数的开方知识点汇总

合集下载

数的开方知识点及复习

数的开方知识点及复习

数的开方知识点及复习知识点一:平方根(1)平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。

(2)开平方:求一个数a 的平方根的运算叫做开平方.(3)平方根的表示:a 的平方根记作:a 2±±或a 。

a 叫做被开方 (4)求一个数的平方根的方法:利用平方和开平方互为逆运算(5)平方根的性质①一个正数有两个平方根,它们互为相反数②0有一个平方根,它是0本身③负数没有平方根。

(6)算术平方根的定义:非负数a 的正的平方根。

(7)算术平方根表示:一个非负数a 的平方根用符号表示为:“a ”,读作:“根号a ”,其中a 叫做被开方数 (8)算术平方根的性质:①正数a 的算术平方根是一个正数;②0的算术平方根是0;③负数没有算术平方根。

注1)算术平方根是非负数,具有非负数的性质;(a≥0)是一个非负数, 即≥0;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数; 3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1; 4).非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);5).某数的平方的算术平方根等于某数的绝对值,即 =|a|=6).平方根有三种表示形式:±a ,a ,-a ,它们的意义分别是:非负数a 的平方根,非负数a 的算术平 方 根,非负数a 的负平方根。

要特别注意: a ≠±a7).平方根与算术平方根的区别与联系:区别:①定义不同 ②个数不同: ③ 表示方法不同:联系:①具有包含关系: ②存在条件相同: ③ 0的平方根和算术平方根都是0。

知识点二、立方根:(1)立方根的定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫三次方根)。

如果x3=a ,则x 叫做a 的立方根。

记作:3a x = ,读作“三次根号a ” 。

(2)开立方:求一个数的立方根的运算叫做开立方(3)求一个数的立方根的方法:利用立方和开立方互为逆运算 (4)立方根的性质①一个正数有一个正的立方根,即若a>0,则03>a ②一个负数有一个负的立方根,即若a<0,则03<a ③0的立方根是0,即若a=0,则03=a 。

数学开方知识点总结

数学开方知识点总结

数学开方知识点总结一、整数的平方根1、定义对于一个非负整数a,如果存在一个非负整数b,使得b * b = a,那么b就是a的平方根。

通常用符号√a来表示a的平方根。

2、性质(1)非负整数的平方根是一个非负整数。

即如果a是一个非负整数,那么它的平方根一定是一个非负整数。

(2)如果a是一个非负整数,那么a的平方根存在且唯一。

即对于任意一个非负整数a,存在唯一的一个非负整数b,使得b * b = a。

(3)如果a和b是两个非负整数,且a = b * b,那么a的平方根就是b。

3、计算方法(1)试除法试除法是一种通过逐步增大的方式逐个尝试所有可能的非负整数来找到a的平方根的方法。

这种方法比较原始,但是对于小的非负整数还是比较有效的。

(2)牛顿迭代法牛顿迭代法是一种通过不断逼近的方式来计算a的平方根的方法。

该方法利用函数的导数和函数值来不断逼近函数的零点,从而找到a的平方根。

这种方法通常比试除法更加高效,尤其对于大的非负整数。

4、应用整数的平方根在实际生活中有很多应用,比如在工程领域中,用来计算各种物理量的大小,比如速度、加速度、功率等。

在数学领域中,整数的平方根也有很多应用,比如在代数、几何等方面的应用。

二、实数的平方根1、定义对于一个非负实数a,如果存在一个非负实数b,使得b * b = a,那么b就是a的平方根。

同样地,通常用符号√a来表示a的平方根。

2、性质(1)非负实数的平方根是一个非负实数。

即如果a是一个非负实数,那么它的平方根一定是一个非负实数。

(2)如果a是一个非负实数,那么a的平方根存在且唯一。

即对于任意一个非负实数a,存在唯一的一个非负实数b,使得b * b = a。

(3)如果a和b是两个非负实数,且a = b * b,那么a的平方根就是b。

3、计算方法(1)试除法试除法也适用于计算非负实数的平方根,但是由于实数的数量级比较大,那么这种方法通常比较低效。

(2)牛顿迭代法和整数的平方根一样,牛顿迭代法也适用于计算非负实数的平方根。

数的开方知识点

数的开方知识点

平方根与立方根知识点1、平方根:(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数(2)开平方:求一个非负数的平方根的运算叫做开平方。

(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数B零有一个平方根,它是零本身C负数没有平方根(4)平方根的表示:一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣”表示,a的平方根合起来记作“”,其中“”读作“二次根号”,“” 读作“二次根号下a ”.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.(5)算术平方根:注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.2.平方根说明:平方根有三种表示形式:±a ,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。

要特别注意:a≠±a。

3.算术平方根性质:算术平方根a具有双重非负性:①被开方数a是非负数,即a≥0.②算术平方根a本身是非负数,即a≥0。

4.平方根与算术平方根的区别与联系:区别:1定义不同2个数不同:3表示方法不同:联系:①具有包含关系:②存在条件相同:2、立方根:1.(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根,a叫做被开立方数(2)开立方:求一个数a的立方根的运算叫做开平方。

(3)立方根的性质:A正数有一个正立方根B负数有一个负立方根C零的立方根是零3a(4)立方根的表示:数a的立方根我们用符号来表示,读作"三次根号a",其中a 叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。

注:1)若两数的立方根相等,则这两数相等;反之,若两数相等,则这两数的立方根相等;2)立方根等于本身的数有0、1、-1.3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。

数的开方知识点

数的开方知识点

平方根与立方根知识点1、平方根:(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数(2)开平方:求一个非负数的平方根的运算叫做开平方。

(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数B零有一个平方根,它是零本身C负数没有平方根(4)平方根的表示:一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣”表示,a的平方根合起来记作“”,其中“”读作“二次根号”,“”读作“二次根号下a”.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.(5)算术平方根:注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.2.平方根说明:平方根有三种表示形式:±a,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。

要特别注意:a≠±a。

3.算术平方根性质:算术平方根a具有双重非负性:①被开方数a是非负数,即a≥0.②算术平方根a本身是非负数,即a≥0。

4.平方根与算术平方根的区别与联系:区别:1定义不同2个数不同:3表示方法不同:联系:①具有包含关系:②存在条件相同:2、立方根:1.(1)定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根,a 叫做被开立方数(2)开立方:求一个数a 的立方根的运算叫做开平方。

(3)立方根的性质:A 正数有一个正立方根B 负数有一个负立方根C 零的立方根是零 (4)立方根的表示:数a 的立方根我们用符号 来表示,读作"三次根号a",其中a 叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。

注:1)若两数的立方根相等,则这两数相等;反之,若两数相等,则这两数的立方根相等;2)立方根等于本身的数有0、1、-1.3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b ≥0)。

数的开方知识点

数的开方知识点

平方根与立方根知识点1、平方根:(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数(2)开平方:求一个非负数的平方根的运算叫做开平方。

(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数B零有一个平方根,它是零本身C负数没有平方根(4)平方根的表示:一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣”表示,a的平方根合起来记作“ ”,其中“”读作“二次根号”,“”读作“二次根号下a ”.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.(5)算术平方根:注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.2.平方根说明:平方根有三种表示形式:±a,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。

要特别注意:a≠±a。

3.算术平方根性质:算术平方根a具有双重非负性:①被开方数a是非负数,即a≥0.②算术平方根a本身是非负数,即a≥0。

4.平方根与算术平方根的区别与联系:区别:1定义不同 2个数不同:3表示方法不同:联系:①具有包含关系:②存在条件相同:2、立方根:1.(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根,a叫做被开立方数(2)开立方:求一个数a 的立方根的运算叫做开平方。

(3)立方根的性质:A 正数有一个正立方根 B 负数有一个负立方根 C 零的立方根是零(4)立方根的表示:数a 的立方根我们用符号 来表示,读作"三次根号a",其中a 叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。

注:1)若两数的立方根相等,则这两数相等;反之,若两数相等,则这两数的立方根相等;2)立方根等于本身的数有0、1、-1.3.某数的平方的算术平方根等于某数的绝对值,即 =|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即 = · (a≥0,b≥0)。

数的开方知识点

数的开方知识点

平方根与立方根知识点1、平方根:(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数(2)开平方:求一个非负数的平方根的运算叫做开平方。

(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数B零有一个平方根,它是零本身C负数没有平方根(4)平方根的表示:一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣”表示,a的平方根合起来记作“”,其中“”读作“二次根号”,“”读作“二次根号下a”.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.(5)算术平方根:注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.2.平方根说明:平方根有三种表示形式:±a,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。

要特别注意:a≠±a。

3.算术平方根性质:算术平方根a具有双重非负性:①被开方数a是非负数,即a≥0.②算术平方根a本身是非负数,即a≥0。

4.平方根与算术平方根的区别与联系:区别:1定义不同 2个数不同:3表示方法不同:联系:①具有包含关系:②存在条件相同:2、立方根:1.(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根,a叫做被开立方数(2)开立方:求一个数a的立方根的运算叫做开平方。

(3)立方根的性质:A正数有一个正立方根 B负数有一个负立方根 C零的立方根是零3a(4)立方根的表示:数a的立方根我们用符号来表示,读作"三次根号a",其中a 叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。

注:1)若两数的立方根相等,则这两数相等;反之,若两数相等,则这两数的立方根相等;2)立方根等于本身的数有0、1、-1.3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b ≥0)。

数的开方知识点

数的开方知识点

平方根与立方根知识点1、平方根:(1)定义:如果一个数的平方等于a,那么这个数叫做a的平方根,a叫做被开方数(2)开平方:求一个非负数的平方根的运算叫做开平方。

(3)平方根的性质:A一个正数有正、负两个平方根,它们互为相反数B零有一个平方根,它是零本身C负数没有平方根(4)平方根的表示:一个正数a的正的平方根,用符号“”表示, a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“﹣??”表示,a的平方根合起来记作“”??,其中“”??读作“二次根号”,“”读作“二次根号下a?”??.当根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.(5)算术平方根:注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.2.平方根说明:平方根有三种表示形式:±a,a,-a,它们的意义分别是:非负数a的平方根,非负数a的算术平方根,非负数a的负平方根。

要特别注意:a≠±a。

3.算术平方根性质:算术平方根a具有双重非负性:①被开方数a是非负数,即a≥0.②算术平方根a本身是非负数,即a≥0。

4.平方根与算术平方根的区别与联系:区别:1定义不同 2个数不同:3表示方法不同:联系:①具有包含关系:②存在条件相同:2、立方根:1.(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根,a叫做被开立方数(2)开立方:求一个数a的立方根的运算叫做开平方。

(3)立方根的性质:A正数有一个正立方根 B负数有一个负立方根 C零的立方根是零3a(4)立方根的表示:数a的立方根我们用符号来表示,读作"三次根号a",其中a叫做被开方数,3叫做根指数,3且不能省略,否则与平方根混淆。

注:1)若两数的立方根相等,则这两数相等;反之,若两数相等,则这两数的立方根相等;2)立方根等于本身的数有0、1、-1.3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b ≥0)。

第章数的开方知识点总结

第章数的开方知识点总结

第章数的开方知识点总结数的开方是数学中的一个重要概念,它表示一个数的平方根。

在解决各种数学问题以及实际生活中的应用中,数的开方常常用到。

本文将对数的开方的基本概念、性质、计算方法以及其应用进行总结。

一、数的开方的基本概念数的开方是指求一个数的平方根。

对于非负实数a,如果有一个非负实数x,使得x的平方等于a,那么x就是a的平方根,记作√a。

二、数的开方的性质1.非负数的开方是唯一的。

即对于任意非负实数a,只有一个非负实数x,使得x的平方等于a。

2.平方根是非负实数。

即对于任意非负实数a,它的平方根也一定是非负实数。

三、数的开方的计算方法1.分解因数法:将被开方数分解成若干个互质的因数的乘积,然后对每个因数分别开方。

2.二分逼近法:从区间的两个端点开始,取区间中点作为试探值,然后逐步逼近所要求的平方根。

3.等差平方根法:根据等差数列的性质,可通过等差数列的特点,或相邻两项之间的差值关系,直接计算出平方根的近似值。

四、数的开方的应用1.几何学中的应用:如计算正方形的对角线长度、长方形的对角线长度等。

2.物理学中的应用:如计算速度、加速度等。

3.统计学中的应用:如计算标准差等。

4.工程学中的应用:如计算电路的电阻、计算建筑物的面积等。

五、注意事项1.负数的开方是复数,不是实数。

正数的开方是唯一的,但负数的开方有两个解,一正一负。

2.有时候需要对数的开方进行近似计算,可以使用牛顿迭代法等方法。

六、数的开方的扩展1.平方根的概念可以扩展到其他次方根的概念,如立方根、四次方根等。

2.对于复数,也可以进行开方运算,得到复数的开方。

总之,数的开方是数学中一个重要的概念,它有着广泛的应用。

通过对数的开方的基本概念、性质、计算方法以及应用的总结,我们可以更好地理解数的开方,并能够灵活运用数的开方解决各种数学问题以及实际生活中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的开方知识点汇总集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
数的开方知识点汇总
安皋二中八年级数学组
一、平方根、算术平方根
1、平方根的定义:如果一个数的平方等于a那么这个数就叫做数a的
平方根。

即如果x2= a那么x就是a有平方根。

2、平方根的性质:
(1)正数有两个平方根,它们互为相反数。

(2)0的平方根是0
(3)负数没有平方根(因为任何数的平方都是一个非负数)
3、平方根的表示方法
一个非负数a的平方根可表示为±a,读作正负根号a
其实它的完整写法是±2a我们称2是根指数,a叫做被开方数,叫根号,我们平常省略了根指数2。

3、算术平方根
(1、)定义:一个正数的正的平方根叫做这个数的算术平方根。

(2)表示方法:一个非负数a的算术平方根可表示为a,读作根号a,(3)算术平方根的性质:
①正数有一个正的算术平方根。

②0的算术平方根是0
③负数没有平方根,当然也没有算术平方根。

(4)a的双重非负性
①首先,a要有意义,首先被开方数必须是一个非负数。

②其次,a表示一个非数的算术平方根,它的值不可能是一个负数,即它的值是一个非负数。

综上:a中a≥0 a≥0
(5)初中所学的三类非负数
ⅰ:绝对值非负即|a|≥0
ⅱ:偶次方非负即a偶次≥0
ⅲ:算术平方根非负即当a≥0时a≥0
4、立方根
(1、)定义:如果一个数的立方等于a那么这个数就叫做a的立方根。

即如果x3=a那么x就是a的立方根。

(2、)立方根的表示方法:
一数a的立方根表示为3a,读作三次根号a
其中3叫做根指数,a叫被开方数。

(当根指数是2时可以省略,是3或其数时不能省略)
(3、)立方根的性质:
任何数都有立方根且只有一个
正数的立方根是一个正数,0的立方根是0,负数的立方根是一个负数。

5、数的开方中的几个公式:
(1)2a|
|a
(a为任意实数)
(2、)(a)2=a (a≥0)
(3、)(3a)3= a(a为任意实数)
33(a为任意实数)
(4、)a
a=
(5、)-3a=3a
-(a为任意实数)
6、实数与数轴
(1、)无理数的定义:无限不循环小数叫无理数
(2、)实数的定义:有理数和无数统称为实数。

(3)实数的分类:
7、实数与数轴的关系
任意一个数对应了数轴上的一个点,数轴上任意一上点对应了一个实数,因此实数与数轴上的点是一一对应关系。

相关文档
最新文档