(),123(),23(),13(),12(),1{(3=S ; ---2.左陪集:)}12(),1{(=H ;)}132(),13{()13(=H ;)}123(),23{()23(=H --右陪集:)}12(),1{(=H ;)}123(),13{()13(=H ;)}132(),23{()23(=H ---3.子群:)}12(),1{()},1{(21==H H36543)},132(),123(),1{()},23(),1{()}},13(),1{(S H H H H ====六个子群;---)},1{(1=H 365)},132(),123(),1{(S H H ==三个正规子群;--14.1.6;3.)12)(13)(12)(15)(14()23)(154(1==-τστ.—15.设H=[e],由于~是等价关系,故e ~e,即H e ∈----H b a ∈∀,,则a ~e, b ~e 因而ae ~1-a , be ~b 1-b ,由题设可得e ~1-a , e ~1-b ,---10分;由对称性及传递性得1-b ~1-a ,a a 1-1-b ~1-a e,再由题设得a 1-b ~e 即a 1-b H ∈,那么与G 地单位元e 等价地元所作成地集合G 地一个子群-----16.1、),2(x 刚好包含所有多项式:)0,(,210≥∈+++n R a x a x a a i n n . -2、假定),2(x 是主理想,即))((),2(x p x =那么)),((2x p ∈))((x p x ∈,因而 )()(),()(2x p x h x x p x q ==但由)()(2x p x q =,可得R a x p ∈=)(,即1±=a ,a x h x )(=这样),2()(1x x p ∈=±是矛盾地. --3、 若R 是有理数域,那么][x R 包含有理数21,于是),2(1221x ∈=,因而它地理想 ),2(x 含有单位元1,因此),2(x 等于主理想(1). -17.设G 是一个6阶群,e 是地单位元,由Lagrange 定理,G 地非单位元地阶只能是2,3,或6.若G 中非单位元地阶皆为2,则G 是交换群.--;设b a ,是两个2阶元,则},,,{ab b a e 是G 地4阶子群这与Lagrange 定理矛盾,所以G 中必有3阶元或6阶元.--;若b 是6阶元,则2b 是三阶元,因此G 必有一个3阶子群;若c 是三阶元,则G 必有一个3阶子群.-18.HK hk ∈∀,)()()()()(H h k h hk ϕϕϕϕϕ∈==,因此∈hk ))((1H ϕϕ-,即))((1H HK ϕϕ-⊆;-∈∀x ))((1H ϕϕ-,有)()(H x ϕϕ∈,存在H h ∈,使得)()(x h ϕϕ=,因此K e x h x h ∈==---)()()(11ϕϕϕ,存在K k ∈,使得HK hk x k x h ∈==-,1,即HK H ⊆-))((1ϕϕ,因此HK H =-))((1ϕϕ.- 19. 1.R 是有单位元地可换环,那么理想)1(i +地元素形式为i b a b a i bi a )()()1)((++-=++,注意到b a b a +-,同奇偶性--;而且对任意地R yi x ∈+,且y x ,地奇偶性相同,设y b a x b a =+=-,,即2,2x y b y x a -=+=,则)1(i yi x +∈+,因此)1(i +由一切yi x +组成,其中y x ,同奇偶性;由此可见对任意地R yi x ∈+,只要y x ,同奇偶性,恒有)1()1(i i yi x +=+++;若R yi x ∈+,且y x ,奇偶性不相同,恒有)1(1)1(i i yi x ++=+++,即}1,0{)1/(=+i R ,---;2.设N i R N ⊂+)1(, ,存在N yi x ∈+,但是)1(i yi x +∉+,即y x ,奇偶性不同,因而y x ,1-奇偶性相同,即)1(1i yi x +∈+-,所以N yi x yi x ∈=+--+1])1[(,故][i Z N =,所以(1+i)是][i Z 地极大理想;从而)1/(i R +是仅含有两个元地域.四.解答题1.解:A a a a a a a ∈→Φ212121,},,m in{),(:,就是一个A A ⨯到A 地一个满射.2.解1)H 不一定是群G 地子群,例: G=Z Z m m ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛101为整数域.对矩阵普通乘法作成一个群,而 H=⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛ 101,1021,1011,1001n 为G 地一个非空子集,易知有H H =2,但 H 不是G 地子群,⎪⎪⎭⎫ ⎝⎛1011在H 中没有逆元.2)当H 有限时,则H 是G 地子群.任取H b a ∈,,由于H H=2,而H H ab =∈2即H ab ∈即H 对乘法运算封闭,即H 是G 地子群.3.解:易知R 作成一个有单位元地可换环,但不一定作成域,如:当F 为实数域时,方阵 02122≠⎪⎪⎭⎫ ⎝⎛=A ,属于R 但0=A ,故A 在R 中没有逆元,从而R 不能作成域,但是当F 为有理数域时,R 可以作成域.4.解:Φ是X 到F 地一个映射,但不是一一映射,因为⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=0011,0001B A ,A ,B ,X ∈且A B ≠,但在Φ下,0)()(=Φ=ΦB A ,不是一一映射. 5.解: 1)如整数加群G 除单位元O 外,每个元地阶都无限.2)如:全体非零有理数对普通乘法作成一个群,满足题设条件,除单位元1地阶是1外,-1地阶是2,而其余各元素地阶都是无限.6.解:能作成群,因为数地普通乘法显然是R 地代数运算,结合律当然成立,又1是R 地单位元,1与-1地逆元均为自身,任意R 地元a 都有逆元a1,故R 作成群.7.解:105,84,63;42;21:1→→→→→Φ 105,84,63,42,01:2→→→→→Φ则1Φ,2Φ是X 到Y 地两个单射.8.解:易知整数k,l 有相同地奇偶性⇔存在整数x,y,满足:y x l y x k +=-=, (1)又Z[i]是有单位元地可换环,所以{}{}Z y x i y x y x i Z yi x i yi x i G ∈++-=∈+++>=+=<,|)()(][|)1)((1由(1)知对][i Z li k ∈+,有.,.1l k i li k >⇔+∈<+有相同地奇偶性又][1i Z ∈,但>+∉<i 11取任][i Z ni m ∈+,若ni m +∉<1+i>,即m,n 有相反地奇偶性,从而>+∈<+-=-+i 1ni )1m (1ni m ,即>+<+>=+<++i 11i 1ni m ,故>+<i 1i][Z 共有两个元素>+<+>+<i 11,i 1. 9.解:域或其子域有相同地单位元,事实上若1F 是F 地子域,I 是F 地单位元,I '是1F 地单位元,则任取1F a ∈,且0≠a ,由1F 是域知F a ∈-1,且I aa '=-1,但I aa F a a =∈--111,,,故I aa I =='-1,即F 与1F 有相同地单位元.10.解:设Z 为整数集,2Z 为偶数集,x x 2:1→Φ, )1(2:2+→Φx x ,其中Z x ∈,则1Φ,2Φ就是Z 到2Z 地两个不同地映射.11.解:G 地单位元为⎪⎪⎭⎫ ⎝⎛=1001e ⎪⎪⎭⎫ ⎝⎛-=0110a ⎪⎪⎭⎫ ⎝⎛--=01112a ⎪⎪⎭⎫ ⎝⎛-=01103a ⎪⎪⎭⎫ ⎝⎛=10014a 又⎪⎪⎭⎫ ⎝⎛-=01112b ⎪⎪⎭⎫ ⎝⎛=10013b ⎪⎪⎭⎫ ⎝⎛=1011ab 对任意地整数n ⎪⎪⎭⎫ ⎝⎛≠⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10011011011)(n ab n n 即a 地阶为4,b 地阶为3, ab 地阶为无限. 12.解:不一定例如:令F 为任意数域,又H ,N, R 分别由以下三种方阵作成地集合:⎪⎪⎪⎭⎫ ⎝⎛000000001a ⎪⎪⎪⎭⎫ ⎝⎛000000021a a ⎪⎪⎪⎭⎫ ⎝⎛654321000a a a a a a 其中F a i ∈很明显对方阵普通加法与乘法R 作成环,且N 是R 地理想,H 是N 地理想,但是:H ∉⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000000100000100000000000010 故H 不是R 地理想.13.1.(15)(2379)(468),σ= -2.)46)(48)(23)(27)(29)(15(=σ -3.1(15)(9732)(864),||12σσ-==.-五、单项选择题1.C 2.D 3. D 4.A 5.C 6. B 7.B版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and other non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

近世代数基础习题课答案到 题

近世代数基础习题课答案到 题

第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 基本概念练习§1. 集合 子集 集合的运算1.设A ={x |x ∈R ,|x |≥5},B ={x |x ∈R ,-6≤x <0},求B A ,B A ,B A \,A B \,并用图形表示出来.[解] (图形略.)B A ={x |x ∈R ,x <0或x ≥5},B A ={x |x ∈R ,-6≤x ≤-5}, B A \={x |x ∈R ,x <-6或x ≥5}, A B \={x |x ∈R ,-5<x <0}.2. 证明:(B A ⊂)⇔(B B A = )⇔(A B A = ).[证] 先证(B A ⊂)⇔(B B A = ).若B A ⊂,则B A x ∈∀,B x ∈.所以B B A ⊂)( ;显然B B A ⊃)( ,故B B A = .反之,若B B A = ,则A x ∈∀,B B A x =∈)( ,故B A ⊂.所以(B A ⊂)⇔(B B A = ).次证(B A ⊂)⇔(A B A = ).若B A ⊂,则A x ∈∀,B x ∈,于是A x ∈∀,有B A x ∈,所以)(B A A ⊂,显然A B A ⊂)( ,所以A B A = .反之,若A B A = ,则A x ∈∀,B A x ∈,于是A x ∈∀,有B x ∈,故B A ⊂.所以(B A ⊂)⇔(A B A = ).综上所述得:(B A ⊂)⇔(B B A = )⇔(A B A = ).3. 证明:B A =⇔B A B A =.[证] 若B A =,则A B A = ,A B A = ,所以B A B A =.反之,若B A B A =,则A x ∈∀,有x ∈B A =B A ,从而B x ∈,所以B A ⊂;同理可证A B ⊂,故B A =所以B A =⇔B A B A =.4. 设n A =(n ,∞),(n ,∞)表示实数轴上的开区间,即(n ,∞)={x |x ∈R , ∞<<x n },n =0,1,2,….求 ∞=0i i A 与 ∞=0i i A[解] 因为 ⊃⊃⊃210A A A ,所以 ∞=0i i A =0A =(0,∞).因为∈∀x R ,存在非负整数n ,使n x ≤.于是n A x ∉, ∞∉i A x ,所以φ=∞= 0i i A .5. 设A ={x |x ∈Z ,x x 32-+2=0},写出A 2. [解] A ={1,2},故A 2={φ,{1},{2},{1,2}}.6. 设A ,B 是U 的子集,规定)\()\(A B B A B A =+,证明:(ⅰ)A B B A +=+; (ⅱ)A A =+φ; (ⅲ)φ=+A A .[证] (ⅰ)因为集合的并适合交换律,故)\()\(A B B A =)\()\(B A A B ,即A B B A +=+.(ⅱ)因为A A =φ\,φφ=A \,所以)\()\(A A φφ =φ A =A ,即A A =+φ.(ⅲ)因为φ=A A \,所以φ=)\()\(A A A A ,即φ=+A A .§2. 映射 映射的合成1. 对于下面给出的Z 到Z 的映射f ,g ,h ,f :x x 3 ,g :13+x x ,h :23+x x计算g f ,f g ,h g ,g h ,h g f .[解] g f :39+x x , f g :19+x x , h g :79+x x ,g h :59+x x , h g f :2127+x x .2.对于上题的f ,g ,h 分别求它们的左逆映射.[解] f 的一个左逆映射为1-L f :⎪⎩⎪⎨⎧≠=.3,3,3n x x n x x x 当当 .g 的一个左逆映射为1-L g :⎪⎩⎪⎨⎧+=-+≠.13,31,13,n x x n x x x 当当 .h 的一个左逆映射为1-L h :⎪⎩⎪⎨⎧+=-+≠.23,32,23,n x x n x x x 当当 . 其中n 为任意整数. 3.对于上题的f ,g ,h ,找出f ,g ,h 的共同的左逆映射,即找出Z 到Z 的映射k ,使f k =g k =h k =Z I .[解] 令k :Z →Z ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-+=-=.23,32,13,31,3,3n x x n x x n x x x 当当当 ,其中n 为任意整数.容易验证,k 是f ,g ,h 的一个共同的左逆映射.4. 对于上题的f ,g ,h ,找出Z 到Z 的一个映射,使其为f ,g 的共同的左逆映射,但不是k 的左逆映射.[解] 令k :Z →Z ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=.23,,13,31,3,3n x x n x x n x x x 当当当 ,其中n 为任意整数.容易验证,k 为满足题中要求的映射.5. 设f 是A 到B 映射,g 是B 到C 的映射,f g 有左逆映射,能否证明f ,g 都有左逆映射?[解] 当f ,g 为题设,且f g 有左逆映射,可以证明f 有左逆映射,但g 未必有左逆映射.下面分别加以证明:(ⅰ)f 有左逆映射.设f g 有一个左逆映射k ,于是对于任一A a ∈,有A 到C 的映射)))(((a f g k =a =)(a I .根据映射合成满足结合律得:a a f g k =))()(( ,对A a ∈∀都成立.故g k 为f 的一个左逆映射.(ⅱ)g 未必有左逆映射.例如:A ={1,2},B ={1,2,3},C ={1,2},令f :B A →,x x ;g :C B →,⎩⎨⎧==.313.2,1,i i i i .容易验证,f g 存在左逆映射,但g 不存在左逆映射.6*. 设f 是A 到B 的单射(满射),g 是B 到C 的单射(满射),则f g 是A 到C 的单射(满射).[解] (ⅰ)设f 是A 到B 的单射,g 是B 到C 的单射,则对A a a ∈∀21,,且21a a ≠,有)()(21a f a f ≠,从而))((1a f g ≠))((2a f g ,于是f g 是A 到C 的单射.(ⅱ)设f 是A 到B 的满射,则B A f =)(;g 是B 到C 的满射,则C B g =)(.于是))((A f g =)(B g =C ,所以f g 是A 到C 的满射.7. 设A 表示某四年制大学数学系全体学生所成的集合,B ={1,2,3,4}.对A a ∈∀,规定)(a f 表示a 所在年级,这个f 是不是A 到B 映射?单射?满射?A a ∈∀,))((1a f f -=?设B b b ∈21,,21b b ≠,问)(11b f -∩)(21b f -=? B b b f ∈-)(1=?[解] 根据题意,A a ∈∀是且仅是某一个年级的学生,故)(a f 是B 中唯一确定的元素,所以f 是A 到B 的映射;f 未必是满射,因为未必每个年级都有学生;一般说f 不是单射,因为某年级如有学生,一般不会只有一人.A a ∈∀,))((1a f f -={a 所在年级的全体学生}.当B b b ∈21,,21b b ≠时,)(11b f -∩)(21b f -=φ, B b b f∈-)(1=A .8. 设A =B =Z ,m 是取定的正整数,A a ∈∀,规定r a f =)(,此处r 是a 被m 除所得非负余数:r qm a +=,0≤r <m .f 是不是A 到B 的映射?单射?满射?若取B ={0,1,2,…,m -1},问)0(1-f ,)1(1-f ,…,)1(1--m f 分别由哪些数组成?设B j i ∈,,j i ≠,问)()(11j f i f -- =? B b b f∈-)(1=?[解] 依题意且根据整数的带余除法知,f 是A 到B 的映射,但f 不是单射,也不是满射.设B ={0,1,2,…,m -1},则依题意有:)0(1-f ={x |km x =,k =0,±1,±2,…},)1(1-f ={x |km x =+1,k =0,±1,±2,…},…………………………………………,)1(1--m f ={x |km x =+(m -1),k =0,±1,±2,…}.当B j i ∈,,j i ≠时,)()(11j f i f -- =φ, B b b f∈-)(1=Z .9. 设A 是坐标平面上所有点的集合,B 是x 轴上所有点的集合,A a ∈∀,规定)(a f 表示a 向x 轴作垂线的垂足,这个f 是不是A 到B 的映射?单射?满 射?设B b b ∈21,,21b b ≠,问)(11b f -∩)(21b f -=? ))((1a f f -=? B b b f∈-)(1=?[解] 依题意,f 是A 到B 的映射,显然f 是满射,但f 不是单射.设B b b ∈21,,21b b ≠,则:)(11b f -∩)(21b f -=φ,))((1a f f -={)(a f ,y }, Bb b f∈-)(1=A . 10. 设f :B A →,A S ⊆,证明S S f f⊇-))((1,举例说明“=”不一定成立. [解] 设f :B A →,A S ⊆,则S s ∈∀,有)()(S f s f ∈,所以))((1S f f s -∈,S S f f ⊇-))((1.例如:A =B ={0,1,2,…},S ={0}A ⊆,作A 到B 的映射f :A a ∈∀,)(a f =0,显然))((1S f f-=)0(1-f =A ≠S .§3 有限集与可数集1.证明,有限集的任一子集都是有限集;无限集的任一扩集都是无限集.[证] 设A 为有限集,若φ=A ,则结论显然成立.现在设A 非空,则A 的元素可以如下列举出来:1a ,2a ,…,n a .A 的空子集显然是有限集,若B 是A 的非空子集,则B 的元素可以如下列举出来:1i a ,2i a ,…,m i a , m i i i <<< 21.于是B 与自然数的一个断片|1,m |={1,2,…,m }等浓,从而B 是有限集.设A 为无限集,B 是A 的任一扩集.若B 不是无限集,则B 为有限集,从而由前半部证明知,B 的任一子集,特别地,B 的子集A 为有限集,此与假设矛盾.所以B 是无限集.2. 证明,一个有限集与一个可数集的并是一个可数集.[证] 设A ={1a ,2a ,…,n a }为有限集,B ={1b ,2b ,…,n b ,…}为可数集,则A ∪B ={1a ,2a ,…,n a ,1b ,2b ,…,n b ,…}.作f :(A ∪B )→+Z ,⎩⎨⎧=+≤≤.,2,1,,1, j j n b n i i a j i .显然f 是B A 到+Z 上的一一映射,所以B A 与+Z 等浓,从而B A 为可数集.3. 找出自然数集P 的三个与P 等浓的真子集1A ,2A ,3A .[解] 设P ={1,2,3,…},令1A ={全体正奇数},2A ={全体正偶数},}1{\3P A =.1A ,2A ,3A 为P 的真子集,容易看出存在i A (i =1,2,3)到P 上的一一映射,所以i A (i =1,2,3)与P 等浓.4. 证明,坐标平面上所有格子点(即坐标均为整数的点)的集合是可数集.[证] 记所有格子点的集合为A ,即:A ={(a ,b )|a ,b ∈Z}.可将A 的元素排成一个方阵,再按右图所示箭头方向给A 中的元素按自然数顺序编号:这样,A 的元素可利用自然数排列出来,故A 是可数集.5. 证明:开区间(a ,b )与闭区间[a ,b ]等浓.[证] 映射f :a x a b x +-)( 显然是(0,1)到(a ,b ),[0,1]到[a ,b ]的双射.由P.18例4知,(0,1)与[0,1]等浓.设ϕ是(0,1)到[0,1]的双射,则1-f f ϕ是(a ,b )到[a ,b ]的双射,所以(a ,b )与[a ,b ]等浓.注:此题也可以用类似P.18例4的方法,直接作(a ,b )到[a ,b ]的双射.6. 利用例3的方法,证明全体“自然数的无限序列”作成的集合是不可数集.[证] 设A ={X |X =(1a ,2a ,…,n a ,…),i a ∈+Z },显然A 为无限集.假定A 为可数集,则A 的元素可用自然数予以编号,于是A ={1X ,2X ,…,n X ,…},其中1X =(11a ,12a ,…,n a 1,…)2X =(21a ,22a ,…,n a 2,…)…………………………n X =(1n a ,2n a ,…,nn a ,…)…………………………作自然数的无限序列X =(1a ,2a ,…,n a ,…),其中ii i a a =(i =1,2,…,n ,…).显然A X ∈,但X 与1X ,2X ,…,n X ,…中的任一个都不相同,从而产生矛盾.故A 为不可数集.§4 加氏积 二元关系与等价关系1. 设*R 表示一切非零实数作成的集合,数目的+、-、×、÷是不是*R 的代数运算?为什么?n 次方幂,n 次方根是不是*R 的一元运算?为什么?x log 是不是一元运算?为什么?构造*R 的两个三元运算.[解] (ⅰ)数目的×、÷是*R 的代数运算.因为∈∀b a ,*R ,b a ⨯,b a ÷是*R中唯一确定的元素.(ⅱ)数目的+、-不是*R 的代数运算.因为∈∀a *R ,∈-a *R ,但)(a a -+=0*R ∉,a a -=0*R ∉.(ⅲ)n 次方幂是*R 的一元运算.因为∈∀a *R ,n a 是*R 中唯一确定的元素. (ⅳ)当n 是奇数时,n 次方根是*R 的一元运算;当n 是偶数时,n 次方根不是*R 的一元运算,因为负数在实数范围内不能开偶次方.(ⅴ)x log 不是*R 的一元运算.因为1∈*R ,而*01log R ∉=.(ⅵ)构造*R 的两个三元运算1f ,2f 如下: x z y x f =),,(1,2222),,(z y x z y x f ++=,∀x ,y ,z ∈*R .2. 设A ={a ,b },R ={(a ,a )},R 是否具有反身性?对称性?传递性?反对称性?[解] R 不具有反身性,因为b R b '.但R 具有对称性,传递性,反对称性.3. 设A ={平面上所有直线},规定A 中的二元关系~为:1l ,2l ∈A ,1l ~2l ⇔1l ∥2l 或21l l =.证明,~是A 的一个等价关系,决定相应的等价类.[证] (ⅰ)依题意,A l ∈∀,有l l =,故l ~l .A l l ∈∀21,,由1l ~2l ⇒1l ∥2l 或21l l =⇒2l ∥1l 或12l l =⇒2l ~1l .A l l l ∈∀321,,,由⎭⎬⎫⎩⎨⎧=⇒=⇒323232212121//~//~l l l l l l l l l l l l 或或⇒3131//l l l l =或⇒1l ~3l . 可见~具有反身性、对称性、传递性,所以~是A 的一个等价关系. (ⅱ)当A l ∈时,由l 决定的等价类为:直线y =kx ={l |A l ∈,l ∥直线kx y =,或l 就是直线kx y =},k 为任意实数; 直线x =0={l |A l ∈,l ∥直线x =0,或l 就是直线x =0}.4. 在复数集C 中,规定二元关系~为:a ~b ⇔a 的幅角=b 的幅角.证明,~是C 的一个等价关系,决定相应的等价类.[证] (ⅰ)∈∀a C ,有a a arg arg =,故a ~a .∈∀b a ,C ,由a ~b ⇒b a arg arg =⇒a b arg arg =⇒b ~a .∈∀c b a ,,C ,由⎭⎬⎫⎩⎨⎧=⇒=⇒c b c b b a b a arg arg ~arg arg ~⇒c a arg arg =⇒a ~c . 可见~是C 的一个等价关系.(ⅱ)其决定的等价类为:ϕa ={z |∈z C ,πϕk z 2arg +=,k ∈Z },0≤ϕ<2π;与0={0}.5. 设A ={1,2,3,4},在A 2中规定二元关系~为:S ~T ⇔S ,T 含有元素个数相同,证明,这是一个等价关系,写出商集A2/~.[证] 记A 2的元素S 所含元素个数为|S |.A S 2∈∀,则|S |=|S |,故S ~S . A T S 2,∈∀,由S ~T ⇒|S |=|T |⇒|T |=|S |⇒T ~S .AV T S 2,,∈∀,由⎭⎬⎫⎩⎨⎧=⇒=⇒||||~||||~V T V T T S T S ⇒|S |=|V |⇒S ~V . 可见~是A2的一个等价关系.商集A 2/~={φ,1A ,2A ,3A ,4A },其中 1A ={{1},{2},{3},{4}},2A ={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}},3A ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}},4A =A .6. n F )(表示数域F 上全部n 阶方阵的集合,f 是n F )(到{0,1,2,…,n }上的满射f :(ij a ) (ij a ).求f 决定的等价关系,决定的等价类.[解] 由f 确定的n F )(中的等价关系为:(ij a )~(ij b )⇔))(())((ij ij b f a f =,即秩(a )=秩(b ).决定的等价类为:r A ={X |n ij F x X )()(∈=,秩X =r },r =0,1,2,…,n .7. 设1R ,2R 是A 的两个等价关系,21R R 是不是A 的二元关系?是不是等价关系?为什么?21R R 是不是A 的二元关系?[解] 集A 的二元关系实际上是A A ⨯的子集,而A A ⨯的两个子集之交、之并仍然是A A ⨯的子集,故21R R 、21R R 都是A 的二元关系.若1R ,2R 都是A 的等价关系,则21R R 仍是A 的等价关系.事实上A a ∈∀,由⎭⎬⎫∈∈21),(),(R a a R a a ⇒21),(R R a a ∈. 对A b a ∈∀,,由21),(R R b a ∈⇒⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⇒∈∈⇒∈2211),(),(),(),(21R a b R b a R a b R b a R R 为等价关系为等价关系⇒ 21),(R R a b ∈.同样可证,21R R 具有传递性,所以21R R 是A 的一个等价关系.8. 设1R ,2R 是A 的两个二元关系,规定:21R R ={),(b a |A x ∈∃:1),(R x a ∈,2),(R b x ∈}}.证明,“ ”是A 的一切二元关系所成的集合B 的一个二元关系.[证] 因为21R R 是A A ⨯的一个子集,即21R R 确定了A 的一个二元关系,所以“ ”:2121),(R R R R 是B B ⨯到B 的一个映射,故它是B 的一个二元关系.9. 设n R )(表示实数域R 上一切n 阶方阵的集合.(ⅰ)对于∈B A ,n R )(,规定:∈∃⇔Q P B AR ,1n R )(,|P |≠0,|Q |≠0:B PAQ =.证明,R 是R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅱ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 2n R )(,|P |≠0:B PAP =-1.证明,2R 是n R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅲ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 3n R )(,|P |≠0:B P PA ='.证明,3R 是n R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅳ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 4n R )(,I P P ='(单位方阵):B P PA ='.证明,4R 是n R )(的一个等价关系.等价元素类可以取怎样的代表元?[证] 由线性代数知识可知,实数域上n 阶方阵的等价、相似以及实对称矩阵的合同、正交合同皆具有反身性、对称性、传递性,故本题中的1R ,2R ,3R ,4R 都是等价关系.(ⅰ)关于1R ,等价元素类的代表元取如下方阵,形式最简单:r E =diag (rn r -0,,0,0,1,,1,1),(0≤r ≤n ). (ⅱ)由等价关系2R 所划分的等价类,其代表元可取矩阵的有理标准形(详见张远达,熊全淹的《线性代数》第五章).关于3R ,等价元素类的代表元取如下方阵,形式最简单:st E =diag ()(0,,0,0,1,1,1,1,,1,1t s n t s +----),s ,t 为非负整数,且n t s ≤+. 关于4R ,等价元素类的代表元可取如下方阵:n E λλ,,1 =diag (1λ,2λ,…,n λ),R i ∈λR ,1λ≤2λ≤…≤n λ.§5. 有序集 Zorn 引理1. 写出右边图形表示的偏序关系,指出其极大元,极小元,最大元,最小元.[解] 上图表示的偏序关系为:“≤”={),(a a ,),(b b ,),(c c ,),(d d ,),(b d ,),(c d ,),(a b ,),(a c ,),(a d }.a 为极大元同时亦为最大元,d 为极小元同时亦为最小元.下图表示的偏序关系为:“≤”={),(a a ,),(b b ,),(c c ,),(d d ,),(e e ,),(c d ,),(c e ,),(a c ,),(b c ,),(b d ,),(a d ,),(b e ,),(a e }.a ,b 为极大元,d ,e 为极小元,此偏序关系中无最大元,也无最小元.2. 举一个偏序集(S ,≤)但不是有序集的例子.[解] 令S ={数域P 上的首项系数为1的多项式},规定:对于任意S x g x f ∈)(),(,)(x f ≤)(x g ⇔)(|)(x g x f .显然可知,依规定“≤”具有反身性、对称性、传递性,故(S ,≤)是一个偏序集.但(S ,≤)不是有序集,因为存在S x g x f ∈)(),(,)(|)(x g x f /,且)(|)(x f x g /,从而既无)(x f ≤)(x g ,又无)(x g ≤)(x f .故“≤”不是顺序关系.3. 举一个有序集(S ,≤)但不是良序集的例子,并对S 规定另一偏序关系,使之成为良序集.[解] 取S =Z ,“≤”表示数目的大小关系,显然(S ,≤)是有序集,但不是良序集,因为(S ,≤)中无最小元.现在规定Z 的二元关系“≤'”:b a ≤',如果|a |<|b |;或b a =;或b a -=,且a 为负数.显然(Z ,≤')是有序集,下面证明它是良序集:设N 是Z 的任一非空子集,记N '={|a |N a ∈},因为以数目大小为二元关系的非负整数集是良序集,所以(N ',≤')有最小元|0a |,如果N a ∈∀,且0a a ≠,有|a |≠|0a |,即|a |>|0a |,则0a 是(N ,≤')中最小元;如果N a ∈∃1,且01a a ≠,但|1a |=|0a |,则1a ,0a 中是负数的那一个为(N ,≤')的最小元.总之,(N ,≤')有最小元.所以(Z ,≤')是良序集.4. 证明,一个偏序集(S ,≤)若有最大元,则只存在一个.[证] 设(S ,≤)为偏序集,m ,n 皆为其最大元,则依定义有m ≤n 和n ≤m ,由反对称性得n m =,所以(S ,≤)若有最大元,则只存在一个.5. 证明,有限偏序集的每一个非空子集均含有极小元.[证] 设S 是有限偏序集,T 是S 的任一非空子集,“≤”为偏序关系.取定T x ∈0,考虑0Tx ={x |T x ∈,x ≤0x },显然00Tx x ∈,若0Tx ={0x },则0x 为T 的一个极小元,否则01Tx x ∈∃,1x <0x .继续考虑1Tx ={x |T x ∈,x ≤1x },若1Tx ={1x },则1x 为T 的一个极小元,否则12Tx x ∈∃,2x <1x .如此继续,我们得到一个链: …<n x <…<2x <1x <0x .由于T 为有限集,此链不可能无限下去,必在有限步后中止,即存在m x ,使m Tx ={x |T x ∈,x ≤m x }={m x },从而T x ∈∀,x ≤m x ,m x 为T 的极小元.6. 举一个含有n +1个元的偏序集,使其含有n 个极大元,1个极小元.[解] 令S ={1,1p ,2p ,…,n p ,i p 为互不相同的素数}.定义S 中的二元关系“≤”为数的整除关系,显然(S ,≤)成为一个偏序集.1是S 的一个极小元,其余n 个元皆为极大元.7. 设(Z ,≤)是整数集关于整除关系作成的偏序集,T ={1,2,…,10},求T 的上界,下界,有没有最小上界?最大下界?与例6的区别何在?[解] 依题意,T 的上界和下界分别是1,2,…,10的公倍数和公约数,而最小上界和最大下界则分别是的它们的最小公倍数和最大公约数,所以T 的最小上界为:5·7·9·8=2520,T 的上界为:2520k ,k ∈+Z ;T 的最大下界为1,且是T 仅有的下界.与例6的区别在于:例6讨论的是T 的最小元,极小元,最大元,极大元,这与上,下界,最大下界,最小上界是不同的概念.对一个偏序集的子集来说,如有最小元,则最小元必是最大下界.如有最大元,由最大元必是最小上界.反之未必.例如本题中的T ,1是最小元,也是最大下界;2520是最小上界,但不是T 的最大元.8. 设A 是任意集合,在偏序集(A 2,⊆)中取其子集的序列{1a },{1a ,2a },…,{1a ,2a ,…,n a },…,它们的并集是不是A 2的一个极大元?为什么?[解] 题中所取子集序列之并未必是A 2的一个极大元.因为该子集序列的并集可能是A 的真子集,例如当A 是不可数集时.事实上,(A 2,⊆)中仅有一个极大元,也是最大元A .9. 证明,偏序集(A 2,⊆)既有最大元,也有最小元.(φ\2A ,⊆)有没有最小元?找出它的极小元.[证] 因为A A 2∈,且对A x 2∈∀,总有A x ⊆,故A 是(A 2,⊆)的最大元; 同样,由于A 2∈φ,且对A x 2∈∀,总有x ⊆φ,故φ是(A2,⊆)的最小元. (φ\2A ,⊆)没有最小元,其极小元为所有{a },A a ∈.10. 设S =Z ,“m ≤n ”表示mn 是非负整数,且n m |,证明(S ,≤)是一个偏序集.S 有没有最大元?最小元?极大元?极小元?[证] 对S x ∈∀,恒有x x ⋅为非负整数,且x |x ,故x ≤x .对S y x ∈∀,,若x ≤y 且y ≤x ,则依题意可知x ,y 或同时为0,或为同号的互相整除的整数,故y x =.对S z y x ∈∀,,,若x ≤y 且y ≤z ,则由y x |且z y |,推得z x |,再由xy ,yz 非负,可知xz 非负.所以x ≤y .可见“≤”具有反身性,对称性,传递性.所以(S ,≤)是一个偏序集.显然0为S 的一个最大元,也是S 的唯一极大元.S 没有最小元,S 有极小元1和-1.11. 设偏序集(S ,≤)有最小元,则S 有且只有唯一的极小元.[证] 首先可知(S ,≤)的最小元,也是S 的一个极小元.所以,当(S ,≤)有最小元m 时,S 至少有一个极小元.设m '是(S ,≤)的任一极小元,因为m 是最小元,所以m ≤m '.又因为m '是极小元,所以由m ≤m '⇒m m '=.12. 设A 是一个非空集合,B 是A 上一切二元关系所组成的集合,对于B 中元素1R ,2R ,如果对于x ,y ∈A ,y xR 1⇒y xR 2,那么,就规定1R ≤2R ,则(B ,≤)作成一个偏序集.[证] 依题意,对B R ∈∀,总有R ≤R .设1R ,2R ∈B ,且1R ≤2R 及2R ≤1R ,则对于x ,y ∈A ,y xR 1⇒y xR 2及y xR 2⇒y xR 1,这就是说,由(x ,y )∈1R ⇒(x ,y )∈2R 及(x ,y )∈2R ⇒(x ,y )∈1R .所以1R ,2R 表示A A ⨯的同一子集合,21R R =.设1R ,2R ,3R ∈B ,满足1R ≤2R 且2R ≤3R ,则对于x ,y ∈A ,y xR 1⇒y xR 2及y xR 2⇒y xR 3,从而y xR 1⇒y xR 3,所以1R ≤3R .可见B 中的二元关系“≤”具有反身性,对称性,传递性,所以(B ,≤)作成一个偏序集.此外,我们也可以直接由(B ,≤)=(A A ⨯2,⊆)得(B ,≤)是一个偏序集.习题1. 设n A ={a |a ∈Z ,(n 2|a )∧(a n |21/+)},求A = ∞=1n n A . [解] A = ∞=1n n A={2k |k ∈Z }.2. 设x A ={y |y ∈R ,0≤y <x },求A =1>∈x R x x A 且.[解] A = 1>∈x R x x A 且={y |y ∈R ,0≤y ≤1}.3. 设1A ,2A ,…,是集合E 的可数个子集,令A =∞=∞=1m m i i A ,A = ∞=∞=1m m i i A .证明: (ⅰ)A 由一切属于无限多个i A 的元所组成; (ⅱ)A 由一切属于“几乎所有i A ”的元所组成.(“几乎所有i A ”指除有限个外的全部i A ,也说“差不多所有i A ”.)[证] (ⅰ)若x 属于无限多个i A ,则m ∀≥1,1A ,2A ,…,1-m A 是有限个,所以E m '≥m ,使m A x '∈,于是 ∞=∈m i i A x .故A x ∈= ∞=∞=1m m i i A .若x 属于有限个i A ,不妨设x 属于1i A ,2i A ,…,k i A ,1i <2i <…<k i ,m >k i ,取m '∀≥m ,m A x '∉,于是 ∞=∉m i i A x ,故A x ∉.综上所述,A 由一切属于无限多个i A 的元组成.(ⅱ)若 ∞=∞=∈1m m i i A x ,则至少0m ∃,使 ∞=∈0m i i A x ,于是,x 至多不属于1A ,2A ,…,1-m A ,即x 属于“几乎所有的i A ”.若x 属于“几乎所有的i A ”,不妨设x 属于除了1i A ,2i A ,…,k i A 以外的所有i A ,取0m >k i ,则 ∞=∈0m i i A x .故A x ∈= ∞=∞=1m mi i A .综上所述,A 由一切属于“几乎所有的i A ”的元所组成.4. 设{i A |I i ∈}是集合E 的子集族,f 是E 到B 的映射,证明:(ⅰ) I i i I i i A f A f ∈∈=)()(;(ⅱ) Ii i I i i A f A f ∈∈⊆)()(.并举例说明,(ⅱ)中的“⊂”可能发生.[证] (ⅰ)设)( I i i A f x ∈∈',则 Ii i A x ∈∈∃,使)(x f x =',于是x 属于某一个i A ,从而x '=)(x f ∈)(i A f ⊆ I i i A f ∈)(,所以)( I i i A f ∈⊆ I i i A f ∈)(.同样可证, I i i A f ∈)(⊆)( I i i A f ∈.所以)( I i i A f ∈= Ii i A f ∈)(.(ⅱ)任取)( I i i A f x ∈∈',则 Ii i A x ∈∈∃,使)(x f x =',因为i A x ∈,I i ∈∀,所以)()(i A f x f ∈,I i ∈∀,即)(i A f x ∈',I i ∈∀.故 I i i A f x ∈∈')(,从而)( I i i A f ∈⊆ Ii i A f ∈)(.例:取E =Q ,1A ={非负有理数},2A ={非正有理数},B ={0,1}.定义f :E →B ,⎩⎨⎧≠=.0,1,0,0时当时当x x x x . 因为)(21A A f ={0},)()(21A f A f ={0,1},所以)(21A A f ⊂[)()(21A f A f ].5. 设f :A →A 且f f =f ,则f =A I .[证] 由题设,f 是A 到A 的满射,故对于A a ∈∀,A a ∈'∃,使a a f =')(.又因为f f =f ,所以有)(a f =)(a f f ' =)(a f '=a ,A a ∈∀.所以f =A I .6. 找出Z 到Z 的n +1个映射i f ,i =1,2,…,n ,n +1,使1f ,2f ,…,n f 有共同的左逆映射g ,但g 不是1+n f 的左逆映射.[解] 作Z 到Z 的n +1映射如下i f :)1(-+i nx x ,∈∀x Z ,i =1,2,…,n ,n +1.再令g :Z →Z ,⎥⎦⎤⎢⎣⎡n x x ,∈∀x Z ,符号[a ]表示不超过a 的最大整数. 容易看出,∈∀x Z ,))((x f g i =x ,i =1,2,…,n .而))((1x f g n + =x +1≠x . 所以g 是1f ,2f ,…,n f 的共同左逆映射,但不是1+n f 的左逆映射.7. 设A ,B C 是集合E 的三个子集,且C B A =,φ=C B ,找出A 2到加氏积C B 22⨯的一个双射.[解] 作映射f :A 2→C B 22⨯,),(C A B A A i i i ,Ai A 2∈∀.由)()(C A B A i i =)(C B A i =A A i =i A ,可知f 是单射. B B i ∈∀,C C i ∈,记i i i C B A =,A i A 2∈.因为φ=C B ,所以φ=i C B ,故B A i =B C B i i )(=)()(B C B B i i =B B i =i B ;同理可证C A i =i C .于是i A 在映射f 下的象是(i B ,i C ),故f 是满射,从而f 是双射.8. 设f 是A 到B 的映射,g 是B 到C 的映射,*f 是A 2到B 2的映射,*f :)(S f S ,A S ⊆∀.*g 是B 2到C 2的映射,*g :)(T g T ,B T ⊆∀,证明下面图形交换:即*)(gf =**f g .[证] 显然*)(gf ,**f g 都是A 2到C2的映射.对A S ⊆∀,有:)()(*S gf =))((S gf =))((S f g =))((*S f g=))((**S f g =))((**S f g ,所以*)(gf =**f g .9. 设+Z ={1,2,…},证明:存在++⨯Z Z 到+Z 的双射φ. [证] ∈∀q p ,+Z ,p q p q p +-+-+)1)(2(21∈+Z . 令φ:++⨯Z Z →+Z ,p q p q p q p +-+-+)1)(2(21),( ,∈∀q p ,+Z . 则φ是映射为显然.下面首先证明它是一个满射:∈∀n +Z ,∈∃k +Z ,使得)1(21+k k ≤n <)2)(1(21++k k . 若n =)1(21+k k ,则取p =k ,q =1,有),(q p φ=n . 若)1(21+k k <n <)2)(1(21++k k ,则取p =)1(21+-k k n ,q =)1(21+k · )2(+k -n +1,有),(q p φ=n .可见对于∈∀n +Z ,∈∃),(q p ++⨯Z Z ,使),(q p φ=n .再证φ是单射:设),(q p ,),(n m ∈++⨯Z Z ,且),(q p ≠),(n m ,则p ≠m 或q ≠n .若p +q =m +n ,则p +q -2=m +n -2,p +q -1=m +n -1,且p ≠m ,于是,),(q p φ=)1)(2(21-+-+q p q p +p =)1)(2(21-+-+n m n m +p ≠)1)(2(21-+-+n m n m +m =),(n m φ. 若p +q ≠m +n ,不妨设p +q >m +n ,于是,)1)(2(21-+-+q p q p -)1)(2(21-+-+n m n m =)1)(2(21-+-+q p q p -)1)(2(21-+-+n m q p +)1)(2(21-+-+n m q p -)1)(2(21-+-+n m n m ≥)2(21-+q p +)1(21-+n m >m -1≥m -p . 所以,)1)(2(21-+-+q p q p +p >)1)(2(21-+-+n m n m +m ,即),(q p φ≠),(n m φ.故φ是单射.从而证得,φ是++⨯Z Z 到+Z 的一个双射.注:本题也可用练习三第4题的方法证明++⨯Z Z 是可数无限集,从而存在++⨯Z Z 到+Z 的双射.10. 证明,不存在A 到A2的双射,此处A ≠φ.[证] 如果存在A 到A 2的双射ϕ,则对A a ∈∀,或者)(a a ϕ∈,或者)(a a ϕ∉.令S ={a |A a ∈,)(a a ϕ∉},S '={a |A a ∈,)(a a ϕ∈}.于是A =S S ' ,且S S ' =φ.因为A S 2∈,所以A a ∈∃0,使S a =)(0ϕ.若S a ∈0,则由S a =)(0ϕ,有)(00a a ϕ∈,这与S 的定义矛盾.若S a ∉0,则S a '∈0,于是根据S '的定义,又得到S a a =∈)(00ϕ,产生矛盾. 从而,不存在A 到A 2的双射.11. 设A ={1,2,3},f 是A 到A 的满射,具有性质)1(f =3,求f 的个数.[解] 由题设,f 是A 到A 的一一变换,且限定f (1)=3,于是f 的个数为2:1f :⎪⎪⎭⎫ ⎝⎛123321, 2f :⎪⎪⎭⎫ ⎝⎛21332112. 设A ={1,2,…,n },f 是A 到A 的满射,具有性质i i y x f =)(,i =1,2,…, k ,k <n ,i x ,i y ∈A ,求f 的个数.[解] 由题设,f 是A 到A 的一一变换,今限定i i y x f =)(,i =1,2,…,k ,k <n ,则f 的个数应为(n -k )个元素的全排列数)!(k n -.13. 设A 有k 个元素,B 有n 个元素,且k ≤n ,求A 到B 的单射的个数.[解] 若f 是A 到B 的单射,则)(A f 是由B 中k 个不同元素所组成,于是f 的个数为从B 中每次取k 个不同元素进行排列所得到的排列数.因而,A 到B 的单射的个数为:k n A =)!(!k n n -. 14. Z [x ]表示一切整数的一元多项式的集合,证明,Z [x ]是可数集.[证] 显然Z 是可数集.由§3练习第4题知Z Z ⨯是可数集,因此Z Z ⨯与Z 等势,于是利用归纳法可证,有限个Z 的加氏积Z Z Z ⨯⨯⨯ 是可数集.下面证明Z [x ]是可数集.)(x f ∀=n n x a +11--n n x a +…+x a 1+0a ∈Z [x ],可由系数的有序数组(n a ,1-n a ,…,1a ,0a )∈1+⨯⨯⨯n Z Z Z 唯一确定. 记n Z ={)(x f =∑=ni i i x a 0|i a ∈Z }.因为Z Z Z ⨯⨯⨯ 是可数集,所以n Z 也是可数集,而Z [x ]=+∈Z n n Z .用类似的证明方法,可以证明可数个可数集的并集是可数集.于是得到Z [x ]是可数集.15. 证明Q [x ]是可数集.[证] 由P.40例4知,全体正有理数是可数集,于是存在+Z 到+Q 的双射ϕ.作Z 到Q 的映射f :⎪⎩⎪⎨⎧=-.0,00,),(,),(时当为负整数时当为正整数时当a a a a a a a ϕϕ容易看出,f 是Z 到Q 的双射,而Z 是可数集,所以Q 也是可数集.以下仿14题的方法,可证得Q [x ]是可数集.16. 证明,+Z 2是不可数集. [证] 假设+Z 2是可数集,则+Z 2与+Z 等浓,从而存在+Z 到+Z 2的一个双射,这与习题10已得结论“不存在A 到A 2的双射”矛盾.所以+Z 2是不可数集.17. 举一个集合的例子,在它上定义一个二元关系,分别适合反身性、对称性、传递性中两个且仅适合两个.[解] 设A =Z .(ⅰ)在A 上定义二元关系1R 为通常数的整除,即A b a ∈∀,,b aR 1⇔a |b .显然,R 适合且仅适合反身性、传递性,而不适合对称性.(ⅱ)在A 上定义2R 为:A b a ∈∀,,b aR 2⇔a =b ,a ≠0.显然2R 适合传递性、对称性,但2R 不适合反身性,因为02R '0. (ⅲ)在A 上定义3R 为:A b a ∈∀,,b aR 3⇔(a ,b )≠1(即a 与b 不互素),或者a =b =±1.显然3R 适合反身性、对称性,但3R 不适合传递性.例如,取a =2,b =6,c =9,则b aR 3,c bR 3,c R a 3'. 18. 设A =++⨯Z Z ,规定(m ,n )≤(m ',n ')⇔m ≤m ',n ≤n ',证明,(A ,≤)是偏序集,并且A 有最小元.是否A 的每一个非空子集要都有最小元?极小元?[证] 对A n m ∈∀),(=++⨯Z Z ,总有⎩⎨⎧≤≤nn m m ,故(m ,n )≤(m ,n );),(11n m ∀,),(22n m ∈A ,由⎩⎨⎧≤≤),(),(),(),(11222211n m n m n m n m ,显然可得⎩⎨⎧==2121n n m m ,所以),(11n m =),(22n m .),(n m ∀,),(k l ,),(t s ∈A ,由⎩⎨⎧⎭⎬⎫≤≤⇒≤≤≤⇒≤t k s l t s k l k n l m k l n m ,),(),(,),(),(⇒⎩⎨⎧≤≤t n s m ,所以),(n m ≤),(t s .综上可见“≤”满足反身性、反对称性及传递性,所以(A ,≤)是偏序集. 由于(1,1)∈A ,且A n m ∈∀),(,均有(1,1)≤),(n m ,故(1,1)是A 的最小元. A 的每一个非空子集未必有最小元,例如A 的子集{(1,2),(2,1)}.但A 的每一个非空子集都有极小元.19. 设(A ,≤),(B ,≤)是两个偏序集,规定B A ⨯的字典排法偏序关系为:),(11b a ≤),(22b a ⇔1a ≤2a 1a =2a ,1b ≤2b ,证明,(B A ⨯,≤)是偏序集.若(A ,≤),(B ,≤)均为有序集,是否有(B A ⨯,≤)是有序集?[证] (ⅰ)由于A ,B 皆为偏序集,故B A b a ⨯∈∀),(,总有a =a ,b ≤b ,所以),(b a ≤),(b a .),(b a ∀,),(d c ,),(f e ∈B A ⨯,由⎩⎨⎧≤=≤⇒≤≤=≤⇒≤fd e c e c f e d c d b c a c a d c b a ,),(),(,),(),(或或⇒a ≤e 或a =e ,b ≤f ,所以),(b a ≤),(f e .),(b a ∀,),(d c ∈B A ⨯,由⎩⎨⎧≤⇒≤≤⇒≤a c b a d c c a d c b a ),(),(),(),(⇒a =c , 又由⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫≤⇒⎭⎬⎫≤=≤⇒⎭⎬⎫=≤b d b a d c a c d b c a d c b a ),(),(),(),(⇒b =d ,所以(a ,b )=(c ,d ). 综上可见(B A ⨯,≤)是一个偏序集.(ⅱ)若(A ,≤),(B ,≤)是有序集,则(B A ⨯,≤)亦是有序集.事实上,),(b a ∀,∈),(d c (B A ⨯,≤),因为(A ,≤)是有序集,所以a <c ;c <a ;a =c 中有且仅有一种情况出现.若a <c ,则),(b a ≤),(d c ;若c <a ,则),(d c ≤),(b a ;若a =c ,因为(B ,≤)是有序集,所以必有b ≤d 或d ≤b .当b ≤d 时,有),(b a ≤),(d c ;当d ≤b 时,有),(d c ≤),(b a .总之),(b a ∀,∈),(d c (B A ⨯,≤),均有),(b a ≤),(d c 或),(d c ≤),(b a .故(B A ⨯,≤)是一个有序集.20. 给出复数集C 的两种顺序关系,使之成为有序集.与“复数无大小”的概念是否矛盾?[解] 任一复数bi a y +=决定一对有序实数),(b a ,)(bi a +∀,∈+)(di c C ,定义:bi a +1≤di c +⇔a <c 或a =c ,b ≤d ,其中“≤”为通常数目的大小关系.由于(R ,≤)是有序集,故由前题证明知“1≤”成为C 上的一个顺序关系,故使(C ,1≤)成为有序集.又任一复数都可以唯一地表示成一个三角函数式:z =)sin (cos ααi r +, 0≤α<2π.定义:)sin (cos 1ααi r +2≤)sin (cos 2ββi r +⇔α<β或α=β,1r ≤2r ,其中“≤”为通常数目的大小关系.)sin (cos 1ααi r +∀,∈+)sin (cos 2ββi r C ,同样地可知,“2≤”是C 上的一个顺序关系,故(C ,2≤)成为有序集.我们这里给出的C 上的两种顺序关系与“复数无大小”是不矛盾的.通常的数的大小关系,不仅是一种顺序关系,而且还要满足阿基米公理,乘法单调性.但我们在这里给出的两种顺序关系是不具有这些性质的:不能用来比较复数的大小.21. 设(A ,≤)是偏序集,对A a ∈∀,令)(a f ={x |A x ∈,x ≤a },证明,f 是A 到A 2的一个单射,并且,f 保持(A ,≤),(A 2,⊆)的偏序关系,即当a ≤b 时,有)(a f ⊆)(b f .[证] (ⅰ)显然f 为映射,下面仅证f 是单射.设S a f =)(,T b f =)(,且T S =.由于A 是偏序集,故a ≤a ,所以S a ∈,但T S =,所以T a ∈,于是a ≤b .同样可证,b ≤a .所以a =b ,从而f 是A 到A 2的一个单射.(ⅱ)若a ≤b ,则)(a f x ∈∀,x ≤a .于是,x ≤b ,所以)(b f x ∈,即)(a f ⊆)(b f .可见f 保持(A ,≤),(A 2,⊆)的偏序关系.22. 设(A ,≤)是偏序集,T 是(A 2,⊆)的一个子集,令T ={y |A y 2∈,t y ⊆,T t ∈},则T 与T 有相同的极大元.[证] 根据T 与T 的定义,显然有T T ⊆.若x 是T 的一个极大元,下证x 是T 的一个极大元.如若不然,则T y ∈∃,使y x ⊂.由于T y ∈,所以T t ∈∃,满足t y ⊆,从而t x ⊂,这与x 是T 的极大元矛盾.这就证明了凡T 的极大元,必是T 的极大元.反之,若y 是T 的一个极大元,则由于T y ∈,知T t ∈∃,使t y ⊆,但T T ⊆,所以T t ∈,从而T t y ∈=,即y 是T 的极大元.这就证明了凡T 的极大元必是T 的极大元.23. 设(S ,≤)是有序集,则(S ,≤)是良序集的充要条件是:对S a ∈∀,a S ={x |S x ∈,x <a }是良序集.[证] 若(S ,≤)是良序集,则对S a ∈∀,a S 必是良序集.这是因为a S 的任一非空子集必是S 的非空子集,从而有最小元.反之,若对S a ∈∀,a S 是良序集,下证(S ,≤)是良序集.设M 是S 的一个非空子集,M m ∈∀0,记M '={m |M m ∈,m <0m }.如果0m 不是M 的最小元,则M '非空.因为M '是0m S 的子集,所以M '有最小元m ',易知m '也是M 的最小元.从而(S ,≤)是一个良序集.24. 设(S ,≤)是偏序集,如果S 中每一非空子集M 均有极大元,那么S 中任意递增序列1a <2a <…<n a <…必终止于有限项.并且,反之亦然.[证] 设1a <2a <…<n a <…是S 中任一无限递增序列,则S 的非空子集{1a ,2a ,…,n a ,…}没有极大元,与题设矛盾,故递增序列1a <2a <…<n a <…必终止于有限项.反之,设S 中任意递增序列终止于有限项,下证S 的每一个非空子集皆有极大元.设M 是S 的任一非空子集,如果M 无极大元,则M a ∈∀1,M a ∈∃2,使1a <2a ;同样M a ∈∃3,使2a <3a .如此类推,取定M a n ∈后,因为n a 不是M 的极大元,所以M a n ∈∃+1,使n a <1+n a ,这样就得到S 中的一个无限递增序列1a <2a <…<n a <1+n a <…,与S 中任意递增序列必终止于有限项矛盾.此矛盾表明M 有极大元.25. 设(+Z ,≤)是整数集关于整除关系作成的偏序集,证明,(+Z ,≤)中存在无穷递增序列1a <2a <…<n a <….(+Z ,≤)中是否存在无穷递降序列?[证] 对∈∀a +Z ,且a ≠1,有a |2a ,2a |3a ,…,n a |1+n a ,…故有a <2a <3a <…<n a <1+n a <…,即(+Z ,≤)中存在无穷递增序列.在(+Z ,≤)中,不存在无穷递降序列.这是因为对∈∀a +Z ,a 的约数只有有限多个.26. 有人说,U A i i =∈ φ(见§1末)不应该规定,而是可以证明,即:假定U A i i ≠∈ φ,则U A i i ⊂∈ φ.于是,U x ∈∃,但 φ∈∉i i A x .从而,φ∈∃j ,但j A x ∉,与φ是空集矛盾.此矛盾表明U A i i =∈ φ.你以为如何?[解] 上面证明过程是错误的.“ φ∈∉i i A x ,从而存在φ∈j ,j A x ∉”,这是根据 Ii i A ∈={x |U x ∈,I i ∈∀,j A x ∈}得到的,而后者作为定义,其前提条件要求I 非空,故当φ=I 时,不能应用该定义.。

相关文档
最新文档