高中物理竞赛功和能知识点讲解

高中物理竞赛功和能知识点讲解
高中物理竞赛功和能知识点讲解

高中物理竞赛功和能知识点讲解

一、知识点击

1.功、功率和动能定理

⑴功 功是力对空间的积累效应.如果一个恒力F 作用在一个物体上,物体发生的位移是s ,那么力F 在这段位移上做的功为 W=Fscos θ

在不使用积分的前提下,我们一般只能计算恒力做的功.但有时利用一些技巧也能

求得一些变力做的功.

⑵功率:作用在物体上的力在单位时间内所做的功.

平均功率:W P t = 瞬时功率:cos lim lim cos W Fs P F t t

θ

υθ===??

⑶动能定理

①质点动能定理: 22

2101122

Kt K K W F s m m E E E υυ==

-=-=?外外 ②质点系动能定理:若质点系由n 个质点组成,质点系内任何一个质点都会受到来

自于系统以外的作用力(外力)和系统内其他质点对它的作用力(内力),在质点运动时这些力都将做功.

2

201122i it i i i i W W m m υυ+=-∑∑∑∑外内

即0Kt K K W W E E E +=-=?系外系内

2. 虚功原理:许多平衡状态的问题,可以假设其状态发生了一个微小的变化,某一力

做了一个微小的功△W ,使系统的势能发生了一个微小的变化ΔE ,然后即可由ΔW=△E 求出我们所需要的量,这就是虚功原理. 3.功能原理与机械能守恒

⑴功能原理:物体系在外力和内力(包括保守内力和非保守内力)作用下,由一个状态变到另一个状态时,物体系机械能的增量等于外力和非保守内力做功之和. 因为保守力的功等于初末势能之差,即 0P Pt P W E E E =-=-?保

K P W W E +=??外非保内(E +E )=

⑵机械能守恒:当质点系满足:0W W +=外非保内,则ΔE =0即E K + E P = E K0 + E P0=常量

机械能守恒定律:在只有保守力做功的条件下,系统的动能和势能可以相互转化,但其总量保持不变.

说明:机械能守恒定律只适用于同一惯性系.在非惯性系中,由于惯性力可能做功,即使满足守恒条件,机械能也不一定守恒.对某一惯性系W 外=0,而对另一惯性系W

≠0,机械能守恒与参考系的选择有关。

4.刚体定轴转动的功能原理

若刚体处于重力场中,则:M 外=M 其外+M G (M 其外表示除重力力矩M G 以外的其他外力矩) W=W

其外+W G =(M 其外+M G )θ= E Kr

而21G P P P W E =-?=-(E -E )

2211

2

P Kr C M E E mgh J θω=?+?=+

其外() 即为重力场中刚体定轴转动的功能原理. 若呱0M θ=其外,即M 其外=0,则:

21

2

C mgh J ω+=常量

刚体机械能守恒. 二、方法演练

类型一、动力学中有些问题由于是做非匀变速运动,用牛顿运动定律无法直接求解,用动能定理,计算细杆对小环做的功也比较困难,因此

有时在受力分析时必须引入一个惯性力,这样就可以使问题简化很多。

例1.如图4—2所示,一光滑细杆绕竖直轴以匀 角速度ω转动,细杆与竖直轴夹角θ保持不变,一 个相对细杆静止的小环自离地面h 高处沿细杆下滑.

求小球滑到细杆下端时的速度.

分析和解:本题中由于小环所需向心力不断减小,

因此小环不是做匀变速运动,用牛顿运动定律无法 直接求解,用动能定理,计算细杆对小环做的功也 比较困难,因此我们选择细杆做参考系,分析小环 受力时必须加上一个惯性力,小环在旋转的非惯 性系中,虽然有径向运动,受到科里奥利力的作用,

但小环在切向无位移,科里奥利力不做功.惯性离心力2f m r ω=,随半径r 的减小

f 均匀减小,所以小环由半径r 0处移到下端r=0处,惯 性离心力对r 的平均值为20

2

m r F ω=

惯性离心力做的功:

222101

tan 2

W Fr m h ωθ=-=-

重力做功为: W 2 = mgh ,

由动能定理得222211(tan )22

mgh m h m ωθυ+-=

2222tan gh h υωθ=-

类型二、在功能关系的问题中有些也牵涉到速度关联的问题,在解题中必须注意到它们之间的约束条件,找出有关速度关系,才能准确利用功能原理即可求解. 例2.如图4—3所示,一根长为l 的细刚性轻杆的两端分别连结小球a 和b ,它们的质量分别为m a 和m b .杆可绕距a 球为14

l 处的水平定轴O 在竖直平面内转动.初始时杆处于竖直位置,小球b 几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m 的立方体匀质物块,图中ABCD 为过立方体中心且与细杆共面的截面.现用一水平恒力F 作用于a 球上,使之绕O 轴逆时针转动,求当a 转过α角时小球b 速度的大小,设在此过程中立方体物块没有发生转动,且小球b 与立方体物块始终接触没有分离.不计一切摩擦.

解析:如图4—4所示,用b υ表示a 转过α。角时b 球速 度的大小,υ表示此时立方体速度的大小,则有

cos b υαυ=

由于b 与正立方体的接触是光滑的,相互作用力总是沿 水 平方向,而且两者在水平方向的位移相同,因此相

互作用的作用力和反作用力做功大小相同,符号相反,做功的总和为0.因此在整个过程中推力F 所做的功应等于球a 、b 和正立方体机械能的增量.现用a υ表示此时a 球速度的大小,因为a 、b 角速度相同,14Oa l =,034Ob l =,所以得1

3

a b υυ= 根据功能原理可知

22

211331sin (cos )(cos )42442442

a a a

b b b l l l l l F m m g m m g m αυαυαυ?=--++-+ 将①、②式代人③可得

222

11331

sin ()(cos )(cos )(cos )42442442

a b a b b b b l l l l l F m m g m m g m αυαυαυα?=--++-+ 解得[]

29sin (3)(1cos )21818cos a b b a b l F m m g m m m ααυα

+--=

++

类型三、一些平衡状态的问题,用平衡条件很难或无法求解,这时可以假设其状态发生了一个微小的变化,就可以设想某一力做了一个微小的功△W ,然后用虚功原理就可以很简单地解答出问题.

例3.如图4—5所示,一轻质三足支架每边长度均为l ,每边与竖直线成同一角度θ,三足置于一光滑水平面上,且恒成一正三角形.现用一绳圈套在三足支架的三足上,使其不能改变与竖直线间的夹角,设三足支架负重为G ,试求绳中张力F T .分析和解:在本题这可以取与原平衡状态逼近的另一平衡态,从而虚设了一个元过程,此过程中所有元功之和为零,以此为基本关系列出方程,通过极限处理,从而求得最后结果.

分析支架受力:由于负重受到重力G ,支架的每边足部同时受到两侧绳的拉力F T ,易得其合力为3T F ,方向指向三足 构成的正三角形的几何中心,支架三边足部受水平地面支持力F N ,此力方向竖直向上。现设想支架各边足底在3T F 力作用下向正三角形中心移动一极小位移x ?,因而支架的高度升高了y ?,则在此虚拟的微动讨程中,3T F 力有一元功.F N 力不做功.负重重力势能增大.对系统用功能原理得33T F x G y ??=??

上式中,支架升高y ?与x ?关系如图4—6,图中支 架一边位置从ab 变为a'b',作b'b" ⊥ ab, aa" ⊥ a' b', 由于x ?很小,ab 边转过的角度△θ也很小,故可认 为a"b'=ab",且a'b'边与竖直方向夹角为θ,则有

sin cos x y θθ?=?, 即tan y x θ?=?

于是可得33tan T F x G x θ??=?,即tan 33

T G F θ

=

。 类型四、能量守恒的问题往往牵涉到摩擦力做功和碰撞,摩擦力做功要消耗机械能,而碰撞可以造成多过程,两者结合起来就很容易在物理学中出现一些数列问题,因此在解题中如何通过能量关系的计算得出有关的通式是解决这类问题的关键。 例4.一固定的斜面,如图4—7所示,倾角θ= 450,斜面长L = 2.00 m.在斜面下端有一与斜面垂直挡板,一质量为m 的质点,从斜面的最高点沿斜面下滑,初速度为零.质点沿斜面到斜面最低端与挡板发生弹性碰撞.已知质点与斜面间的滑动摩擦因数μ=0.20.试求此质点从开始运动到与挡板发生第11次碰撞的过程中运动的

总路程.

分析和解:在本题中由于质点与挡板发生弹性碰撞,故机械能消耗在摩擦力做功上,因此只要求出下滑和上滑一个来回通过的路程的通式,就可用数列的方法求解了。 质点在沿斜面滑动的过程中,受到摩擦力f 的大小为

cos f mg μθ=

若质点从斜面最高点第一次到达斜面最低端时的速度为

1υ,则有

2

11sin cos 2

m mgL mgL υθμθ=- ① 质点与斜面挡板发生弹性碰撞后,以速度1υ开始沿斜面上滑.若上滑的最大路程为L l ,则有

2

1111sin cos 2

m mgL mgL υθμθ=+ ② 由①、②两式得11sin cos sin cos mgL mgL mgL mgL θμθθμθ-=+ 即

1sin cos sin cos L mg mg L mg mg θμθθμθ

-=+ 令上式等号右边的数值等于a ,并以θ=450,μ=0.20代入,则得

1L aL =,10.202

10.203

a -=

=+

按同样的推理可知质点在第2次碰撞后上滑的距离为

221L aL a L ==

依此类推,可知在第10次碰撞后上滑的距离为:10

10L a L =

第1次碰撞前质点运动的路程为:1S L =

第2次碰撞前质点运动的总路程为:2122S L L L aL =+=+

依此类推,可知在第11次碰撞前,即从开始到发生第11次碰撞期间,质点运动的总路程为:21010222S L aL a L a L =+++???+

上式等号右边的数值,可根据数学上等比级数求和的公式算出,即

10101

(12)1

a S L a a -=+?-,故S 10=9.86 m.

类型五、机械能守恒的问题往往还可以与刚体的约束条件的问题结合在一切,解决这类问题时一方面要考虑到约束面的约束反力,另一方面又要考虑约束反力是否做功,如果不做功,可重点考虑系统的质心变化和能量的关系,以及约束各点的速度关联。

例5.如图4—8所示,质量为m 的钢球下连一根可不计质量的轻杆,杆长为L,杆原来直立在光滑的水平面上,轻推一下后,问:(1)小球下落的轨

迹是什么?(2)球在离地L/2处,杆着地点的速度为多少? 分析和解:(1)由球和杆组成的系统,因杆的质量可以忽略. 所以系统 的质心在球心.又因水平面光滑,该系统所受的 外力有重力mg 、水平面的约束反力(即支持力)N 均沿竖 直方向,故有

0e

ix i

F

=∑,且由于t=0时,0CD υ=,于是有

C x =常量

即系统的质心—球心将沿着杆原来的直立方向运动,其轨迹为竖直线, 如图4一8所示。

(2)球(系统)下落过程中,只有重力做功,故机械能守恒.因此当球离地面L/2

时,根据机械能守恒定律,有2

22

y

m m gL υ= 由上式得:y gL υ=

又因杆不会伸长或缩短,即杆可视为刚体,所以杆两端的速度沿杆的方向的投影必须相等,根据图

4一9可知:sin cos y x υαυα=,α是杆与地面

的夹角,可算出030α=.所以3

tan 3

x y gL υυα==

类型六、能量耗损的问题特别要注意的是两种基本的形式:转化和转移。解题时往往出现对某种耗散力的忽视把能量守恒的问题当成机械能守恒的问题来解。 例6.在一个倾角为α的斜面上镶嵌着许多同样的滚筒,相邻滚筒间的距离为d 。滚筒沿水平方向放置,质量为m,半径为r 的表面覆盖橡胶的圆柱形铁棍.质量为m 、长度远大于d 的厚木板在斜面的顶端释放,如图3-43所示.求木板的最终速度max υ,忽略空气阻力和滚筒转轴处的摩擦力.

分析和解:厚木板滑动距离L 时,有

L

d 个滚筒得到角速度max max r υω=.厚木板势能的减少为sin MgL α,而每个滚筒的动能为22

max max

1124

I m ωυ=,上述结论考虑了滚筒表面最终的切向速度应该与木板的速度相等,而每个滚筒的转动惯量为21

2

I mr =。认为

木板下降过程中损失的重力势能,全部转化成为滚筒的动能是不正确的.在此情况下由式2

max 1sin 4

L MgL m d αυ=

① 可以得到木板的最终速度为max 4sin dMg m

α

υ=

然而,这个结果是错误的,因为没有考虑滚筒加速过程中由摩擦力作用而导致的热量损失.令单个滚筒与木板之间的摩擦力为F (t )(没有必要假定这个力不随时间

变化).在Δt 时间间隔内,滚筒角动量的变化为:()I rF t t ω?=? ②

把上式的变化对时间取和,从而得出滚筒最终速度的一个方程:

max

max ()r F t t I I

r

υω?==∑ ③

另一方面,在时间△t 内,克服摩擦力所做的功(热散失)ΔQ 为摩擦力与滚筒表面相对位移之积

[]max ()()Q F t r t t υω?=-?

考虑式②、③,总的耗散能量为

[]222max

max

max max max

()()()2

2

Q F t r t t r F t t I I I

I

ωωυωωωωω

=-?=?-?=-=∑∑∑

在上式的计算中利用了等式21

()2

ωωω?=

?.这个结果表明,摩擦生热损失的能量与滚筒得到的动能相等.需要注意的是,这个结果既不依赖于摩擦力的大小,也不依赖于摩擦力随时间的变化. 正确的能量守恒方程不是①式,而应该是

22

max max 11sin 244

L L mgL m Q m d d αυυ=

+= 可以得到木板的最终速度为max 2sin dMg m

α

υ=

三、小试身手

1. 一质量为m 的小滑块A 沿斜坡由静止开始下滑,与一质量为km 的静止在水平地面

上的小滑块B 发生正碰撞,如图4—11所示,设碰撞是弹性的,且一切摩擦均不计,为使二者能且只能发生两次碰撞,则k 的值应满足什么条件?

2. 半径等于r 的半球形水池内充满了水如图4—12所示,把池内的水完全抽出至少要做多少功?

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

重点高中数学竞赛知识点

重点高中数学竞赛知识点

————————————————————————————————作者:————————————————————————————————日期:

数学 均值不等式 被称为均值不等式。·即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。 其中:,被称为调和平均数。 ,被称为几何平均数。 ,被称为算术平均数。 ,被称为平方平均数。 一般形式 设函数(当r不等于0时);(当r=0时),有时,。 可以注意到,Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即 。 特例 ⑴对实数a,b,有(当且仅当a=b时取“=”号),(当且仅当a=-b时取“=”号) ⑵对非负实数a,b,有,即 ⑶对非负实数a,b,有 ⑷对实数a,b,有 ⑸对非负实数a,b,有 ⑹对实数a,b,有

⑺对实数a,b,c,有 ⑻对非负数a,b,有 ⑼对非负数a,b,c,有 在几个特例中,最著名的当属算术—几何均值不等式(AM-GM不等式): 当n=2时,上式即: 当且仅当时,等号成立。 根据均值不等式的简化,有一个简单结论,即。 排序不等式 基本形式: 排序不等式的证明 要证 只需证 根据基本不等式 只需证 ∴原结论正确 棣莫弗定理 设两个复数(用三角形式表示),则: 复数乘方公式:. 圆排列 定义 从n个不同元素中不重复地取出m(1≤m≤n)个元素在一个圆周上,叫做这n个不同元素的圆排列。如果一个m-圆排列旋转可以得到另一个m-圆排列,则认为这两个圆排列相 同。 计算公式 n个不同元素的m-圆排列个数N为: 特别地,当m=n时,n个不同元素作成的圆排列总数N为:。

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中数学正态分布知识点+练习

正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. (一) 知识内容 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近 的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22 ()2()2πx f x e μσσ --=?,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作 2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线. ⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 例题精讲 高考要求 正态分布 x=μ O y x

⑶重要结论: ①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%. ②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则. (二)典例分析: 【例1】 已知随机变量X 服从正态分布2(3)N a , ,则(3)P X <=( ) A .1 5 B . 1 4 C .1 3 D . 12 【例2】 在某项测量中,测量结果X 服从正态分布() ()210N σσ>,,若X 在()01, 内取值的概率为0.4,则X 在()02, 内取值的概率为 . 【例3】 对于标准正态分布()01N , 的概率密度函数()2 2 x f x -=,下列说法不正确的是( ) A .()f x 为偶函数 B .()f x C .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数 D .()f x 关于1x =对称 【例4】 已知随机变量X 服从正态分布2(2)N σ, ,(4)0.84P X =≤,则(0)P X =≤( ) A .0.16 B .0.32 C .0.68 D .0.84 【例5】 某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数 的 . 【例6】 已知2(1)X N σ-, ~,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤( ) A .0.4 B .0.8 C .0.6 D .无法计算 【例7】 设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高中物理竞赛解题方法之降维法例题

十三、降维法 方法简介 降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。 赛题精讲 例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。 将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。 如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为: G G F F 2 22 12 = += ' F ′的方向沿斜面向下与推力成α角, 则 ?=∴== 451 tan 1ααF G 这就是物体做匀速运动的方向 物体受到的滑动摩擦力与F ′平衡,即 2/2G F f = '= 所以摩擦因数:3 630cos 2/2=? ==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子? 解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

北师大版高中数学必修知识点总结

北师大版高中数学必修3知识与题型归纳 第一章《统计》知识与题型归纳复习 (一)、抽样方法 1、简单随机抽样 (1)、相关概念:总体、个体、样本、样本容量。(2)、基本思想:用样本估计总体。 (3)、简单随机抽查概念。一般的,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本)(N n ≤ ,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽 样。其特点:①总体个数有限;②逐个抽取;③不放回抽样;④等可能抽样。 (4)、抽样方法:①抽签法;②随机数表。 2、系统抽样 (1)、定义:当总体元素个数很大时,样本容量不宜太小,这时可将总体分为均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本(等距抽样)。 (2)、步骤:①编号;②分段;③不确定起始个体编号;④按规则抽取。 3、分层抽样 (1)、定义:当总体由差异明显的几部分组成时,为了使抽取的样本更好的反应总体情况,我们经常将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样。 适用特征①总体由差异明显的几部分组成;②分成的各层互不重叠;③各层抽取的比例等于样本客样在总体中的比例,即 N n 。 (二)、用样本的频率分布估计总体的分布(统计图表) 1、列频率分布表,画频率分布直方图: (1)计算极差(2)决定组数和组距(3)决定分点(4)列频率分布表(5)画频率分布直方图 2、茎叶图;3、扇形图; 4、条形图;5、折线图; 6、散点图。 (三)、用样本的数字特征估计总体的数字特征 1、有关概念 (1)、众数:频率分布最大值所对应的样本数据(或出现最多的那个数据)。 (2)、中位数:累积频率为0.5时,所对应的样本数据。 (3)、平均数:)(1 21n x x x n x +++= Λ (4)、三个概念的区别:①都是描述一组数据集中趋势的量,平均数较重要。②平均数的大小与每个数相关。③众数考查各个数据出现的频率,大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,众数更能反映问题,中位数仅与排列有关。 2、样本方差与样本标准差 1样本方差:( )()( )[]2 22212 1 x x x x x x n S n -++-+-=Λ样本方差大说明样本差异和波动性大。 (2)、样本标准差:方差的算术平方根( )()( )[]2 22211 x x x x x x n S n -++-+-= Λ (3)、要有单位,方差的单位是原数据的单位的平方,标准差的单位与原数据单位同。 (四)、变量的相关性: 1、变量与变量之间存在着的两种关系①函数关系:确定性关系。②相关关系:自变量的取值带有一定的随机性的两个变量之间的关系。

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

高中物理竞赛功和能知识点讲解

高中物理竞赛功和能知识点讲解 一、知识点击 1.功、功率和动能定理 ⑴功 功是力对空间的积累效应.如果一个恒力F 作用在一个物体上,物体发生的位移是s ,那么力F 在这段位移上做的功为 W=Fscos θ 在不使用积分的前提下,我们一般只能计算恒力做的功.但有时利用一些技巧也能 求得一些变力做的功. ⑵功率:作用在物体上的力在单位时间内所做的功. 平均功率:W P t = 瞬时功率:cos lim lim cos W Fs P F t t θ υθ===?? ⑶动能定理 ①质点动能定理: 22 2101122 Kt K K W F s m m E E E υυ== -=-=?外外 ②质点系动能定理:若质点系由n 个质点组成,质点系内任何一个质点都会受到来 自于系统以外的作用力(外力)和系统内其他质点对它的作用力(内力),在质点运动时这些力都将做功. 2 201122i it i i i i W W m m υυ+=-∑∑∑∑外内 即0Kt K K W W E E E +=-=?系外系内 2. 虚功原理:许多平衡状态的问题,可以假设其状态发生了一个微小的变化,某一力 做了一个微小的功△W ,使系统的势能发生了一个微小的变化ΔE ,然后即可由ΔW=△E 求出我们所需要的量,这就是虚功原理. 3.功能原理与机械能守恒 ⑴功能原理:物体系在外力和内力(包括保守内力和非保守内力)作用下,由一个状态变到另一个状态时,物体系机械能的增量等于外力和非保守内力做功之和. 因为保守力的功等于初末势能之差,即 0P Pt P W E E E =-=-?保

K P W W E +=??外非保内(E +E )= ⑵机械能守恒:当质点系满足:0W W +=外非保内,则ΔE =0即E K + E P = E K0 + E P0=常量 机械能守恒定律:在只有保守力做功的条件下,系统的动能和势能可以相互转化,但其总量保持不变. 说明:机械能守恒定律只适用于同一惯性系.在非惯性系中,由于惯性力可能做功,即使满足守恒条件,机械能也不一定守恒.对某一惯性系W 外=0,而对另一惯性系W 外 ≠0,机械能守恒与参考系的选择有关。 4.刚体定轴转动的功能原理 若刚体处于重力场中,则:M 外=M 其外+M G (M 其外表示除重力力矩M G 以外的其他外力矩) W=W 其外+W G =(M 其外+M G )θ= E Kr 而21G P P P W E =-?=-(E -E ) 2211 2 P Kr C M E E mgh J θω=?+?=+ 其外() 即为重力场中刚体定轴转动的功能原理. 若呱0M θ=其外,即M 其外=0,则: 21 2 C mgh J ω+=常量 刚体机械能守恒. 二、方法演练 类型一、动力学中有些问题由于是做非匀变速运动,用牛顿运动定律无法直接求解,用动能定理,计算细杆对小环做的功也比较困难,因此 有时在受力分析时必须引入一个惯性力,这样就可以使问题简化很多。 例1.如图4—2所示,一光滑细杆绕竖直轴以匀 角速度ω转动,细杆与竖直轴夹角θ保持不变,一 个相对细杆静止的小环自离地面h 高处沿细杆下滑. 求小球滑到细杆下端时的速度. 分析和解:本题中由于小环所需向心力不断减小,

高中数学竞赛大纲的内容和知识点

高中数学竞赛大纲应该掌握的内容和知识点 1.集合(set) 1.1集合的阶,集合之间的关系。 1.2集合的分划 1.3子集,子集族 1.4容斥原理 2.函数(function) 2.1函数的定义域、值域 2.2函数的性质 2.2.1单调性 2.2.2奇偶性 2.2.3周期性 2.2.4凹凸性 2.2.5连续性 2.2.6可导性 2.2.7有界性 2.2.8收敛性 2.3初等函数 2.3.1一次、二次、三次函数 2.3.2幂函数 2.3.3双勾函数 2.3.4指数、对数函数 2.4函数的迭代 2.5函数方程 3.三角函数(trigonometric function)3.1三角函数图像与性质 3.2三角函数运算 3.3三角恒等式、不等式、最值 3.4正弦、余弦定理 3.5反三角函数 3.6三角方程 4.向量(vector) 4.1向量的运算 4.2向量的坐标表示,数量积 5.数列(sequence) 5.1数列通项公式求解 5.1.1换元法 5.1.2特征根法5.1.3不动点法,迭代法 5.1.4数学归纳法,递归法 6.不等式(inequality) 6.1解不等式 6.2重要不等式 6.2.1均值不等式 6.2.2柯西不等式 6.2.3排序不等式 6.2.4契比雪夫不等式 6.2.5赫尔德不等式 6.2.6权方和不等式 6.2.7幂平均不等式 6.2.8琴生不等式 6.2.9 Schur不等式 6.2.10嵌入不等式 6.2.11卡尔松不等式 6.3证明不等式的常用方法 6.3.1利用重要不等式 6.3.2调整法 6.3.3归纳法 6.3.4切线法 6.3.5展开法 6.3.6局部法 6.3.7反证法 6.3.8其他 7.解析几何(analytic geometry)7.1直线与二次曲线方程 7.2直线与二次曲线性质 7.3参数方程 7.4极坐标系 8.立体几何(solid geometry)8.1空间中元素位置关系 8.2空间中距离和角的计算 8.3棱柱,棱锥,四面体性质 8.4体积,表面积 8.5球,球面 8.6三面角

相关文档
最新文档