三角形中的最值问题

合集下载

三角形内最值问题

三角形内最值问题

三角形内最值问题
三角形内最值问题是一个常见的问题,它涉及到在给定三角形中找到某些几何量的最大值或最小值。

下面是一些解决这类问题的一般方法:
1. 基础几何知识:解决这类问题需要掌握一些基本的几何知识,如三角形的性质、三角函数、勾股定理等。

2. 对称性:考虑三角形是否具有某种对称性,如轴对称或中心对称,这有助于找到最值的位置。

3. 极值定理:在某些情况下,可以使用极值定理(如AM-GM不等式、Cauchy-Schwarz不等式等)来找到最值。

4. 函数建模:将问题转化为函数的最值问题,然后使用导数或其他数学工具来找到最值。

5. 参数方程:有时可以通过引入参数来表示几何量,然后通过参数的变化找到最值。

6. 优化技术:可以使用一些优化技术,如梯度下降、牛顿法等,来找到最值。

解决三角形内最值问题的具体方法取决于问题的具体情况和给定的条件。

在处理这类问题时,需要仔细分析问题,选择合适的数学工具和方法来解决。

三角形中求最值的题型解析

三角形中求最值的题型解析

三角形中求最值的题型解析以《三角形中求最值的题型解析》为标题,写一篇3000字的中文文章三角形中求最值是一种简单而有趣的数学题型,它要求学生在三角形内给定的某两个顶点中求出最大值或者最小值。

在三角形求最值的题型中,学生需要结合实际解决问题,考察其三角函数的知识,以及如何通过具体细节来解决实际问题。

这类题型有助于学生加深对三角学的理解,并增强学生的解决问题的能力。

要解决三角形中求最值的问题,首先要明确求最值的顶点,一般情况下,解决三角形中的求最值问题,都会考虑到三角形的外接圆,这样可以很容易找到最值顶点。

如果三角形的外接圆不存在,那么可以考虑使用勾股定理,用两个边能很容易求出第三条边,也可以用来定位最值顶点。

一旦确定了求最值的顶点,就可以计算出最值点的数值,在三角形求最值的题型中,最常见的是求另外两个顶点夹角的最大值或者最小值。

计算夹角的最大值最小值的方法是通过三角函数,利用余弦定理和正弦定理求解,计算一个顶点夹角时,要注意锐角和钝角的判断,求出夹角后要转换为相应的角度或者弧度值。

如果求某一边的最值,那么就可以使用勾股定理,求出最值边,这是最简单的做法,但是也比较单一,更新颖的方法是利用三角函数求另外两边的最值,这个方法更复杂一点,要综合运用勾股定理和三角函数,可以得到更准确的结果。

在实际的解决过程中要注意几点,首先要熟悉三角学的基础知识,这是解答此类问题的前提,其次在解决问题时要仔细观察题目已给出的信息,不要忽略题目中的细节信息,这些细节信息可以帮助我们更好的解决问题,同时要记住,有时候单纯的用三角学来解决问题可以获得更好的解决效果。

加深对三角形中求最值的题型的理解,可以多做一些相关的联系题,考察学生如何综合运用三角学的基本知识来解决问题,同时可以增强学生的解决问题能力,为解决更多复杂问题打下良好的基础。

总而言之,三角形中求最值的题型虽然简单但又有趣,它要求学生综合运用三角学的基本知识来解决实际问题,有助于加深对三角学的理解,增强学生的解决问题的能力,为解决更复杂问题打下良好的基础。

三角形中的范围(最值)问题

三角形中的范围(最值)问题

三角形中的范围(最值)问题三角形中的取值范围和最值问题一直是高考的热点和难点,常以小的压轴题出现,解例题:(2018·江苏卷)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,BD是∠ABC的平分线,交AC于点D,且BD=1,求4a+c的最小值.变式1在△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(2a+c,b),n=(cos B,cos C),且m,n垂直.(1)求角B的大小;(2)若∠ABC的平分线BD交AC于点D,且BD=1,设BC=x,BA=y,试确定y关于x的函数关系式,并求边AC的取值范围.变式2如图,某水域有两条直线型岸边l1和l2成定角120°,该水域中位于该角平分线上且与顶点A相距1 km的D处有一固定桩,现某渔民准备经过该桩安装一直线型的隔离网BC(B,C分别在l1和l2上)围出三角形ABC的养殖区,且AB和AC的长都不超过5 km,设AB=x km,AC=y km,(1)将y表示成x的函数,并求其定义域;(2)该渔民至少可以围出多少平方千米的养殖区?串讲1在△ABC中,角A,B,C的对边分别为a,b,c,已知a=b,△ABC周长为7,求BC边上的中线AD的最小值.串讲2在等腰直角△OPQ 中,∠POQ =π2,OP =22,点M 在线段PQ 上,点N 在线段MQ 上,且∠MON =π6.(1)设∠POM =α,试用α表示OM ,ON ,并写出α的范围; (2)当α取何值时,△OMN 的面积最小?并求出面积的最小值.(2018·全国大联考)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(c +a ,b ),n =(c -a ,b +c ),且a =3,m ⊥n .(1)求△ABC 面积的最大值; (2)求b +c 的取值范围.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,设△ABC 的面积为S ,且4S =3(a 2+c 2-b 2).(1)求∠B 的大小;(2)设向量m =(sin2A ,3cos A ),n =(3,-2cos A ),求m ·n 的取值范围.答案:(1)π3;(2)(-6,32-3].解析:(1)由题意,有4×12ac sin B =3(a 2+c 2-b 2),2分则sin B =3×a 2+c 2-b 22ac ,所以sin B =3cos B .4分因为sin B ≠0,所以cos B ≠0,所以tan B = 3.又0<B <π,所以B =π3.6分(2)由向量m =(sin2A ,3cos A ),n =(3,-2cos A ),得m ·n =3sin2A -6cos 2A =3sin2A -3cos2A -3=32sin ⎝⎛⎭⎫2A -π4-3.8分由(1)知B =π3,所以A +C =2π3,所以0<A <2π3.所以2A -π4∈⎝⎛⎭⎫-π4,13π12.10分所以sin ⎝⎛⎭⎫2A -π4∈⎝⎛⎦⎤-22,1.12分所以m ·n ∈(-6,32-3].即m ·n 的取值范围是(-6,32-3].14分例题1 答案:9.解法1由S △ABD +S △CBD =S △ABC ,得12c·1·sin 60°+12a·1·sin 60°=12ac sin 120°,所以,a +c =ac.即1a +1c=1.所以4a +c =(4a +c)(1a +1c )=5+c a +4ac≥5+2c a ·4a c =9.当且仅当c =2a 即a =32,c =3取等号,所以4a +c 的最小值为9.解法2如图作DE ∥AB 交BC 点E ,所以∠EDB =∠DBA =∠DBE =60°,因为BD =1,所以△BDE 是边长为1的正三角形,CE CB =DEAB ,即a -1a =1c,变形得a +c =ac ,变形得44a +1c=1. 于是1=44a +1c ≥(2+1)24a +c ,解得4a +c ≥9,当且仅当4a =2c ,当且仅当c =2a 即a =32,c =3时取等号,所以4a +c 的最小值为9.解法3设∠BDC =θ,易得60°<θ<120°,在△BDC 中,BC sin θ=BDsin C ,因为BD =1,sin C =sin (θ+60°),所以a =sin θsin (θ+60°),同理c =sin θsin (θ-60°).所以4a +c =4sin θsin (θ+60°)+sin θsin (θ-60°)=4sin θ12sin θ+32cos θ+sin θ12sin θ-32cos θ=81+3tan θ+21-3tan θ≥(22+2)2(1+3tan θ)+(1-3tan θ)=9.当且仅当22(1-3tan θ)= 2(1+3tan θ)时取等号,即tan θ=33时4a +c 取最小值9. 解法4以B 为坐标原点,BC 为x 轴正方向,建立平面直角坐标系,则A 落在第二象限,设直线AC 的方程为y -32=k(x -12),其中-3<k<0,令y =0得x C =k -32k >0,即a =k -32k,由于直线BA 的方程为y =-3x 代入y -32=k(x -12),解得x A =k -32(k +3)<0,所以c =-2x A =3-k (k +3)>0,则4a +c =2(k -3)k +3-k 3+k=1+23(1-k +1k +3)≥1+23×(1+1)2-k +k +3=9. 当且仅当-k·1=(k +3)·1,即k =-32时取等号,所以4a +c 的最小值为9. 变式联想变式1答案:(1)2π3;(2)[23,+∞).解析:(1)因为m ⊥n ,所以(2a +c )cos B +b cos C =0,在△ABC 中,由正弦定理得(4R ·sin A +2R ·sin C )cos B +2R ·sin B cos C =0,所以(2sin A +sin C )cos B +sin B cos C =0,即2sin A cos B +sin(B +C )=0,即sin A (2cos B +1)=0,因为A ,B ∈(0,π),所以sin A ≠0,解得cos B =-12,B =2π3.(2)因为S △ABC =S △ABD +S △BCD ,S △ABC =12xy sin 2π3=34xy ,S △ABD =12y sin π3=34y ,S △BCD=12x sin π3= 34x ,所以xy =x +y , 即y =xx -1,x ∈(1,+∞).在△ABC 中,由余弦定理得 AC 2=x 2+y 2-2xy cos2π3=x 2+y 2+xy =(x +y )2-xy =(x +y -12)2-14,因为x +y =xy ≤(x +y )24,x >0,y >0,所以x +y ≥4,所以AC 2≥(4-12)2-14,所以AC ≥2 3.所以AC的取值范围是[23,+∞). 变式2答案:(1)y =xx -1, ⎩⎨⎧⎭⎬⎫x|54≤x ≤5;(2) 3. 解析:(1)由S △ABC =S △ABD + S △ACD 得,12x sin 60°+12y sin 60°=12xy sin 120°,所以x +y =xy ,所以y =x x -1,又0<y ≤5,0<x ≤5,所以54≤x ≤5,即定义域为⎩⎨⎧⎭⎬⎫x|54≤x ≤5. (2)设△ABC 的面积为S ,则结合(1)得S =12xy sin A =12x·x x -1·sin 120°=3x 24(x -1)(54≤x ≤5),因为x 2x -1=(x -1)+1x -1+2≥4,当且仅当x -1=1x -1,即x =2时取等号. 故当x =y =2时,面积S 取得最小值3平方千米. 答:该渔民至少可以围出3平方千米的养殖区.串讲激活串讲1 答案:726. 解析:设∠BDA =θ,AD =x ,在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD·BD·cos ∠BDA ,可得15a 24-28a +49=x 2-xa cos θ,①在△ACD 中,由余弦定理得3a 24=x 2+xa cos θ,②,由①+②可得2x 2=92a 2-28a +49=92(a -289)2+499≥499,所以x ≥726,当且仅当a =289时等号成立,所以中线AD 的最小值为726.串讲2 答案:(1)OM =2sin (α+π4),ON =2sin (α+5π12),0≤α≤π3;(2)α=π6,8-4 3.解析:(1)在△OMP 中,由正弦定理,得OM sin ∠OPM =OP sin ∠OMP ,即OM =2sin (α+π4),同理ON =2sin (α+5π12),0≤α≤π3.(2)S △OMN =12OM·ON sin ∠MON =1sin (α+π4)×sin (α+5π12)=1sin (α+π4)×sin (α+π4+π6)=132sin 2(α+π4)+12sin (α+π4)cos (α+π4)=134[1-cos (2α+π2)]+14sin (2α+π2)=134+34sin 2α+14cos 2α=112sin (2α+π6)+34,因为0≤α≤π3,π6≤2α+π6≤5π6,所以当α=π6时,sin (2α+π6)的最大值为1,此时△OMN 的面积最小.即α=π6时,△OMN 的面积的最小值为8-4 3.答案:(1)334;(2)(3,23].解析:(1)因为m ⊥n ,所以(c +a )(c -a )+b (b +c )=0,即c 2-a 2+b 2+bc =0,所以 cos A =b 2+c 2-a 22bc =-12,又A 是三角形的内角,所以A =120°,由c 2-a 2+b 2+bc =0,且a =3,所以b 2+c 2=9-bc ≥2bc ,解得bc ≤3.所以S △ABC =12bc sin A ≤12×3·sin120°=334.(2)由(1)可知c 2+b 2+bc =9,(b +c )2-bc =9,即(b +c )2-9=bc ≤(b +c 2)2,解得b +c ≤23,又b +c >a =3,所以b +c 的取值范围是(3,23].。

解答三角形最值问题的几种措施

解答三角形最值问题的几种措施

三角形最值问题对同学们的运算以及逻辑推理能力有较高的要求.此类问题通常侧重于考查正余弦定理、三角函数的定义、三角函数的单调性、基本不等式等.本文结合一道三角形最值问题,谈一谈解答此类问题的常用措施.例题:已知在ΔABC 中,点D 在边BC 上,BD =2CD ,AD =BD ,求tan A cos 2B 的最大值.一、利用基本不等式我们知道,若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.而运用基本不等式求最值,往往要确保:(1)两个数均为正数;(2)两数的和或积为定值;(3)当且仅当a =b 时取等号.在解答三角形最值问题时,要先灵活运用正余弦定理进行边角互化,把目标式化为只含边或角的式子;然后运用一些配凑技巧,如凑系数、添项、去常数项、平方等,配凑出两式的和或积,并使其中之一为定值,即可运用基本不等式求得最值.解法1.如图1所示,过点D 作DE ⊥AB ,垂足为E ,过点C 作CF ⊥AB ,垂足为F ,由AD =BD ,DE ⊥AB 可得E 为AB 的中点.因为BD =2CD ,AD =BD ,所以DE ∥CF ,所以AE =BE =2EF ,所以F 为AE 的中点.可得BE =2AF ,即AF =12BE .所以DE CF =BD BC =23,所以CF =32DE .在RtΔACF 中,tan A =CF AF =3DE BE.在RtΔBDE 中,DE 2+BE 2=BD 2,所以BD 2≥2DE ⋅BE ,而cos B =BE BD ,所以tan A cos 2B =3DE BE ⋅(BE BD)2=3DE ⋅BE BD 2≤3DE ⋅BE 2DE ⋅BE =32,当且仅当DE =BE ,即B =45°时不等式取等号,故tan A cos 2B 的最大值为32.先添加辅助线,根据等腰三角形三线合一的性质和平行线的性质,建立各边之间的比例关系,从而求得tan A 、cos B 的表达式,得出tan A cos 2B =3DE ⋅BEBD 2.而在RtΔBDE 中,DE 2+BE 2=BD 2,由基本不等式可得BD 2≥2DE ⋅BE ,通过约分即可求得目标式的最值.二、利用三角函数的性质三角函数具有有界性和单调性,而这两种性质是求三角函数最值的重要依据.在解答三角形最值问题时,可先根据正余弦定理将边角关系化为关于角的关系式,并用角的三角函数式表示出目标式,将问题转化为三角函数最值问题;然后利用三角函数中的诱导公式、二倍角公式、辅助角公式等进行恒等变形,将目标式化为只含有一种三角函数名称的式子,进而利用三角函数的有界性和单调性求最值.解法2.设ΔABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,CD =m (m >0),则AD =BD =2m ,因为∠ADB 与∠ADC 互为邻补角,所以cos∠ADB =-cos∠ADC .在ΔABD 中,由余弦定理得c 2=4m 2+4m 2-2×2m ×2m cos∠ADB ,化简得c 2=8m 2-8m 2cos∠ADB ,即c 2=8m 2+8m 2cos∠ADC ①;在ΔACD 中,由余弦定理得b 2=4m 2+m 2-2×2m ×m cos∠ADC ,化简得b 2=5m 2-4m 2cos∠ADC ,所以2b 2=10m 2-8m 2cos∠ADC ②.将①+②得c 2+2b 2=18m 2,又因为a =3m ,所以c 2+2b 2=2a 2.在ΔABC 中,由余弦定理得cos B =a 2+c 2-b 22ac=a 2+c 2-(a 2-12c 2)2ac =3c4a,由正弦定理可得cos B =3c 4a =3sin C 4sin A,所以4sin A cos B =3sin C =3sin(A +B )=3sin A cos B +3cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .所以tan A cos 2B =3tan B cos 2B =3sin B cos B =32sin2B ≤32,思路探寻图149当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.我们先根据余弦定理求得tan A 、cos B 的表达式,得出tan A cos 2B 的表达式,并根据tan B =sin Bcos B以及二倍角公式sin2B =2sin B cos B ,将目标式化为只含有正弦函数的式子,即可运用正弦函数的有界性求得目标式的最值.解法3.因为BD =2CD ,AD =BD ,所以AD =2CD .因为AD =BD ,所以∠BAD =∠B ,所以∠DAC =∠A -BAD =∠A -∠B .在ΔACD 中,由正弦定理得AD sin C =CDsin∠DAC,即2CD sin(A +B )=CDsin(A -B ),所以2sin(A -B )=sin(A +B ),可得2sin A cos B -2cos A sin B =sin A cos B +cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .以下同解法2,具体过程略.该解法主要运用了正弦定理,根据角之间的关系进行三角恒等变换,得到tan A =3tan B ,再根据正弦函数的有界性求得最值.我们还也可以根据正切函数的定义和勾股定理,在RtΔBDE 中,求得tan B =DE BE =CF3AF,在RtΔACF 中,求得tan A =CF AF ,从而得出tan B =13tan A ,再根据正弦函数的有界性求得最值.利用三角函数的性质求解三角形最值问题,关键是将目标式化为关于角的三角函数式,并将其化简为只含有一种三角函数名称的式子,就能根据三角函数的有界性和单调性顺利求得最值.三、构建坐标系运用坐标法求解三角形最值问题,需先根据三角形的特征,建立合适的平面直角坐标系:可以三角形的一条底边为坐标轴,以一个顶点或底边的中点为原点;也可以三角形底边为x 轴,底边的中垂线为y 轴来建立坐标系.在建立坐标系后,求得各个点的坐标,再运用两点间的距离公式、直线的斜率公式和方程、三角函数的定义来求得角、边长以及目标式,最后运用函数的性质、三角函数的性质、基本不等式求最值.解法4.如图2所示,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,设CD =m (m >0),∠ADB =θ,则点C (m ,0),B (-2m ,0),A (-2m cos θ,2m sin θ),所以tan B =k AB =2m sin θ-2m cos θ+2m =sin θ1-cos θ,tan C =-k AC =2m sin θ2m cos θ+m =2sin θ2cos θ+1.可得cos 2B =11+tan 2B=1-cos θ2,tan A =-tan(B +C )=tan B +tan Ctan B tan C -1=(sin θ1-cos θ+2sin θ2cos θ+1)÷(sin θ1-cos θ⋅2sin θ2cos θ+1-1)=3sin θ1-cos θ.所以tan A cos 2B =3sin θ1-cos θ⋅1-cos θ2=32sin θ≤32,当sin θ=1,即θ=90°时,AD ⊥BC ,不等式取等号,故tan A cos 2B 的最大值为32.为了便于求得各点的坐标,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,并设∠ADB =θ,用θ表示出cos 2B 、tan A 以及tan A cos 2B ,即可利用正弦函数的有界性求得最值.解法5.因为AD =BD ,过O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立如图3所示的平面直角坐标系xOy .设CD =m (m >0),易知AD =BD =2m ,所以点C (-m cos B ,3m sin B ),A (-2m cos B ,0),可得tan A =k AC =3m sin Bm cos B=3tan B .所以tan A cos 2B =3tan B cos 2B=3sin B cos B =32sin2B ≤32,当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.根据等腰三角形三线合一的性质,过点O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立平面直角坐标系xOy ,即可快速求得D 、C 的坐标.再用角B 的三角函数表示出tan A cos 2B ,便可根据正弦函数的有界性求得问题的答案.求解三角形最值问题的思路较多,无论运用哪种思路解题,都需灵活运用正余弦定理进行边角互化,求得目标式,然后根据目标式的结构特征,选用合适的方法求最值.(作者单位:山东省牟平第一中学)图3思路探寻图250。

完整版)解三角形中的最值问题

完整版)解三角形中的最值问题

完整版)解三角形中的最值问题解三角形中的最值问题1.在三角形ABC中,已知角A,B,C所对边长分别为a,b,c,且a²+b²=2c²,求cosC的最小值。

解析:由余弦定理知cosC=(a²+b²-c²)/(2ab),代入已知条件得cosC≥-1/2.因此cosC的最小值为-1/2.2.在三角形ABC中,已知角B=60°,AC=3,求AB+2BC的最大值。

解析:根据余弦定理,AB²=AC²+BC²-2AC·BCcosB,代入已知条件得AB²=9+BC²-6BC·1/2,即AB²=BC²-3BC+9.由于AB+2BC=AB+BC+BC,因此可将其转化为求AB+BC的最大值。

设x=BC,则AB²=x²-3x+9,求导得x=3/2时,AB+BC取得最大值,即AB+2BC的最大值为9/2.3.在三角形ABC中,已知角A,B,C的对边分别为a,b,c,且a≥b,sinA+3cosA=2sinB。

(1)求角C的大小;(2)求(a+b)/c的最大值。

解析:(1)由sinA+3cosA=2sinB得2sin(A+π/3)=2sinBsinA/3,因此sin(A+π/3)=sinB/3.由于a≥b,因此A≥B,所以A+π/3=B/3,即A=π/3-B/3.由正弦定理得c/sinC=2b/sinB,代入已知条件得c=2b(sinA+3cosA)/sinB=6b/√3=2√3b,因此角C的大小为π/3.2)由正弦定理得(a+b)/c=sinA+sinB/sinC,代入已知条件得(a+b)/c=2sinB/sinC,即sinC=2sinB(a+b)/c。

由于sinC≤1,因此(a+b)/c≤1/2.当且仅当A=π/2时,(a+b)/c取得最大值1/2.4.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且a=___。

【高考数学大题精做】专题06 三角形中的最值问题(第一篇)(解析版)

【高考数学大题精做】专题06 三角形中的最值问题(第一篇)(解析版)

1 / 18第一篇 三角函数与解三角形专题06 三角形中的最值问题【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-=(1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域. 解:(1)由2cos cos a b Bc C-=, 利用正弦定理可得2sin cos sin cos sin cos A C B C C B -=, 可化为()2sin cos sin A C sin C B A =+=,1sin 0,cos 2A C ≠∴=Q 0,,23C C ππ⎛⎫∈∴= ⎪⎝⎭Q .(2)sin sin 3y A sinB A sin A ππ⎛⎫=+=+-- ⎪⎝⎭2 / 181sin sin 26A A A A π⎛⎫=+=+ ⎪⎝⎭, 2,032A B A Q ππ+=<<,62A ππ∴<<,2,36362A sin A ππππ⎛⎤⎛⎫∴<+<∴+∈ ⎥ ⎪ ⎝⎭⎝⎦,32y ⎛∴∈ ⎝. 【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.解:(1)由正弦定理可得:2sin sin 2sin cos A C B C -=A B C π++=Q ()sin sin A B C ∴=+()2sin sin 2sin cos 2cos sin sin 2sin cos B C C B C B C C B C ∴+-=+-=即2cos sin sin B C C =()0,C π∈Q sin 0C ∴≠ 1cos 2B ∴=()0,B π∈Q 3B π∴= 23AC π∴+=2sin sin 23A C B π+⎛⎫∴+==⎪⎝⎭(2)由(1)知:sin sin3B π==2sin sin sin a c bA C B∴====3 / 182sin c C ∴=,2sin a A =()2sin 2sin 2sin 2sin 2sin 2sin cos 2cos sin c a C A C B C C B C B C∴-=-=-+=--2sin sin sin 2sin 3C C C C C C π⎛⎫=-==- ⎪⎝⎭23A C π+=Q 203C π∴<< ,333C πππ⎛⎫∴-∈- ⎪⎝⎭(2sin 3C π⎛⎫∴-∈ ⎪⎝⎭,即c a -的取值范围为(【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解. 解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A π<<,所以3A π=.(2)22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+-≥-=,所以11sin 32224S bc A =≤⨯⨯=(b c =时取等号).4 / 18【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-u r ,(2,0)n =r. (1)若23B π=,求m u r 与n r 的夹角θ; (2)若||1,m b ==r,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m u r .根据平面向量数量积的坐标运算求得m n ⋅u r r ,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =r 及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.解:(1)23B π=,所以322m ⎛⎫= ⎪ ⎪⎝⎭u r ,因为(2,0)n =r ,20m n ⋅==u r r ∴ ,又||m ==u r ||2n =r ,1cos 2θ==∴,3πθ∴=,(2)因为||1m =u r,即||1m ===r,所以3B π=,方法1.由余弦定理,得2222cos b a c ac B =+-.2222()()3()324a c a c a c ac a c ++⎛⎫=+-≥+-⋅=⎪⎝⎭,即2()34a c +≥,即a c +≤(当且仅当a c =时取等号) 所以ABC ∆周长的最大值为5 / 18方法2.由正弦定理可知,2sin sin sin a c bA C B===, 2sin ,2sin a A c C ==∴,23A C π+=,所以22sin 2sin 3sin 36a c A A A A A ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭,又203A π<<,5666A πππ<+<,1sin ,162A π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,a c +∈∴,所以当3A π=时,a c +取最大值所以ABC ∆周长的最大值为【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.解:(1)在Rt ABE ∆中,1AB =,所以1cos cos AB AE EAB θ==∠,6 / 18在Rt ADF ∆中,AD =236DAF EAB πππθ∠=--∠=-,0cos 6cos 6ADAF DAFπθπθ⎛⎫∴==<< ⎪∠⎛⎫⎝⎭- ⎪⎝⎭; (2)13sin 234cos cos 6S AE AF ππθθ=⋅==⎛⎫- ⎪⎝⎭⎝⎭32sin 23πθ===⎛⎫++ ⎪⎝⎭,因为06πθ<<,所以22333πππθ<+<2sin 223πθ⎛⎫<+≤ ⎪⎝⎭,当232ππθ+=时,即当12πθ=时,S取最小值(32.【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC V 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 22A C C=⋅⋅-,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值. 解:(1)由正弦定理()()()a c c a b a b -=+-,222a c b ac +-=,由余弦定理2221cos 22a cb B ac +-==,3B π=;7 / 18(2)由正弦定理2sin sin sin 2a c bA C B====,2sin a A =,2sin c C =, 2sin 2sin sin 2S C ac B C -=-2sin 2sin sin 2sin sin 2A C C A C C =⋅=-2)sin sin 23sin cos sin 2C B C C C C C C =+-=+-31cos 2sin 2sin 22sin 2222222C C C C C =-+-=-+sin 213C π⎛⎫=-≤ ⎪⎝⎭当且仅当512C π=时等号成立,故最大值为1. 【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.解:(1cos c C -=⋅sin cos B C A C -=,又sin sin[()]sin()B A C A C =π-+=+,cos cos sin )sin cos A C A C C A C +-=sin sin 0A C C -=, 因为0C π<<,所以sin 0C ≠,所以cos A =0A π<<,所以4A π=. (2)由(1)知4A π=,根据题意得0242C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<.8 / 18在ABC ∆中,由正弦定理得sin sin c bC B=,所以)2sin 2cos 242sin sin tan C C C b CC Cπ++===+,因为()42C ππ∈,,所以tan (1,)C ∈+∞,所以(24)b ∈,. 因为D 为BC 中点,所以1()2AD AC AB =+u u u r u u u r u u u r,所以221()4AD AC AB =+u u u r u u u r u u u r 21(48)4b b =++21(2)14b =++,因为(24)b ∈,,所以AD的取值范围为.1. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围. 【思路引导】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.解:(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A Bπ===,a A b B ==9 / 18∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+- ⎪⎥⎝⎭⎦2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC V 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC V 的面积取得最大值时,求ABC V 的周长.【思路引导】(1)根据正弦定理,将()sin 4sin 8sin a A B A +=,化角为边,即可求出a ,再利用正弦定理即可求出sin B ;(2)根据3C π=,选择in 12s S ab C =,所以当ABC V 的面积取得最大值时,ab 最大,结合(1)中条件48a b +=,即可求出ab 最大时,对应的,a b 的值,再根据余弦定理求出边c ,进而得到ABC V 的周长.解:(1)由()sin 4sin 8sin a A B A +=,得()48a a b a +=, 即48a b +=.因为1b =,所以4a =.由41sin sin6B=π,得1sin 8B =. (2)因为48a b +=≥=, 所以4ab ≤,当且仅当44a b ==时,等号成立.10 / 18因为ABC V的面积11sin 4sin 223S ab C π=≤⨯⨯= 所以当44a b ==时,ABC V 的面积取得最大值, 此时22241241cos 133c π=+-⨯⨯⨯=,则c =, 所以ABC V的周长为53. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 【思路引导】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=- ⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 解:(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=- ⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 622B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 2ABC S ac B ∆==,11 / 18又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r, 等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r , 所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r, 则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆43=4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.【思路引导】(1)根据正弦定理即正弦的和角公式,将表达式化为角的表达式.即可求得A .(2)利用正弦定理,表示出b c +,结合三角函数的辅助角公式及角的取值范围,即可求得b c +的最大值. 解:(1)∵cos cos 2cos +=ac B b C A,由正弦定理得sin sin cos sin cos 2cos +=AC B B C A从而有()sin sin sin sin 2cos 2cos +=⇒=A AB C A A A , ∵sin 0A ≠,∴1cos 2A =,∵0A π<<,∴3A π=;(2)由正弦定理得:2sin sin sin a b cA B C===, ∴2sin ,2sin b B c C ==,则()22sin sin 2sin 2sin 3⎛⎫+=+=+-⎪⎝⎭b c B C B B π3sin 6B B B π⎛⎫==+ ⎪⎝⎭,12 / 18∵203B π<<,∴5666B πππ<+<, ∴当3B π=时,b c +取得最大值5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-r ,(1,cos cos )n a C c A =+r,且//m n r r.(1)求角C 的大小; (2)若c =ABC ∆的周长的取值范围.【思路引导】(1)根据向量平行列出方程,再利用正弦定理进行边角转化,然后求出角C 的大小; (2)根据余弦定理求出+a b 的取值范围,再根据三角形边的几何性质求出周长的取值范围. 解:(1)由//m n r r得22cos 2cos cos a C c A C b +=-, 由正弦定理sin sin sin a b cA B C==, 得2cos (sin cos sin cos )sin C A C C A B +=-, 即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=; (2)在ABC ∆中,因c =23C π∠=,由余弦定理得2223c a b ab =++=, 即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b +≤,则2a b c <++≤,即ABC ∆的周长的取值范围为(+. 6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.13 / 18(1)求A C +;(2)设ABD △、CBD V 的外接圆半径分别为1,r 2r ,若1211mr r DB+≤恒成立,求实数m 的最小值. 【思路引导】(1)根据三角函数的和差角公式与三角函数值求解即可. (2)根据正弦定理参变分离,再利用A 的取值范围求解 解:(1)由题, 2cos sin()A A C +=3sin[()]sin[()]sin(2)sin sin 2A A C A A C A C C C C ++--+=++=-,即1sin(2)sin 22A C C C +=-sin(2)sin 3A C C π⎛⎫⇒+=- ⎪⎝⎭,因为23A C C π+>-.故23A C C π+≠-.所以2233A C C A C πππ++-=⇒+=. (2)122sin 2sin BD BD m A C r r ≥+=+22sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭12sin 2cos 2sin 22A A A ⎛⎫=+⨯-⨯- ⎪⎝⎭3sin A A =6A π⎛⎫=+ ⎪⎝⎭,因为0,2A π⎛⎫∈ ⎪⎝⎭,故当62A ππ+=时6A π⎛⎫+ ⎪⎝⎭有最大值所以m ≥即实数m的最小值为7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 【思路引导】(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据14 / 18A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 解:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+ 即2sin()sin sin A B A B +=+,因为A B C π++=, 所以sin()sin()sin A B C C π+=-=,从而sin sin 2sin A B C +=,由正弦定理得2a b c +=. (2)由(1)知,2a bc +=, 所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++-+-===+-≥, 当且仅当a b =时,等号成立,故cos C 的最小值为12.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =u u u r u u u u r,求a 的最小值. 【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值.解:(1) ∵ABC V 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =u u u r u u u r得6bc =,15 / 18所以222222cos 6266a b c bc A b c bc =+-=+--=… 当且仅当b c =时取等号,所以a9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 【思路引导】(1)由诱导公式和二倍角公式可得sin bc A ,从而得三角形面积;(2)由余弦定理得2222cos 2sin b c bc A a bc A +-==,从而可把22c b b c b c bc++=用角A 表示出来,由三角函数性质求得最大值.解:(1)在ABC ∆中,A B C π++=,∴B C A +=π-∵()sin 220cos 0bc A B C ++=∴2sin cos 20cos 0bc A A A ⋅-= ∵2A π≠,∴cos 0A ≠∴1sin 52S bc A == (2)∵24a S =∴222cos 2sin b c bc A bc A +-= ∴222sin 2cos b c bc A bc A +=+∴222sin 2cos 4c b b c A A A b c bc π+⎛⎫+==+=+ ⎪⎝⎭ ∴当4A π=时,c bb c+取最大值 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A C a b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.16 / 18【思路引导】 (1)根据tan(sin 2cos )cos 2222A C A C a b a +=,化简可得cos sin 2A C a b A +=,进一步得到1cos 22B =,然后求出B 的值;(2)由(1)的角B 及三角形面积公式可得ac 的值,因为D 为边AC 的中点,所以1()2BD BA BC =+u u u r u u u r u u u r,利用向量的模和基本不等式可求BD u u u r的取值范围,即可得到BD 的最小值.解:(1)由tan(sin 2cos )cos 2222A C A C a b a +=,得sin (sin 2cos )cos cos 22222A C A A C a b a +=, 即(cos cos sin sin )2sin cos 222222A C A C A A a b -=,即cos sin 2A Ca b A +=. 由正弦定理得sin cossin sin 2A C AB A +=,因0,sin 0,sin 02BA A π<<≠≠, 所以cossin 2A C A +=,则sin sin 2sin cos 222B B BB ==, 所以1cos (0)2222B B π=<<, 所以23B π=,即23B π=. (2)由△ABC的面积为1sin 2ac B =12ac =.因为D 为边AC 的中点,所以1()2BD BA BC =+u u u r u u u r u u u r ,所以2221(2)4BD BA BC BA BC u u u r u u u r u u u r u u u r u u u rg =++,即222111(2cos )(2)3444BD c a ac B ac ac ac u u u r =++≥-==,当且仅当a c ==“=”,所以BD u u u r≥BD.11. ABC ∆中,60,2,B AB ABC ==∆o的面积为 (1)求AC(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=o ,求DEF ∆面积的最小值. 【思路引导】 (1)利用1sin 2ABC AB B S BC =⋅⋅⋅V 求出BC ,再利用余弦定理求AC 即可; (2)设(),0,60BDE θθ︒︒∠=∈,在BDE V 中,利用正弦定理表示出DE ,在CDF V 中,利用正弦定理表示出DF ,再将DEF V 的面积表示出来,利用三角函数的性质求其最小值.17 / 18解:(1)因为60,2,B AB ==o所以11sin 222ABC AB BC B BC B S C =⋅⋅⋅=⨯=V ,又ABC S =V 4BC =,由余弦定理得:2222212cos 24224122AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以AC =(2)设(),0,60BDE θθ︒︒∠=∈,则60CDF θ︒∠=-,在BDE V 中,由正弦定理得:sin sin BD DEBED B=∠,即()2sin 60θ︒=+,所以sin 60DE =+, 在CDF V 中,由正弦定理得:sin sin CD DFCFD C=∠,由(1)可得22260,,30B BC AC AB C ︒=∴=+=o ,则()21sin 902DFθ︒+=,所以1cos DF θ=,所以()13sin 24sin 60cos DEFS DE DF EDF θθ︒=⋅⋅⋅∠=+⋅V==,当15θ︒=时,()()min sin 2601,6DEP Sθ︒+===-V18 / 18故DEF V的面积的最小值为6 .。

等边三角形中的最值问题

等边三角形中的最值问题

等边三角形中的最值问题
在等边三角形中,我们可以考虑最大和最小的值。

1. 最大值问题:
在等边三角形中,最大值问题通常涉及到最长边的长度、最大面积或最大角度。

- 最长边的长度:在等边三角形中,由于三个边长相等,所以三角形的最长边等于任意一条边的长度。

因此,最长边的长度等于这个等边三角形的边长。

- 最大面积:在等边三角形中,每个角度都是60度,所以最大面积发生在等边三角形。

对于给定的等边三角形,它的最大面积是通过使用三角形面积公式A = (1/2)bh,其中b是底边的长度,h是高度,而不是由最长边来确定的。

- 最大角度:在等边三角形中,每个角度都是60度,所以不存在最大角度的问题。

2. 最小值问题:
在等边三角形中,最小值问题通常涉及到最短边的长度、最小面积或最小角度。

- 最短边的长度:在等边三角形中,由于三个边长相等,所以三角形的最短边等于任意一条边的长度。

因此,最短边的长度等于这个等边三角形的边长。

- 最小面积:在等边三角形中,每个角度都是60度,所以最
小面积发生在等边三角形。

对于给定的等边三角形,它的最小面积是通过使用三角形面积公式A = (1/2)bh,其中b是底边的长度,h是高度,而不是由最短边来确定的。

- 最小角度:在等边三角形中,每个角度都是60度,所以不
存在最小角度的问题。

总结起来,等边三角形中的最值问题通常涉及到边长、面积和角度。

在等边三角形中,边长的最大和最小值都等于边长本身,面积的最大值取决于底边和高度的取值,面积的最小值是非零的,最小角度是60度。

解三角形中的最值与范围问题4大题型

解三角形中的最值与范围问题4大题型

解三角形中的最值与范围问题4大题型解三角形中的最值与范围问题是近几年高考数学的热点,这类试题主要考查学生数形结合、等价转化、数学运算和逻辑推理的能力。

一般为中等难度,但题目相对综合,涉及知识较多,可通过三角恒等变换、构造函数或构造基本不等式等方法加以解决。

一、三角形中的最值范围问题处理方法1、利用基本不等式求最值-化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。

2、转为三角函数求最值-化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。

要注意三角形隐含角的范围、三角形两边之和大于第三边。

二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B .()1C .(]1,3D .(]2,3【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【变式2-1】(2023·云南昆明·已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x x ωωω=-,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC周长的取值范围.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos 2cos f x x x x x =-⋅-∈R .(1)求函数()f x 的值域;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =-,a =求△ABC 的面积S 的最大值.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,AD =,2CD =,BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a b c+的取值范围.6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+ ⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.参考答案【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B.()1C .(]1,3D .(]2,3【答案】B【解析】∵cos cos 1b A B -=,即:cos cos 1b A B =+,1a =,∴cos (cos 1)b A B a =+,∴由正弦定理得:sin cos (cos 1)sin B A B A =+,即:sin cos sin cos sin B A A B A =+,∴sin()sin B A A -=,∴B A A -=或πB A A -+=,解得:2B A =或B π=(舍),又∵△ABC 为锐角三角形,则ππ3C A B A =--=-,∴ππ0022ππ00222ππ00π322A A B A C ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇒<<⎨⎨⎪⎪⎪⎪<<<-<⎪⎪⎩⎩,解得:ππ64A <<,2π2sin 21cos 22sin(2)16B A A A A +=+-=-+,又∵ππ64A <<,∴πππ2663A <-<,∴1πsin(2262A <-<,∴π22sin(2)116A <-+<,22sin B A +的取值范围1).故选:B.【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【答案】43【解析】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系,可知22x x +>且22x x -<,解得223x <<,在ABD △中,由余弦定理,得()2212cos 2AD x ADB AD +-∠=,在ACD 中,由余弦定理,得221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()cos cos πcos ADB ADC ADC ∠=-∠=-∠,所以()222212122AD x AD x AD AD+-+-=-,解得22512AD x =-,则2242251132cos 54512122x x x ADC x x -+-∠=⨯-⨯-223x <<,令2512x t -=,则1,99t ⎛⎫∈ ⎪⎝⎭,()2215x t =+,()4242125x t t =++,则232131313cos 2221010105t t ADC t t t t t ++∠==⨯++≥⨯⋅+=,当且仅当1t t =,即1t =时,等号成立,此时25112x -=,解得25x =因为3cos 05ADC ∠≥>,所以π0,2ADC ⎛⎫∠∈ ⎪⎝⎭.因为cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,tan y x =在π0,2⎛⎫ ⎪⎝⎭单调递增,所以当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时24sin 1cos 5ADC ADC ∠-∠=,则4tan 3ADC ∠=,所以tan ADC ∠的最大值为43.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【答案】(1)tan 3tan B A=-;(2)π6【解析】(1)由余弦定理可得2222cos b c a ac B =+-,代入2222b a c -=,得到()22222cos 2c a ac B a c +--=,化简得22cos 0c ac B +=,即2cos 0c a B +=.由正弦定理可得sin 2sin cos 0C A B +=,即()sin 2sin cos 0A B A B ++=,展开得sin cos cos sin 2sin cos 0A B A B A B ++=,即3sin cos cos sin A B A B =-,所以tan 3tan BA=-.(2)由2222b a c -=得2222b ac -=,故222cos 2a b c C ab +-=222222b a a b ab-+-=2233444a b a b ab b a +==+≥=当且仅当223b a =,即b =时等号成立.因为()0,πC ∈,所以π6C ≤,所以C 的最大值为π6.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【答案】(1)证明见解析;(2)98【解析】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【答案】(1)证明见解析;(2),46⎛⎫⎪ ⎪⎝⎭【解析】(1)由22c b ab =+及余弦定理2222cos c a b ab C =+-,得()2cos 1a b C =+,由正弦定理得:()sin sin 2cos 1A B C =+,又πA B C ++=,()sin sin sin cos cos sin 2sin cos sin A B C B C B C B C B ∴=+=+⋅=+,cos sin sin cos sin B C B C B ∴-=,()sin sin C B B ∴-=,,,A B C 都是锐角,C B B ∴-=,即2C B =.(2)令113sin tan tan y C B C =-+cos cos 3sin sin sin B C C B C =-+sin cos cos sin 3sin sin sin C B C BC B C -⋅=+⋅()sin 3sin sin sin C B C B C-=+⋅,由(1)2C B =得13sin sin y C C=+,在锐角三角形ABC 中,π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩,即()π02π022π02B C C B C π⎧<-+<⎪⎪⎪<=<⎨⎪⎪<<⎪⎩,解得ππ32<<C,sin C ⎫∴∈⎪⎪⎝⎭,令sin ,12t C ⎛⎫=∈ ⎪ ⎪⎝⎭,()13,2y f t t t t ⎛⎫∴==+∈ ⎪ ⎪⎝⎭,又函数()13y f t t t ==+在2⎛⎫ ⎪ ⎪⎝⎭上单调递增,()4y f t ⎫∴=∈⎪⎪⎝⎭,故113sin tan tan C B C -+的取值范围是46⎛⎫ ⎪ ⎪⎝⎭.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【答案】(1)π3C =;(2)9【解析】(1)因为sin cos c B C =,所以由正弦定理得sin sin cos C B B C =,又因为()0,πB ∈,sin 0B ≠,所以sin C C =,即有tan C =又因为()0,πC ∈,所以π3C =.(2)因为π3C =,6a b +=,所以由余弦定理可得222222cos ()236336392a b c a b ab C a b ab ab ab +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当3a b ==时,等号成立,所以3c ≥,故ABC 周长的最小值9.【变式2-1】(2023·云南昆明·高三昆明一中校考阶段练习)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【答案】(1)π3;(2)(+【解析】(1)根据余弦定理可知,222cos 2a c b B ac+-=,所以2cos sin 2ac B A bc =,即cos sin cos sin sin sin B A BA A b B=⇔,则tan B =()0,πB ∈,所以π3B =;(2)设π2π,23A ⎛⎫∠∈ ⎪⎝⎭,根据正弦定理可知2πsin sin sin sin 3a cb A C B ====,所以2sin a A =,2π2sin 2sin 3c C A ⎛⎫==- ⎪⎝⎭,所以周长2π2sin 2sin 3a b c A A ⎛⎫++=+-+ ⎪⎝⎭12sin 2sin 2A A A ⎫=++⎪⎪⎝⎭3sin A A =++π6A ⎛⎫=+ ⎪⎝⎭,因为π2π,23A ⎛⎫∈ ⎪⎝⎭,,πππ25636A ⎛⎫+∈ ⎪⎝⎭,所以1sin 622πA ⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以π36A ⎛⎫<+++ ⎪⎝⎭,所以ABC的周长为(+.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x ωωω=,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC 周长的取值范围.【答案】(1)1ω=,对称轴方程为:()ππ26k x k =+∈Z ;;(2)2.【解析】(1)211cos(2))1()cos ())cos()2222x x f x x x x ωωωωω+=-=+-,()πsin 26f x x ω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的两个相邻零点间的距离为π2,所以函数()f x 的最小正周期为2ππ2⨯=,因为0ω>,所以2ππ12ωω=⇒=,即()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令()()ππππ2πZ Z 6226k x k k x k +=+∈⇒=+∈,所以对称轴为()ππ26k x k =+∈Z ;(2)由πsin 6(12)1A f A ⎛⎫+=- ⇒⎪⎝⎭=-,因为(0,π)A ∈,所以ππ13ππ3π2π2(,)2666623A A A +∈⇒+=⇒=,因为a22sin ,2sin sin sin sin a b c b B c CA B C ===⇒==,π2sin 2sin 2sin 2sin 3B C B B ⎛⎫+=+- ⎪⎝⎭,1π2sin sin 2sin 223B B B B B B ⎛⎫⎛⎫+-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为π(0,)3B ∈,所以ππ2π(,)333B +∈,因此ππsin ,1]2sin (2323B B ⎛⎫⎛⎫+∈⇒+++ ⎪ ⎪⎝⎭⎝⎭,所以ABC周长的取值范围为2.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【答案】(1)3π;(2)()∞+.【解析】(1)在ABC 中,由三角形面积公式得:1sin 2S bc A =,由正弦定理得:()2212sin sin 2cabc A a b A b c⎛⎫⨯+=+ ⎪⎝⎭,整理得:222a b c ab +-=,由余弦定理得:2221cos 22a b c C ab +-==,又0C π<<,故3C π=.(2)因为a 3C π=,由正弦定理得32sin c A=,23cos 3sin 2sin A A b A A π⎛⎫- ⎪⎝⎭===即ABC的周长()31cos 33cos 2sin 2sin 2sin A A l a b c A A A +=++=+=26cos 32224sincos 2tan222AA AA =++,因为203A π⎛⎫∈ ⎪⎝⎭,,则023Aπ⎛⎫∈ ⎪⎝⎭,,故0tan 2A<所以322tan2A +>ABC的周长的取值范围是∞).【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【答案】(1(2)8+【解析】(1)因为,,,A B C D 四点共圆,所以πABC ADC ∠+∠=,因为3cos 5ABC ∠=-,所以3cos cos 5ADC ABC ∠=-∠=,因为()0,πADC ∠∈,故sin 54ADC ∠==,在ABC 中,由余弦定理得:22232cos 25930525AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭,故AC =在ADC △中,由正弦定理得:sin sin AD ACACD ADC=∠∠,5=,解得:AD(2)由(1)知:AC=3cos5ADC∠=,在ADC△中,由余弦定理得:22222523cos225AD CD AC AD CDADCAD CD AD CD+-+-∠===⋅⋅,整理得:226525AD CD AD CD+=⋅+,故()216525AD CD AD CD+-=⋅,其中22AD CDAD CD+⎛⎫⋅≤ ⎪⎝⎭,故()()221645255AD CD AD CD AD CD+-=⋅≤+,解得:AD CD+≤AD CD=故四边形ABCD周长的最大值为8AB BC AD CD+++≤+【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos2cosf x x x x x=-⋅-∈R.(1)求函数()f x的值域;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若()2f A=-,a=求△ABC的面积S的最大值.【答案】(1)[]3,1-;(2【解析】(1)()1cos2πcos2sin2cos212sin2126xf x x x x x x+⎛⎫=⋅-⋅--=--⎪⎝⎭,∴()f x的值域为[]3,1-.(2)()π2sin2126f A A⎛⎫=--=-⎝⎭,即π1sin262A⎛⎫-=-⎪⎝⎭,由()0,πA∈,得ππ11π2<666A-<-∴π7π2=66A-,即2π3A=,又222222π32cos33a b c bc b c bc bc==+-=++≥,即1bc≤,∴11sin 12224ABC S bc A =≤⨯ ,∴()max 4ABC S =,当且仅当1b c ==时取得.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【答案】(1)π4;(2)4【解析】(1)法一:左边2sin 22sin cos sin 1cos 22cos cos B B B BB B B===+,右边sin 1tan 1sin cos cos sin tan 1sin cos 1cos CC C CC C C C CC+++===---,由题意得sin sin cos sin sin sin cos cos sin cos cos cos sin cos B C CB C B C B C B C B C C+=⇒-=+-()()()sin cos 0tan 1B C B C B C ⇒+++=⇒+=-,即tan 1A =,又因为0πA <<,所以π4A =.法二:左边2sin 22sin cos tan 1cos 22cos B B BB B B===+,右边πtan tantan 1ππ4tan tan πtan 1441tan tan4C C C C C C ++⎛⎫⎛⎫==--+=-- ⎪ ⎪-⎝⎭⎝⎭-,由题意得ππππ44B C k B C k =--+⇒+=-+,又因为0πB C <+<,所以3ππ44B C A +=⇒=.(2)由11π2sin 2244ABC S a bc a bc =⨯=⇒=△,由余弦定理得222222π2cos 4a b c bc a b c =+-⇒=+,2222222211288b c b c b c b c bc ⇒=+⇒+=+≥,(82bc ⇒≥,当且仅当b c =时取“等号”,而1πsin24ABC S bc ==△,故()(min 824ABC S =-=△【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【答案】(1)π3C =;(2).【解析】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =,所以π3C =.(2)在ABC 中,由余弦定理2222cos c a b ab C =+-得:221a b ab =+-,因此12ab ab ≥-,即01ab <≤,当且仅当a b =时取等号,又11sin (0,22ABC S ab C ===∈△,所以ABC 面积的取值范围是4.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【答案】(1)π3或2π3;(2【解析】(1)()sin sin 4sin C B a C =-,4sin s sin sin in C B a B C =,)sin sin sin sin 4sin sin sin B C C B A B C +=,sin 2sin sin sin B C A B C =,因为sin sin 0B C ≠,所以sin2A =,因为()0,πA ∈,所以π3A =或2π3A =(2)因为2a =,且224b c +>,所以由余弦定理得222224cos 022b c a b c A bc bc+-+-==>,所以A 为锐角,由(1)知π3A =.因为O 是ABC 的内心,所以()()112ππππ223BOC ABC ACB A ∠=-∠+∠=--=,在OBC △中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅∠,所以2222242cos3OB OC OB OC OB OC OB OC π=+-⋅=++⋅23OB OC OB OC OB OC ≥⋅+⋅=⋅,当且仅当33OB OC ==时等号成立,所以43OB OC ⋅≤,所以1142π3sin sin 2233OBC S OB OC BOC =⋅∠≤⨯=△所以OBC △33【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,3AD =,2CD =,2BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【答案】(163;(2)218【解析】(1)∵BC CD ⊥,∴426BD =+=22cos 326362ADB ∠=⋅⋅,1in 3s ADB ∠=,3sin 3BDC ∠=,6cos 36BDC ∠==∴sin sin()sin cos cos sin ADC BDC ADB BDC ADB BDC ADB∠∠∠=+=∠∠+∠∠13===;(2)设BAD ∠=α,BCD β∠=,∴23142BD αβ=+-=+-,∴2βα-=,∴1βα=,①22222212131sin 1sin sin 2sin 24S S αβαβ⎫⎛⎫+=⨯+⋅⨯=+⎪ ⎪⎭⎝⎭()222233sin 21cos sin 2144αβα⎡⎤⎢⎥=+-=+-⎢⎥⎣⎦2223535321cos cos cos 222228ααααα⎛⎫⎛=--+=-++=-++ ⎪ ⎪ ⎝⎭⎝⎭,当且仅当cos 6α=-,cos 8β=时取最大值218;综上,sin 3ADC ∠=,2212S S +的最大值是218.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【答案】2⎛ ⎝【解析】在ABC 中,由正弦定理得sin sin sin a b cA B C ==,所以1sin sin 60b A = ,即2sin b A=,因为锐角ABC ,所以090,090A C <<<< ,即090,012090A A <<<-<,解得3090A <<,所以1sin 12A <<,所以112sin A<<,<2b ⎛∈ ⎝.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【答案】(1)3π;(2)⎡⎣【解析】(1)因为()()cos sin cos a B C B a A -=-,可得()cos cos sin cos a B C a A B A -+=,则()()cos cos sin cos a B C a B C B A --+=,所以()cos cos sin sin cos cos sin sin 2cos a B C a B C a B C B C B A +--=,即sin sin sin cos a B C B A =,由正弦定理得sin sin sin sin sin cos A B C C B A =,显然sin 0C >,sin 0B >,所以sin A A ,所以tan A =()0,πA ∈,所以π3A =.(2)因为sin sin a b A B==πsin sin 3a bB ==所以3a =,b B =,所以2223sin 2sin 4sin b a a b B B b b B B +⎫=+=++⎭,因为ABC 为锐角三角形且2π3B C +=,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以ππ62B <<,即1sin ,12B ⎛⎫∈ ⎪⎝⎭,令()34f x x x =+,1,12x ⎛⎫∈ ⎪⎝⎭,由对勾函数性质知函数()34f x x x =+在122⎛ ⎝⎭上单调递减,在,12⎫⎪⎪⎝⎭上单调递增,且122f ⎛⎫= ⎪⎝⎭,f =⎝⎭()714f =,所以())2f x ∈,即)3sin 24sin B B +∈,所以3sin 6,4sin B B ⎫⎡+∈⎪⎣⎭,即22b a b+的取值范围为⎡⎣.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【答案】(1)2;(2)(【解析】(1)由条件得:211sin tan tan A B C =+cos cos sin sin B C B C =+sin cos cos sin sin sin C B C B B C +=()sin sin sin C B B C+=sin sin sin A B C =,所以2sin 2sin sin A B C =,由正弦定理得:22a bc =,所以22a bc=.(2)b c >及22a bc =,则B C >,角C 一定为锐角,又ABC 为锐角三角形,所以cos 0cos 0A B >⎧⎨>⎩由余弦定理得:2222222222222220020222020022b c a b c bcb c bc bc bc bc c b a c b bc c b ac ac ⎧⎧+-+->>⎪⎪⎧+->⎪⎪⇒⇒⎨⎨⎨+->+-+-⎩⎪⎪>>⎪⎪⎩⎩,所以2220bc c b +->,即212b b c c ⎛⎫⎛⎫<+ ⎪ ⎝⎭⎝⎭,解得:11b c <<又1bc >,所以(1,1b c∈+.又22222122b c b c b c a bc c b ++⎛⎫==+ ⎪⎝⎭,令(1,1b x c =∈+,则()222112b c f x x a x +⎛⎫==+ ⎪⎝⎭,()()()2211111022x x f x xx +-⎛⎫'=-=> ⎪⎝⎭,所以()f x在(1,1上递增,又()11f =,(1f =所以222b c a+的取值范围是(.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【答案】(1)π3;(2)【解析】(1)方法一:()11cos ,sin cos sin sin sin 22b Cc a B C C A B C +=∴+==+ ,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以()11sin sin cos ,0,π,sin 0,cos ,22C C B C C B =∈∴>∴= ()π0,π,3B B ∈∴=.方法二:在ABC 中,由正弦定理得:()1sin cos sin sin 2B C C A B C +==+,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以1sin cos sin 2C B C =.因为()0,πC ∈,所以sin 0C ≠,所以1cos 2B =,因为()π0,π,3B B ∈=.(2)方法一:222222cos 2b a c ac B a c ac ac ac ac =+-=+-≥-=,16ac ∴≤当且仅当4a c ==时取“”=,1sin 112sin ,22228ac Bac B BD b BD ac =⋅=≤max BD ∴=方法二:在ABC 中,由余弦定理得:222222cos 162(b a c ac B a c ac ac ac =+-⇒=+-≥-当且仅当a c =取“=”)所以16ac ≤,所以ABC 的面积1sin24ABC S ac B ac ==≤ 122ABC S b BD BD BD =⨯=≤⇒≤ 【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.【答案】(1)1;(21【解析】(1)由sin cos sin2C B B A +=cos sin C B A B =-,cos )sin C B B C B =+-,)cos sin cos cos sin sin C B B C B C B =+-cos sin B C B =,因为sin 0B ≠,1C =,即cos2C =,由()0,πC ∈得π4C =,故tan 1C =.(2)由22sin ab C c =结合余弦定理得2222cos 2sin a ab C ab b C c =+-=,则()22π2sin cos sin 4a b ab C C C ⎛⎫+=+=+ ⎪⎝⎭,于是221sin 4a a a C b b b π⎛⎫+=⨯+≤ ⎪⎝⎭,即2210a ab b -+≤.11ab≤≤,故当π4C =时,ab1.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>,则cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭【答案】B【解析】222213cos212AB AC BC BC A AB AC +--==⋅,因为BC >11cos 12A <.又()0,πA ∈,所以cos A 的范围是111,12⎛⎫- ⎪⎝⎭.故选:B 2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+【答案】C【解析】因为πsin sin2Bb A a -=,根据正弦定理及诱导公式得sin sin sin cos2B B A A ⋅=⋅,()0,πA ∈ ,sin 0A ∴≠,sin cos2B B ∴=,即2sin cos cos 222BB B=,()0,πB ∈ ,则π0,22B ⎛⎫∈ ⎪⎝⎭,则cos 02B ≠解得1sin22B =,所以ππ263B B =⇒=,所以1sin 24S ac B ===,所以8,ac a c =+≥,当且仅当a c ==时等号成立,根据余弦定理得b =,即b =,设ABC 的周长为C ,所以()ABC C a c a c =++=+ ,设,a c t t +=≥,则()f t t =根据复合函数单调性及增函数加增函数为增函数的结论得:()f t 在)⎡+∞⎣上为单调增函数,故()(minf t f ==,故()min ABC C = ,当且仅当a b c ===时取等.故选:C.3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.【答案】32,2⎛⎫ ⎪ ⎪⎝⎭【解析】因为2cos c b b A -=,所以sin sin 2sin cos C B B A -=,即()sin sin 2sin cos A B B B A +-=,展开整理得()sin sin A B B -=,因为锐角ABC 中,ππππ,0,,,,2222A B A B A B ⎛⎫⎛⎫∈+>-∈- ⎪ ⎪⎝⎭⎝⎭,所以A B B -=,即2A B =,由π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,得π6π4B <<,()()22πsin cos sin 2cos sin2cos21214C B A B A B B B B ⎛⎫++-=+=++=++ ⎪⎝⎭,因为π6π4B <<,所以7ππ3π21244B <+<,π<sin 224B ⎛⎫+ ⎪⎝⎭,所以()()2sin 2cos C B A B ++-的范围为32⎛⎫ ⎪ ⎪⎝⎭.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.【答案】【解析】在ABC 中,由2cos 2b A a c +=及正弦定理得:2sin cos sin 2sin B A A C +=,而π()C A B =-+,于是2sin cos sin 2sin()2sin cos 2cos sin B A A A B A B A B +=+=+,有sin 2sin cos A A B =,而0πA <<,sin 0A >,因此1cos 2B =,由余弦定理得2222cos b a c ac B =+-,即有222222112()3()3()()24a c a c ac a c ac a c a c +=+-=+-≥+-=+,当且仅当a c =时取等号,从而a c +≤,而a c b +>=,则a b c <++≤所以ABC周长的取值范围为.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a bc+的取值范围.【答案】(1)证明见解析;(2)(1,5).【解析】(1)∵22c ac b +=,∴22c b ac -=-,∴由余弦定理得:2222cos 222a c b a ac a cB ac ac c+---===,即:2cos c B a c ⋅=-,由正弦定理得:2sin cos sin sin C B A C ⋅=-,∴2sin cos sin()sin sin cos sin cos sin C B B C C B C C B C ⋅=+-=+-,整理得:sin cos sin cos sin 0B C C B C --=,即:sin()sin B C C -=,又∵(0,π)B C ∈、,∴B C C -=,即:2B C =.(2)∵2B C =,∴π3A C =-,又∵sin22sin cos C C C =⋅,2sin 3sin(2)sin cos 2cos sin 2sin cos 22sin cos C C C C C C C C C C C=+=⋅+⋅=⋅+⋅,sin 0C ≠,∴由正弦定理得:sin sin sin(π3)sin2sin3sin2sin sin sin a b A B C C C Cc C C C++-++===22sin cos22sin cos 2sin cos cos22cos 2cos sin C C C C C CC C CC⋅+⋅+⋅==++2222cos 12cos 2cos 4cos 2cos 1C C C C C =-++=+-,又∵0π0π3ππ0π02π 030π0π A C B C C C C <<<-<⎧⎧⎪⎪<<⇒<<⇒<<⎨⎨⎪⎪<<<<⎩⎩,∴1cos 12C <<,令cos t C =,则2421a bt t c+=+-,112t <<,∵2421y t t =+-对称轴为14t =-,∴2421y t t =+-在1(,1)2上单调递增,当12t =时,11421142y =⨯+⨯-=;当1t =时,4215y =+-=,∴15a bc+<<,即:a b c +的范围为(1,5).6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.【答案】(1)π3A =;(2)()2,4-【解析】(1)由题意知,sin 2sin sin cos cos AC B B A-=⨯,所以2cos sin cos sin sin cos A C A B A B -=,则()2cos sin sin cos cos sin sin sin A C A B A B A B C =+=+=,又()0,πC ∈,所以sin 0C ≠,所以1cos 2A =,又()0,πA ∈,所以π3A =.(2)由(1)得sin 2sin sin cos cos AC B B A-=⨯,由正弦定理得cos 2cos a B c b A -=,又2a =,π3A =,所以24cos c b B -=.因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以1cos ,12B ⎛⎫∈- ⎪⎝⎭,所以()4cos 2,4B ∈-,故()22,4c b -∈-,即2c b -的取值范围为()2,4-.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.【答案】(1)π3;(2)⎝【解析】(1是2a 与πsin 6C ⎛⎫+ ⎪⎝⎭的等比中项,所以2π2sin 6a C b c ⎛⎫+==+ ⎪⎝⎭,由正弦定理及两角和的正弦公式,得12sin cos sin sin 2A C C B C ⎫⋅+=+⎪⎪⎝⎭.因为πA B C ++=,所以()sin sin cos sin sin sin cos cos sin sin A C A C A C C A C A C C +=++=++,()sin cos 1sin A C A C =+.因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭.又()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ66A -=,即π3A =.(2)由正弦定理,得2πsin sin sin 3ab B C ==,所以2π3sin sin C a B b C⎛⎫- ⎪⎝⎭==132tan C⎛=+ ⎝.因为ABC 是锐角三角形,所以2ππ0,32π0,2C C ⎧<-<⎪⎪⎨⎪<<⎪⎩所以ππ62C <<,所以tan 3C >,所以sin a B的取值范围是⎝.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.【答案】(1(2)(【解析】(1)若选条件①)cos sin a b C c B -=及正弦定理,)sin sin cos sin sin A B C C B-=()sin sin cos sin sin B C B C C B +-=⎤⎦,化简得sin sin sin B C C B =,因为0πC <<,所以sin 0C ≠,所以tan B =,因为0πB <<,所以π3B =.若选条件②,由22cos a c b C -=及正弦定理,得2sin sin 2sin cos A C B C -=,即()2sin sin 2sin cos B C C B C +-=,化简得2cos sin sin B C C =,因为0πC <<,所以sin 0C ≠,所以1cos 2B =,因为0πB <<,所以π3B =.若选条件③,由)()()a b a b a c c +-=-化简得,222a c b ac +-=,由余弦定理得222cos 2a c b B ac+-=,即1cos 2B =,因为0πB <<,所以π3B =,所以三个条件,都能得到π3B =.由余弦定理得()22222cos 22cos b a c ac B a c ac ac B =+-=+--,即21124222ac ac =--⨯,解得43ac =,所以ABC的面积114πsin sin 22333S ac B ==⨯⨯=.(2)因为π3b B ==,由正弦定理得4sin sin sin a c b A C B ===,因为2ππ3A C B +=-=,所以()2π1π4sin sin 4sin sin cos 3226a c A C A A A A A ⎫⎡⎤⎛⎫⎛⎫+=+=+-=+=+⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎭,因为2π03A <<,所以ππ5ππ1sin 166662A A ⎛⎫⎛⎤<+<+∈ ⎪ ⎥⎝⎭⎝⎦,,,所以(a c +∈,即(a b c ++∈,所以ABC 周长l 的取值范围为(.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.【答案】(1)证明见解析;(2【解析】(1)在△ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即2222()3a b c bc b c bc =+-=+-,又因为6a b c ++=,所以22[6()]()3b c b c bc -+=+-,整理可得:124()b c bc -+=-,所以()124bc b c +=+得证.(2)由(1)可知:()124bc b c +=+,所以124bc +≥⨯,当且仅当b c =时取等号,6≥2≤,因为6b c +<2≤,则4bc ≤,所以1sin 424ABC S bc A =≤= ,故△ABC.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.【答案】(1)π4A =;(2)()1,2【解析】(1)因为sin cos b c A a C -=,由正弦定理得sin sin sin sin cos B C A A C -=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形中的最值问题
题型一。

求和的范围型
1.中,角所对的边长分别为已知.
2.Ⅰ当时,求c;
3.Ⅱ求的取值范围.
4.
5.中,角的对边分别是,已知.
6.Ⅰ求C的大小;
7.Ⅱ若,求周长的最大值.
8.
3.在中,角所对的边分别似乎,且.
若,求角B;
求周长l的最大值.
题型二。

求积的范围型
1.中,内角的对边分别是,已知.
求的大小;
若,且,求面积的最大值.
2..在三角形ABC中,角所对的边分别为,且.
求角A;
若,求bc的取值范围.
3.已知的内角A、B、C的对边分别为a、b、c,其中.
求A;
当时,求面积的最大值.
4.在中,内角A、B、C的对边长分别为,若
求角A的大小;
若,求BC边上的中线AM的最大值.
题型三。

求边长的范围型
1.中,三个内角A、B、C所对的边分别为a、b、,
求角B的大小;
若,求边c的大小;
若,求b的最小值.
2.已知的周长为,且.
求边BC的长;
若的面积为,求角A的度数.
3.在中,角所对的边分别为,且满足.
求C;
若,且,求的面积.
数列复习
1.设数列的前n项和为,且满足.
2.Ⅰ求的通项公式;
3.Ⅱ设,求.
4.
5.
2.已知数列满足为正整数.
Ⅰ求证:数列为等差数列;
Ⅱ若,求数列的前n项和.。

相关文档
最新文档