电磁场与电磁波理论(第二版)(徐立勤曹伟)第3章习题测验解答
电磁场与电磁波理论(第二版)(徐立勤,曹伟) 第3章 PPT 静电场及其边值问题的解法

1. 电位的泊松方程和拉普拉斯方程 在均匀、线性和各向同性的电介质中
将
代入上式得到
(3.2.19) ——电位的泊松(Poisson)方程
3-25
《电磁场与电磁波理论》
第3章静电场及其边值问题的解法
在均匀、线性和各向同性的电介质的无源区 (3.2.20) ——电位的拉普拉斯(Laplace)方程 非均匀电介质中电位所满足的微分方程
♥ 均匀电介质中电位所满足的微分方程可以看成是非均匀电 介质的微分方程的特例.
3-26
《电磁场与电磁波理论》
第3章静电场及其边值问题的解法
2. 电场强度的泊松方程和拉普拉斯方程 在均匀、线性和各向同性的电介质中
将静电场的两个基本方程代入矢量恒等式
可以得到 (3.2.21) ——电场强度的泊松方程 ♥ 电荷均匀分布时 (3.2.25) ——电场强度的拉普拉斯方程
(3.2.3)
♥ 比值 与试验电荷 点的位置有关。
的大小无关,只与 P ,Q 两
3-11
《电磁场与电磁波理论》
第3章静电场及其边值问题的解法
电位差
——电场力将单位电荷从 P 点移动到 Q 点时
所作的功(与路径无关)。 (3.2.4) ♥ 电位差是一个标量,它的单位是伏特( ♥ ♥ ♥ 和 和 和 )。
第3章静电场及其边值问题的解法
真空中电量为
的点电荷在任一点 P 所产生电位 (3.2.9) ——所求点的位置矢径 ——点电荷所在点的位置矢径
♥ 静电场中任一点的电位定义为将单位正电荷由该点移动至 零电位点时电场力所做的功,即 (3.2.6) ♥ 电位与电位差一样,是一个标量,单位为伏特( )。
电磁场与电磁波基础教程(第2版)习题解答

《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。
1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。
1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。
1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。
1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。
电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
电磁学第二版梁灿彬课后答案

1.3 下列说法是否正确?为什么? (1)闭曲面上各点场强为零时,面内总电荷必为零。 (2)闭曲面内总电荷为零时,面上各点场强必为零。 (3)闭曲面的 E 通量为零时,面上各点场强必为零。 (4)闭曲面上的 E 通量仅是由面内电荷提供的。 (5)闭曲面上各点的场强仅是由面内电荷提供的。 (6)应用高斯定理的条件但是电荷分布具有对称性。 (7)用高斯定理求得的场强仅是由高斯面内的电荷激发的。 答案:(1)× 没有净电荷 ;(2)×; (3)×;(4)√;(5)×;(6)×;(7)×。 1.4 “均匀带电球面激发的场强等于面上所有电荷集中在球心时激发的场强”,这个说法是否正 确?
答案:(a 图) 能 ,叠加法(补偿法); (b 图) 不能
1.7 附图中的 S1、S2、S3 及 S4 都是以闭曲线 L 为边线的曲面(曲面法线方向如图所示)。一直 S1 的 E 通量为 Φ1 ,求曲面 S2、S3、和 S4 的 E 通量 Φ2 、 Φ3 及 Φ4 。
答案:始终在内的点
E=0
不变,始终在外的点 E
满足什么条件时内球电势为正?满足什么条件时内球电势为零?满足什么条件时内球电势为负?
(参考点选在无远。)
答案:U1
=
q1 4πε 0 R1
+
q2 4πε0 2R1
∫ ∫ ∫ ∫ 〈或者:U1 =
R2 R1
E1dr
+
∞
R2
E2dr
=
2R1 q1 dr + R1 4πε 0r 2
∞ q1 + q2 dr 〉 2R1 4πε 0r 2
冯慈璋马西奎工程电磁场导论课后重点习题解答

1—2—2、求下列情况下,真空中带电面之间的电压。
(2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。
解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。
对此圆柱体的外表面应用高斯通量定理,得l S D sτ=⋅⎰d考虑到此问题中的电通量均为r e即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是l rD l τπ=2即 r e rD πτ2=, r e r E02πετ= 由此可得 a b r e e r r E U ba r rb aln 2d 2d 00⎰⎰επτ=⋅επτ=⋅=1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。
内导体的半径为a ,其值可以自由选定但有一最佳值。
因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。
另一方面,由于E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。
试问a 为何值时,该电缆能承受最大电压?并求此最大电压。
(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。
某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。
解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为r E πετ2=, aE πετ2max = 而内外导体之间的电压为abr r r E U ba ba ln 2d 2d πετπετ⎰⎰===或 )ln(max ab aE U =0]1)[ln(a d d max =-+=abE U 即 01ln =-a b , cm 736.0e==ba V)(1047.1102736.0ln 55max max ⨯=⨯⨯==ab aE U1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V /m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。
电磁场与电磁波理论(第二版)(徐立勤-曹伟)第2章习题解答

第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρϕρ===⎰⎰⎰⎰2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其外表上的面电流密度。
解:面电荷密度为 24πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=⋅=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ϕ=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为 04πS IJ Jd d ==因此,等效面电流密度为 04πS IJ e dϕ=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为12214πq F xε=实验电荷受0q 的排斥力为02214π()q F d x ε=- 要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得 d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
电磁场与电磁波实际(第二版)(徐立勤-曹伟)第3章习题解答

第3章习题解答3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度:(1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=;(3)()2,,sin z A B z Φρϕρϕρ=+; (4)()2,,sin cos r Ar Φθϕθϕ=。
解:已知空间的电位分布,由E Φ=-∇和20/Φρε∇=-可以分别计算出电场强度和体电荷密度。
(1) ()2x E e Ax B Φ=-∇=-+ 0202εερA -=Φ∇-= (2) ()x y z E A e yz e xz e xy Φ=-∇=-++ 020=Φ∇-=ερ (3) (2sin )cos z E e A Bz e A e B ρϕΦρϕρϕρ⎡⎤=-∇=-+++⎣⎦20004sin sin 3sin BzBz A A A ρεΦεϕϕεϕρρ⎛⎫⎛⎫=-∇=-+-=-+ ⎪ ⎪⎝⎭⎝⎭ (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θϕΦθϕθϕϕ=-∇=-+-200cos 2cos cos 6sin cos sin sin A A A θϕϕρεΦεθϕθθ⎛⎫=-∇=-+- ⎪⎝⎭3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。
试求球心处的电位。
解:上顶面在球心产生的电位为0011100)()22S S d R d ρρΦεε==- 下顶面在球心产生的电位为0022200)()22S S d R d ρρΦεε==- 侧面在球心产生的电位为030014π4πS S SSRRρρΦεε==⎰式中212124π2π()2π()2π()S R R R d R R d R d d =----=+。
因此球心总电位为1230S R ρΦΦΦΦε=++=3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。
电磁场与电磁波理论(第二版)(徐立勤,曹伟)第3章习题解答

For personal use only in study and research; not for commercial use第3章习题解答3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度:(1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=;(3)()2,,sin z A B z Φρϕρϕρ=+; (4)()2,,sin cos r Ar Φθϕθϕ=。
解:已知空间的电位分布,由E Φ=-∇和20/Φρε∇=-可以分别计算出电场强度和体电荷密度。
(1) ()2x E e Ax B Φ=-∇=-+ 0202εερA -=Φ∇-= (2) ()x y z E A e yz e xz e xy Φ=-∇=-++ 020=Φ∇-=ερ (3) (2sin )cos z E e A Bz e A e B ρϕΦρϕρϕρ⎡⎤=-∇=-+++⎣⎦ (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θϕΦθϕθϕϕ=-∇=-+-3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。
试求球心处的电位。
解:上顶面在球心产生的电位为下顶面在球心产生的电位为 侧面在球心产生的电位为式中212124π2π()2π()2π()S R R R d R R d R d d =----=+。
因此球心总电位为 3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。
已知0z >时,201050x y z E e e e =-+V /m 。
试求0z <时的D 。
解:由电场切向分量连续的边界条件可得代入电场法向方向分量满足的边界条件可得于是有3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为()0πcosxx dρρ=的体电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章习题解答3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度:(1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=;(3)()2,,sin z A B z Φρϕρϕρ=+; (4)()2,,sin cos r Ar Φθϕθϕ=。
解:已知空间的电位分布,由E Φ=-∇和20/Φρε∇=-可以分别计算出电场强度和体电荷密度。
(1) ()2x E e Ax B Φ=-∇=-+ 0202εερA -=Φ∇-= (2) ()x y z E A e yz e xz e xy Φ=-∇=-++ 020=Φ∇-=ερ (3) (2sin )cos z E e A Bz e A e B ρϕΦρϕρϕρ⎡⎤=-∇=-+++⎣⎦20004sin sin 3sin BzBz A A A ρεΦεϕϕεϕρρ⎛⎫⎛⎫=-∇=-+-=-+ ⎪ ⎪⎝⎭⎝⎭ (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θϕΦθϕθϕϕ=-∇=-+-200cos 2cos cos 6sin cos sin sin A A A θϕϕρεΦεθϕθθ⎛⎫=-∇=-+- ⎪⎝⎭3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。
试求球心处的电位。
解:上顶面在球心产生的电位为22001111100()()22S S d R d R d ρρΦεε=+-=- 下顶面在球心产生的电位为22002222200()()22S S d R d R d ρρΦεε=+-=- 侧面在球心产生的电位为030014π4πS S SSRRρρΦεε==⎰式中212124π2π()2π()2π()S R R R d R R d R d d =----=+。
因此球心总电位为1230S R ρΦΦΦΦε=++=3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。
已知0z >时,201050x y z E e e e =-+V /m 。
试求0z <时的D 。
解:由电场切向分量连续的边界条件可得1t 2t E E =⇒ 000520510x y z D D εε<=⨯=-⨯ 代入电场法向方向分量满足的边界条件可得 1n 2nD D =⇒ 050z z D <=于是有0001005050x y z z D e e e εε<=-+3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为()0πcos xx dρρ=的体电荷。
若选择坐标原点为零电位参考点,试求平面层之内以及平面层以外各区域的电位和电场强度。
解:由对称性可知0y zΦΦ∂∂==∂∂,即222222222d d x y z x ΦΦΦΦΦ∂∂∂∇=++=∂∂∂。
设各区域中的电位和电场强度分别为1Φ,2Φ,3Φ和1E ,2E,3E 。
由电位所满足的微分方程2012d πcos d x x d ρΦε⎛⎫=- ⎪⎝⎭222d 0d x Φ= 232d 0d x Φ= 解得011d πsin d πd x C x d ρΦε⎛⎫=-+ ⎪⎝⎭ 22d d C xΦ=33d d C x Φ= 201112πcos πd x C x D d ρΦε⎛⎫=++ ⎪⎝⎭222C x D Φ=+ 333C x D Φ=+由于理想介质分界面没有面电荷,所以边界条件为d x =时 12ΦΦ= 12d d d d x xΦΦεε= d x -=时 13ΦΦ= 310d d d d x xΦΦεε= 又根据对称性可知,在0=x 的平面上,电场强度是为零的,即0=x 时,1d 0d xΦ=。
最后再选择零电位参考点使得0=x 时,()100Φ=。
联立解得0321===C C C 2012πd D ρε=- 202322πd D D ρε==-。
只要利用d d xE e xΦ=-∇Φ=-就可以得到 d x -<时, 20322πd ρΦε=- 33d 0d x E e xΦ=-= d x d ≤≤-时 2200122πcos ππd x d d ρρΦεε⎛⎫=- ⎪⎝⎭ 011d πsin d πx x d x E e e x d ρΦε⎛⎫=-= ⎪⎝⎭d x >时, 20222πd ρΦε=- 22d 0d x E e xΦ=-= ✶ 选择不同的零电位参考点,得到的电位不同,但电场强度仍是相同的。
✶ 根据对称性只需求出0>x 的解,即1Φ和23ΦΦ=。
3.10 位于0x =和x d =处的两个无限大导电平面间充满了()01x d ρρ=+的体电荷。
若将0x =处的导电平板接地,而将x d =处的导电平板加上电压0U 。
试求板间的电位分布及电场强度为零的位置。
解:由于无限大导体极板之间电荷分布是只与x 有关,忽略边缘效应,可以认为电位分布也只与x 有关,且满足一维泊松方程2020d (1)d x x dρΦε=-+ 其通解为32001200()62x x x C x C d ρρΦεε=--++ 由(0)0Φ= ⇒ 02=C 而由0()d U Φ= ⇒ 000132ερdd U C += 因此板间电位分布为3200000002()623U d x x x x d dρρρΦεεε⎛⎫=--++ ⎪⎝⎭ 板间电场强度为200000002()23x U d E e x x dd ρρρΦεεε⎡⎤=-∇=+-+⎢⎥⎣⎦从该式可以求出电场强度为零的位置为200000220000000000024()23224 1()3U dd d U d b b ac x d d d d dρρρρεεεεερρρεε-±++-±-===-±++由于我们是讨论极板内电场强度,因此零点位置为)32(2100000ερρεdd U d d d x +++-= 3.11 如题3.11图所示的平板电容器中,分别以两种不同的方式填充两种不同的介质1ε和2ε。
当两极板之间外加电压0U 时,试求电容器中电位和电场的分布以及电容器的电容。
解:对于图a :忽略边缘效应,可以认为电位分布也只与x 有关,均满足一维拉普拉斯方程。
且由介质分界面的边界条件可知,两种介质中的电位分布是相同的,其通解为Cx D Φ=+根据已知条件00x Φ==和02x d U Φ==,解得0D =和2U C d=,即平板电容器中的电位分布为 02U x dΦ=根据E Φ=-∇,可以得到平板电容器中的电场分布为0d d 2x x U E e e x dΦΦ=-∇=-=-对0=x 平板上n x e e =,面电荷密度分别为 ()01n n 02 2 2S U y S de D e E U y S d ερεε⎧-∈⎪⎪=⋅=⋅=⎨⎪-∈⎪⎩上下总电量为()0012120222U U SQ S S U d d dεεεε=-⋅-=-+ 电容器的电容为()1202Q SC U dεε==+对于图b :忽略边缘效应,可以认为电位分布也只与x 有关,均满足一维拉普拉斯方程。
两种介质中的电位分布的通解可以分别设为111C x D Φ=+ 和 222C x D Φ=+根据已知条件100x Φ==和202x dU Φ==,以及分界面处的边界条件12x d x d ΦΦ===和12x dx dxxΦΦ==∂∂=∂∂可以解得20112U x d εΦεε=+ 和 202012U x dU dεΦεε-=++ 根据E Φ=-∇,可以得到平板电容器中两种介质中的电场分布为0121112d d xx U E e e x d ΦεΦεε=-∇=-=-+ 和 0212212d d x x U E e e x dΦεΦεε=-∇=-=-+ 对0=x 平板上n x e e =,面电荷密度为()012n n 112 S xU e D e E e dεερεεε=⋅=⋅=-+总电量为 1201222S SQ S U dεερεε=⋅=-+电容器的电容为 120122Q SC U dεεεε==+3.12 已知在半径为a 的无限长圆柱形体内均匀分布着电荷密度为0ρ的体电荷。
圆柱体内外的介电常数分别为ε和0ε。
若取圆柱体的表面为零电位的参考面,试利用直接积分法求出圆柱体内外的电位和电场强度。
解:取定圆柱坐标系,使z 轴与圆柱体的中心轴线相重合,由电位和电场的对称性可知Φ与ϕ和z 无关。
圆柱体内外的电位1Φ和2Φ分别满足01d 1d d d ρΦρρρρε⎛⎫=- ⎪⎝⎭ 和 020d 1d d d ρΦρρρρε⎛⎫=- ⎪⎝⎭ 它们的通解可以分别表示式为()20111ln 4C D ρΦρρρε=-++ 和 222ln C D Φρ=+ 由轴线上的电位应为有限值可得10C =。
而由圆柱体的表面电位为零可得20104a D ρε-+= 和 22ln 0C a D += 即 2014D a ρε= 和 22ln D C a =-于是有 ()()22014a ρΦρρε=-- 和 22ln C aρΦ=代入圆柱体表面电位的法向导数的边界条件12r ar arrΦΦεε==∂∂=∂∂得到0202aC a ρε=-,即20202a C ρε=-。
最后得到圆柱体内外的电位分别为()()22014a ρΦρρε=- 和 2020ln 2a aρρΦε=-而圆柱体内外的电场强度分别为01110d d 2E e e ρρρρΦΦρε=-∇=-= 和 202220d d 2a E e e ρρρΦΦρερ=-∇=-=3.13 如题3.13图所示,半径为a 的无限长导体圆柱,单位长度的带电量为l ρ。
其一半埋于介电常数为ε的介质中,一半露在空气中。
试求各处的电位和电场强度。
解:根据题意,空间中电位分布与ϕ和z 无关,均满足一维的拉普拉斯方程,即()()211222d 1d 0d d d 1d 0d d r r ΦΦρρρΦΦρρρ⎛⎫∇== ⎪⎝⎭⎛⎫∇== ⎪⎝⎭介质中空气中将上述两方程分别直接积分两次,得出通解为111ln C D Φρ=-+ 和 222ln C D Φρ=-+根据不同介质分界面电位的连续性可知12C C C ==和12D D D ==,即12ln C D ΦΦΦρ===+若设无限长导体圆柱上电位为0,也即()0a Φ=,可得ln D C a =-,即ln C aρΦ=导体圆柱的面电荷密度为()()0S CCεΦρεερ⎧-∂⎪=-=⎨-∂⎪⎩介质中空气中单位长度导体圆柱的电量为0ππl C a C a ρεε=--即0π()lC ρεε=-+于是得到导体圆柱外的电位和电场强度分别为0lnπ()laρΦεερ=+ 和 0π()lE e ρρΦεερ=-∇=+3.14 如题3.14图所示同轴电容器,其中部分填充了介质ε,其余是空气。