热辐射原理及计算..

合集下载

热辐射和黑体辐射

热辐射和黑体辐射

热辐射和黑体辐射热辐射是指物体由于热运动而发射出的能量,是一种无需介质传递的辐射方式。

这种辐射的能量主要由电磁波组成,包括可见光、红外线、紫外线等。

而黑体辐射则是研究热辐射的理想模型,它是指一个能完全吸收所有辐射能量并且不反射也不透射的物体。

一、热辐射的基本原理热辐射的基本原理可以归结为两个方面:物体内部热能的分子运动和辐射能量的辐射出去。

热辐射的程度和物体的温度有关,温度越高,物体辐射的能量越多。

根据斯特藩-玻尔兹曼定律,辐射的能量与物体的绝对温度的四次方成正比。

二、黑体辐射的特点黑体辐射是指完全吸收所有入射辐射能量的物体,它可以作为热辐射的理想模型来研究。

与其他物体相比,黑体辐射有着独特的特点:1. 完全吸收:黑体可以完全吸收所有辐射能量,不进行反射和透射。

2. 完全发射:黑体可以以任意波长和任意强度发射辐射能量。

3. 理想辐射源:黑体辐射的能量分布只和温度有关,而与黑体的材料和形状无关。

三、黑体辐射的定律为了描述黑体辐射的能量分布规律,人们提出了以下两个基本定律:1. 基尔霍夫定律:一个处于热平衡状态的物体,吸收的辐射能量与它发射的辐射能量在同一波长范围内完全相等。

2. 普朗克定律:黑体辐射的能量密度与频率成正比,而且与温度的四次方成正比。

四、热辐射的应用热辐射在生活中有着广泛的应用,以下是一些常见的应用场景:1. 热能转换:热辐射可以用来转换成其他形式的能量,比如太阳能的利用、热电转换等。

2. 照明技术:可见光是热辐射的一部分,因此热辐射的研究对于改善照明技术非常重要。

3. 医学诊断:红外线辐射可以用于医学诊断,比如红外热像仪可以检测人体的热辐射情况。

4. 环境监测:红外线辐射还可以用于环境监测,比如监测地表温度、火灾预警等。

总结:热辐射是物体由于热运动发射出的能量,而黑体辐射则是研究热辐射的理想模型。

热辐射的能量与温度相关,而黑体辐射的能量分布则与温度的四次方成正比。

热辐射在生活中有着广泛的应用,包括热能转换、照明技术、医学诊断和环境监测等。

热辐射原理和计算

热辐射原理和计算

公式
韦恩位移定律可以用数学公式表示为:λ_max = b / T,其中λ_max是辐射波长峰值,b是韦恩位移常数,T是绝对温度。
应用
韦恩位移定律广泛应用于天文学、气象学和工业热工技术中,可以帮助预测和分析不同温度下的辐射特性。
热辐射的计算方法
公式计算
利用热辐射定律,如斯蒂芬-玻尔兹曼定律、普朗克定律等,可以通过计算得出物体的辐射热量。
热辐射的热量计算
辐射热量公式
热辐射的热量可通过斯蒂芬-玻尔兹曼定律计算:Q = ε × σ × A × (T₁⁴ - T₂⁴),其中Q为热量,ε为发射率,σ为斯蒂芬-玻尔兹曼常数,A为表面面积,T₁和T₂分别为两物体的绝对温度。
物体属性影响
物体的发射率和吸收率是影响热辐射量的重要因素。光滑表面和黑色物体通常具有较高的吸收率和发射率,而镜面和白色物体则相反。这些属性需要在计算中考虑进去。
光污染
城市照明设备和工业发出的热辐射可能会对动物和植物的生理节奏产生干扰,导致环境生态失衡。
温室效应
温室气体
温室效应是由人类活动排放的二氧化碳、甲烷等温室气体造成的现象。这些气体吸收和散射地表辐射,导致地球气温上升。
气温升高
温室效应导致全球平均气温持续上升,冰川融化,海平面上升,极端天气事件频发,对生态环境和人类社会造成严重影响。
灰体辐射
灰体辐射是一种非理想的热辐射,其辐射特性与黑体不同。灰体的辐射特性由辐射率(发射率)来描述,辐射率小于1。不同的材料和表面状态会有不同的辐射率,这是影响热交换的重要因素。
灰体的辐射功率可以通过斯蒂芬-玻尔兹曼定律和灰体的辐射率计算得到。相比理想的黑体辐射,灰体辐射功率会更小。
选择性辐射
选择性辐射是指物体只能对特定波长的光辐射吸收或发射,而不能对其他波长的光辐射产生反应的现象。这种现象与物体的物理化学性质密切相关,是热辐射行为中一个重要的特点。选择性辐射使得不同材料和表面能够有不同的辐射特性,从而在工程应用中可以得到广泛利用。

热辐射原理及计算

热辐射原理及计算
① 因灰体A<1→在灰体间的辐射传热中,辐射能多次被吸收、被反射→A、R;
② 由于物体的形状及大小、相互间的位置与距离等因素影响→引入角系数φ。
(φ :一物体表面辐射的总能量落到另一物体表面的分率)
1
2
1
2
1 2
1 2
(2) 两无限大灰体平行平壁间辐射传热计算q1-2
推导假设:
两大平壁→从一壁面发出的辐射能可全部投射到别一壁面上, φ=1;
物体的A、R、D→其大小取决于: 物体的性质; 表面状况; 温度; 投射辐射线的波长。
灰体——能以相同吸收率吸收所有波长范围辐射能的物体; 特点: A与辐射线波长无关,即物体对投入辐射的吸收 率与外界无关;
不透过体,A+R=1 →工业上常见固体材料(0.4~ 20 μm)。
(3) 辐射传热
物体之间相互辐射与吸收辐射能的传热过程。
③ 热射线的特点:
与可见光一样,服从反射与折射定律。 在均质介质中→直线传播; 在真空、多数气体中→完全透过; 在工业上常见的多数固体or液体中→不能透过。
(2)热辐射对物体的作用——A、R、D
当热辐射的能量投射在某一物体上时,其总能量Q: 被吸收QA; 被反射QR; 穿透物体QD。
① 黑体、镜体、透过体、灰体 理想物体,作为实际物体一种比较标准→简化辐射传热计算。
Ebλ T3
式中: Ebλ——黑体的单色辐射能力,W/m2;
T2
T —— 黑体的绝对温度,K;
T1
C1—— 常数,其值为3.743×10-16,W·m2;
C2—— 常数,其值为1.4387×10-2,m·K。
λ
从图中可见:
① 对应于每一温度T→均为一条能量分布曲线;

热辐射原理及计算

热辐射原理及计算

(5) 角系数(几何因数)φ ——从一个物体表面所发出的辐射能被另一物体表面所截获分数 φ:
两物体的几何排列; 简单几何形状→推算;
辐射面积基准A1or A2有关。
复杂形状→实验测定。
11 12 13 14 1n 1.0 11 0
① 两大平行板
(2) Stefan-Boltzmann law(四次方定律)
——黑体辐射能力Eb与T 间的关系
Eb


0
Eb d


C15
C2 T
0
d f (T )
e
4
1
T Eb 0T 4 C0 100 0 5.67 108 W / m 2 K 4 C0 5.67W / m K
0, Eb 0; , Eb 0
紫外灾难
Eb Eb ,max ; Eb ;
② T↑ ,Ebλ,max移向波长较短的方向 ③ 等温线下的面积→黑体的辐射能力Eb 另外:
m T 2.9 10
-3
由于地表温度和太阳表面温度的差异,使 得二者辐射波长不同,又由于大气层中的 CO2吸收地球辐射波,导致温室效应。
1
2
1
2
引入总辐射系数C1-2(物体1对2):取决于壁面的性质、两壁面的几何 尺寸; 两大平行平壁:
C1 2
C0 1 1 1
q12
1
2
T1 4 T2 4 C12 100 100
(3) 两平板面积均为A时的辐射传热速率Q1-2
4
同理,壁面2的有效辐射Eef2为:
q12 Eef 1 Eef 2

化工原理3.5热辐射

化工原理3.5热辐射
3-5 热辐射
书P177
3-5-1 基本概念 3-5-2 物体的辐射能力 3-5-3 两固体间的相互辐射 3-5-4 高温设备及管道的热损失
1
3-5-1 基本概念
1. 辐射:物体通过电磁波来传递能量的过程。 2. 热辐射:物体由于热的原因以电磁波的形式向
外发射能量的过程。
热射线(可见、红外)——波长(0.38μm-100μm)
24
4
代入:
q1− 2
=
1 ε1
C0 +1
ε2
[( T1 )4 − 1 100
− ( T2 )4 ] 100
令:C1−2
=
1 ε1
C0 +1
ε2
−1
=
1 C1
+
1 1 C2

1 C0
——总辐射系数
13
Q1− 2
=
C
1−
2
A[(
T1 100
)
4

( T2 )4 ] 100
• 两平面的面积有限时:
Q1− 2
=
物体在低温时辐射影响小,可忽略;高温时则成为主要的传热方式。
6
1
二、实际物体
黑度: ε = E E0
ε<1
ε是物体辐射能力接近黑体辐射能力的程度
ε=f(物体的种类、表面温度、表面状况) ——实验测定
三、灰体
E
=
εE0
=
εC
0
⎜⎛ ⎝
T 100
⎟⎞ 4 ⎠
=
C ⎜⎛ ⎝
T 100
⎟⎞ 4 ⎠
C——灰体的辐射系数,C= εC0
特点: • 能量形式的转换:辐射能⇔热能 • 不需要任何介质:可在真空中传播

认识热辐射实验报告

认识热辐射实验报告

认识热辐射实验报告一、实验目的1. 了解热辐射的基本概念和特点;2. 掌握热辐射实验的操作方法;3. 理解热辐射与温度之间的关系。

二、实验原理热辐射是物体在一定温度下,向外发射热能的现象。

热辐射的特点是:无视觉效应、能够在真空中传播、遵循不同温度下不同频率的辐射能量分布规律。

根据瑞利-金斯定理,热辐射的辐射能量密度与频率之间满足普朗克辐射定律:B(\nu, T) = \frac{{2h \nu^3}}{{c^2}} \cdot \frac{1}{{e^{\frac{{h\nu}}{{kT}}} -1}}其中,B(\nu, T) 是单位体积内每单位频率的辐射能量,h 为普朗克常数,c 为光速,k 为玻尔兹曼常数,T 为绝对温度,\nu 为频率。

三、实验装置与步骤实验装置:1. 黑色辐射腔体:用于产生稳定的热辐射环境,内壁涂有黑色吸热层,外壁绝热处理;2. 热辐射测量仪:用于测量热辐射的频率分布;3. 温度控制装置:用于控制热辐射腔体的温度。

实验步骤:1. 打开热辐射测量仪和温度控制装置,待其启动完成;2. 将温度控制装置设定为所需的温度值,等待一段时间使温度稳定;3. 使用热辐射测量仪测量热辐射的频率分布,并记录下每个频率对应的辐射能量密度;4. 复制以上步骤,分别测量不同温度下的热辐射频率分布。

四、实验结果与分析在实验中,我们选择了三个温度(298K、400K、500K)进行了热辐射实验,并记录下了对应的辐射能量密度数据。

根据普朗克辐射定律,我们可以绘制出三条频率与辐射能量密度的关系曲线。

经过数据处理和绘图,我们得到了如下图所示的结果:![热辐射频率分布图](从图中可以看出,随着温度的升高,热辐射的频率分布曲线整体向高频率方向移动,并且峰值辐射能量密度逐渐增大。

这符合实验原理中普朗克辐射定律的预期。

五、实验结论通过本次实验,我们对热辐射的概念和特点有了更深入的了解,并且掌握了热辐射实验的操作方法。

热辐射黑体辐射与温度的关系

热辐射黑体辐射与温度的关系

热辐射黑体辐射与温度的关系热辐射是指热能以电磁波的形式传播时产生的辐射现象。

黑体则是指一个完全吸收所有入射辐射的物体,而不产生反射和折射。

热辐射和温度之间存在着一种紧密的关系,即黑体辐射定律。

本文将探讨热辐射黑体辐射与温度之间的关系。

一、黑体辐射定律黑体辐射定律是研究热辐射的重要定律之一,由奥地利物理学家斯特凡·玻尔兹曼在19世纪末提出。

根据这个定律,黑体单位面积的辐射功率与黑体的温度之间成正比。

公式表示如下:P = εσT⁴其中,P为黑体单位面积的辐射功率,ε为黑体发射率,σ为斯特凡-玻尔兹曼常数,T为黑体的温度。

由此可见,黑体的辐射功率与温度的四次方成正比,温度每升高一倍,辐射功率将增加16倍。

这表明,随着温度的升高,黑体的辐射能力增强。

二、热辐射的特性热辐射具有以下几个主要特性:1. 波长分布特性:根据普朗克黑体辐射定律,热辐射的波长和强度分布与温度有关。

随着温度的升高,热辐射的峰值波长向短波方向移动。

2. 辐射功率密度:根据斯特凡-玻尔兹曼定律,热辐射功率与温度的四次方成正比。

这意味着辐射功率密度随着温度的升高而增加。

3. 热平衡:热辐射是物体与外界之间热平衡的结果。

物体吸收和辐射的热能达到平衡状态,温度保持稳定。

4. 反射和折射:与其他形式的辐射不同,热辐射不受物体表面的反射和折射影响。

三、应用领域热辐射黑体辐射与温度的关系在许多领域具有广泛的应用,包括以下几个方面:1. 热辐射测温:通过测量物体辐射出的能量,可以推算出物体的温度。

这种原理被广泛应用于红外测温仪、热像仪等设备中。

2. 热能收集利用:太阳能热辐射的应用是目前最为成熟和广泛的利用方式之一,通过吸收太阳辐射能量并将其转化为热能,可以实现加热、供暖等功能。

3. 光谱分析:根据物体的热辐射特性,可以利用光谱仪等仪器对物体的成分、温度等进行分析。

4. 星际物理研究:热辐射是宇宙中最为常见的一种现象,通过观测天体的热辐射特性,可以了解天体的温度、组成等信息,对宇宙的物理性质进行研究。

辐射传热(Radiation)

辐射传热(Radiation)
Eb
对任何物体,辐射能力与吸收率的比值为常数Eb; 黑体的辐射能力最大; 对于其它物体,吸收率愈大,辐射能力也愈大。
9
1.2 物体的辐射能力
任意两灰体间的辐射传热:
Q12
C12
A[( T1 )4 100
( T2 )4 ] 100
值与C12的计算式见表 3 8和图3 23
例3-18
10
1.3 对流和辐射的联合传热
二、黑体、镜体、透热体和灰体
Q QA QR QD
或:QA QR QD 1 QQQ
A+R+D=1
A — 吸收率 R — 反射率 D — 透射率
4
1.1 热辐射的基本概念
黑体(绝对黑体):A=1 镜体(绝对白体):R=1 透热体:D=1 灰体:能以相同的吸收率吸收所有波长范围辐射能
的物体。 特点:(1)A不随波长而变
设备热损失应等于对流传热和辐射传热之和
1. 由于对流传热而损失的热量为:
Qc Aw (tw t)
2. 由于辐射传热而损失的热量为:
QR
C12Aw[(1T0w0)4
( T )4] 100
或:QR R Aw[tw t]
其中: R
C12[
( Tw 100
)
Байду номын сангаас
4
( T )4 100
]
tw t
11
1.3 对流和辐射的联合传热
Eb
C0
( T )4 100
Co — 黑体的辐射系数,5.67W / m2 K 4
6
1.2 物体的辐射能力
二、灰体的辐射能力
Eb
C( T )4 100
同一温度下灰体的辐射能力与黑体的辐射能力之
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要内容:
热辐射的基本概念、基本定律;
辐射传热计算的基本方法。 作业:练习题4-12, 4-13
1 热辐射的基本概念
(1) 热辐射 (T↑,热辐射↑)
物体因热的原因,对外以电磁波形式向外发出辐射能→ 吸收→热能。
① 热辐射机理的定性描述: 物体受热后→其中某些原子or 分子“激发态”,从激 发态 → 低能态→能量就以电磁波辐射的形式发射出来。
(2) Stefan-Boltzmann law(四次方定律)
——黑体辐射能力Eb与T 间的关系
Eb


0
Eb d


C15
C2 T
0
d f (T )
e
4
1
T Eb 0T 4 C0 100 0 5.67 108 W / m 2 K 4 C0 5.67W / m K
② 热射线
自发
可见光线(波长:0.4~0.8μm——T↑↑,热效应明显) 红外光线(波长:0.8~20 μm——多数具有实际意义 热辐射波长→决定作用)
③ 热射线的特点:
与可见光一样,服从反射与折射定律。
在均质介质中→直线传播; 在真空、多数气体中→完全透过;
在工业上常见的多数固体or液体中→不能透过。
A
即:任何灰体的辐射能力与吸收率之比恒等于同一温
度下绝对黑体的辐射能力。
或:
同一灰体吸收率与其黑度在数值上必相等。 ε ↑→A↑→E↑
Kirchhoff law推导的假设条件:
两无限大的平行平壁——两壁面间距离<<壁面尺寸; 其中一壁面1——灰体T1、E1、A1<1;另一壁面2——黑体T2、Eb、Ab=1; T1>T2,两壁面间为透热体(D=1),系统对外绝热。 E1
热辐射
Heat Radiation
Keywords: Radiation heat transfer, Emissivity,Absorptivity,
Reflectivity, Transmissivity, Pranck law, Stefan-Boltamann law, Kirchhoff law
物体的A、R、D→其大小取决于: 物体的性质; 表面状况; 温度; 投射辐射线的波长。
灰体——能以相同吸收率吸收所有波长范围辐射能的物体;
特点: A与辐射线波长无关,即物体对投入辐射的吸收 率与外界无关;
不透过体,A+R=1 →工业上常见固体材料(0.4~ 20 μm)。 (3) 辐射传热 物体之间相互辐射与吸收辐射能的传热过程。
A<1,E<Eb 且 A= ε
3 物体间的辐射传热
——讨论两灰体间的辐射传热 (1) 两灰体间辐射传热过程的复杂性(与灰体—黑体间辐射传热对比)
2 4
Eb T 4
黑体的辐射系数
由四次方定律:Eb对T敏感,T↑,热辐射起主导作用。
(3) 灰体的辐射能力E — ε
将Stefan-Boltamann law用于灰体:
T E C 100
ε=E/Eb
4
C:灰体辐射系数;
定义: 物体的黑度ε 为 同温度下灰体与黑体的辐射能力之比,即
0, Eb 0; , Eb 0
紫外灾难
Eb Eb ,max ; Eb ;
② T↑ ,Ebλ,max移向波长较短的方向 ③ 等温线下的面积→黑体的辐射能力Eb 另外:
m T 2.9 10
-3
由于地表温度和太阳表面温度的差异,使 得二者辐射波长不同,又由于大气层中的 CO2吸收地球辐射波,导致温室效应。
T E Eb C0 100
ε:是物体本身的特性
4
ε由实验测定
物体的性质; 温度; 表面状况(表面粗糙度、氧化程度)。
(4) Kirchhoff law
——灰体辐射能力与吸收能力间(E~A)的关系
数学表达式:
E1 E2 Eb f T A1 A2
2 固体的辐射能力
定义:
表征固体发射辐射能的本领
物体在一定温度下,单位时间、单位表面积所发出 全部波长的总能量。 E(J/m2· s,即W/m2)
单色辐射能力:在一定温度下,物体发射某种波 长的能力,记作:Eλ(W/m3)
E dE E lim 0 d
(1) Planck law
(2)热辐射对物体的作用——A、R、D 当热辐射的能量投射在某一物体上时,其总能量Q: 被吸收QA; 被反射QR;
穿透物体QD。
Q QA QR QD
QA QR QD 1 Q Q Q A QA / Q
R QR / Q D QD / Q
① 黑体、镜体、透过体、灰体
A R D 1
Kirchhoff law推导过程:
对壁面1,辐射传热的结果即两壁面辐射传热的热通量q为: Eb A1Eb
q E1 A 1 Eb
推广到任意灰体,有:
当两壁面达到热平衡时,T1=T2 → q=0 → E1=A1Eb→ E1/A1=Eb
E1 E2 Eb f T A1 A2
理想物体,作为实际物体一种比较标准→简化辐射传热计算。
黑体(绝对黑体):A=1,R=D=0→辐射与吸收能力max,
在热辐射的分析与计算中具有特殊重要性。 镜体(绝对白体):R=1,A=D=0;
能全部反射辐射能,且入射角等于反射角(正常反射)。
透过体(绝对透过体):D=1,A=R=0;能透过全部辐射能的物体。 实际上: 对 无光泽的黑体表面,A=0.96~0.98——接近黑体; 磨光的铜表面,R=0.97——近似镜体; 单原子or对称双原子气体,D↑——视为透过体。
E E d
0

——黑体的单色辐射能力Ebλ随波长λ、温度T的变化规律
Eb
e
C2 / T
C1
5
ቤተ መጻሕፍቲ ባይዱ
1
f ( , T )
Ebλ T3 T2 T1 λ
T3 T2 T1
式中: Ebλ——黑体的单色辐射能力,W/m2; T —— 黑体的绝对温度,K; C1—— 常数,其值为3.743×10-16,W· m2; C2—— 常数,其值为1.4387×10-2,m· K。 从图中可见: ① 对应于每一温度T→均为一条能量分布曲线;
相关文档
最新文档