(完整版)平行与垂直的知识点总结,推荐文档

合集下载

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳

七年级数学:《平行垂直》知识点归纳一、知识梳理二、1、平行线的定义:三、在同一平面内不相交的两条直线叫做平行线.四、2、平行的表示:五、用符号“∥”表示,读作“平行于” .六、3、同一平面内两条直线的位置关系:七、平行或相交.八、4、平行公理:九、经过直线外一点,有且只有一条直线与已知直线平行.十、5、平行的传递性:十一、平行于同一直线的两直线平行.十二、6、平行与角的联系:十三、若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.十四、7、垂直定义:十五、如果两条直线相交所成的四个角中有一个角是直角,那么这两条直线互相垂直.十六、其中一条直线叫做另一条直线的垂线.它们的交点叫做垂足.十七、两条线段、射线垂直是指这两条线段、射线所在的直线垂直.十八、8、垂直的表示:十九、用符号“⊥”表示,读作“垂直于” .二十、9、垂直公理:二十一、过一点有且只有一条直线与已知直线垂直.二十二、10、点到直线的距离:二十三、直线外一点到这条直线的垂线段的长度.二十四、11、垂线段的性质:二十五、直线外一点与直线上各点连接的所有线段中,垂线段最短.二十六、12、垂直与角的联系:二十七、若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.二、典型例题例1、概念辨析(1)两条不相交的直线叫做平行线.(2)两条直线不相交就平行.(3)两条射线或线段平行,是指它们所在的直线平行.(4)在同一平面内不相交的两条线段必平行.(5)经过一点,有且只有一条直线与已知直线平行.(6)同一平面内垂直于同一直线的两条直线互相平行.(7) 点A为直线l外一点,点B在直线l上,若AB=5厘米,则点A到直线l的距离为5cm.解析:(1)错误,必须加同一平面内,否则在立体几何中,会出现异面的情况.比如一个正方体,上面和前面相交的棱与右面和后面相交的棱,所在直线就是既不平行也不相交.(2)错误,理由同(1).(3)正确.(4)错误,反例如下图:(5)错误,必须在直线外,否则,如果这个点在直线上,所作直线就与已知直线重合.(6)正确.(7)错误,如下图,当点B在B2处,点A到直线l的距离为5cm,当点B在B1,点A到直线l的距离小于5cm.例2、试画图说明平面内三条直线的位置关系.分析:我们知道,同一平面内的两条直线有相交、平行两种关系.那么到了三条直线,就会出现三条都平行,两条平行,都不平行的情况.在三条都平行的情况外,必然有相交的情况,我们可以从交点数来考虑,即有一个,有两个,有三个交点三种.解答:例3、(1)如图,P是∠AOB外一点,过点P画直线PC∥OA,交OB于点C,过点P画直线PD∥O B,交OA反向延长线于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?(2)如图,P是∠AOB外一点,过点P画直线PC⊥OA,交OA于点C,过点P画直线PD⊥O B,交OB于点D,量出∠AOB、∠CPD的度数,你有什么发现?点P如果在∠AOB内部呢?分析:本题不难,主要是根据要求作图,然后发现度数之间的联系,不是相等就是互补,最后,再关注所研究的两个角的位置关系,发现其中一个角的两边与另一个角的两边分别平行,从而得出最后结论.解答:(1)当P是∠AOB外一点,∠AOB+∠CPD=180°当P是∠AOB内一点,∠AOB=∠CPD发现:若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.(2)当P是∠AOB外一点,∠AOB=∠CPD当P是∠AOB内一点,∠AOB+∠CPD=180°发现:若一个角的两边与另一个角的两边分别垂直,则这两个角相等或互补.三、思维提升例1、网格作图(1)利用图(1)中的网格,利用直尺过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于______.分析:网格作图是今后的重点内容,我们应该引起足够的重视,(1)对于作平行,有2种作法,第一种观察线段AB是横2竖4的长方形对角线,那么,过要画的点P,也应该是构造横2竖4的长方形对角线.第二种,采用平移的方法,从点A平移到点P,需要向右4格再向下1格,那么点B也要同样平移,然后将线段两端延长,变成直线.对于作垂直,则和平行相反,过点P需要构造横4竖2的长方形对角线.(2)我们可以保持EF不动,将AB,CD平移,注意,有2种情况.(3)对于网格图形的面积,我们通常可以采用割补法,割,把大图形分成几个小图形,计算面积和,补,把大图形再补成一个更大的,可直接计算面积的图形,减去周围几个小图形的面积和.本题适合用补的方法.解答:例2、垂线段再认识如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.过点P画OB的垂线,交OA于点C;过点P画OA的垂线,垂足为H;(1)请找出图中所有的垂线段,并说明这条垂线段的长度是哪个点到哪条直线的距离.(2)线段PC、PH、OC这三条线段大小关系是______.(用“<”号连接)分析:要找垂线段,首先要找出所有的垂足,因为垂线段是直线外一点到垂足的距离.这里的垂足显然只有P,H,那么点O,点C,可以和点P,点H组成垂线段.要说明垂线段长度是哪个点到哪一条直线的距离,那么必然选择的是垂线段的两个端点中,不是垂足的那个点,到垂足所在的另外一条与垂线段垂直的直线的距离.解答:(1)OP,OP的长度是点O到直线PC的距离.CP,CP的长度是点C到直线OB的距离.OH,OH的长度是点O到直线PH的距离.CH,CH的长度是点C到直线PH的距离.PH,PH的长度是点P到直线OC的距离.(2)PH<PC<OC.例3、思考类作图同一平面内已知线段AB长为10cm,点A、B到直线l的距离分别为6cm和4cm,符合条件的直线l有_______条?分析:显然,同学们都能想到作线段AB的垂线,将线段AB分成6cm,4cm两部分.但其实,在线段AB的两侧还有两条,分别以A、B为圆心、6cm和4cm为半径作圆,当所画的直线与两个圆分别都只有一个交点时,也符合题意,这样的直线有两条,即共有3条.到了初三,我们会知道,这三条线就是所画的两个圆的切线.解答:如图,三条红色的直线即为所求.变式如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.分析:我们可以先找线,再确定点,先找出到l1距离为2的直线,到12距离为1的直线,显然,它们的交点,就满足题意.画图后,不难发现到l1距离为2的直线有2条,到12距离为1的直线有2条,这4条直线两两相交,有4个交点,这4个交点就是"距离坐标"是(2,1)的点.解答:如图,到l1距离为2的直线是2条蓝色直线,到12距离为1的直线是2条红色直线,四个交点即为所求.。

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结

空间几何的平行与垂直关系知识点总结空间几何是研究点、线、面等几何形体在空间中的相互关系和特性的学科。

在空间几何中,平行和垂直是两种重要的关系。

本文将总结空间几何中的平行与垂直关系的知识点。

一、平行关系平行是指两条直线或两个平面在空间中永远不会相交的关系。

平行关系在日常生活和工程建设中经常被应用到。

1. 平行关系的性质- 平行线与同一平面内的直线交线的两个内角是同位角,即两个内角之和等于180度。

- 平行线与同一平面外的直线交线的两个内角也是同位角,同位角性质适用于平行于同一平面内的两条直线。

2. 判定平行关系的方法- 平行线的判定:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线平行,则这两条直线是平行线。

- 平行面的判定:如果两个平面上有一条直线与第三个平面上的两条直线重合,并且这两个平面分别与第三个平面平行,则这两个平面是平行面。

3. 平行线的性质- 平行线投影性质:平行于同一平面内的两条直线的等角投影相等。

- 平行线的方向性:平行线有确定的方向,可以延长或缩短,但方向不会改变。

二、垂直关系垂直是指两条直线或两个平面相交成直角的关系。

垂直关系在几何学、建筑学和物理学中都有广泛应用。

1. 垂直关系的性质- 垂直关系性质一:两个直角相等。

- 垂直关系性质二:两个互相垂直的直线或两个互相垂直的平面,其中一个与第三个垂直,则它们与第三个也是垂直关系。

- 垂直关系性质三:垂直于同一面的直线与该面的交线垂直。

2. 判定垂直关系的方法- 判定直线垂直关系的方法:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线垂直,则这两条直线是垂直的。

- 判定面垂直关系的方法:如果两个平面上有一条直线与第三个平面上的两条直线相交成直角,并且这两个平面分别与第三个平面垂直,则这两个平面是垂直的。

三、平行和垂直关系的应用平行和垂直关系在日常生活和工程建设中具有广泛的应用。

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结在小学数学中,平行与垂直是几何图形中非常基础且重要的概念。

理解这两个概念对于后续学习更复杂的几何知识有着至关重要的作用。

一、平行(一)平行的定义在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

这里要注意“在同一平面内”这个前提条件,如果不在同一平面内,即使两条直线不相交,也不能说它们是平行的。

(二)平行线的特点1、平行线之间的距离处处相等。

比如两条平行的铁轨,它们之间的枕木长度都是相等的。

2、平行线无论延长多远都不会相交。

(三)平行线的表示方法通常用“//”来表示平行,比如直线 a 与直线 b 平行,可以记作 a//b。

(四)画平行线的方法1、借助直尺和三角尺:先将三角尺的一条直角边与已知直线重合,再将直尺与三角尺的另一条直角边重合,然后沿着直尺平移三角尺,最后沿着三角尺的直角边画直线,就得到了与已知直线平行的直线。

2、用方格纸画平行线:在方格纸上,根据方格的横竖线来画平行线。

(五)生活中的平行线例子1、黑板的上下两条边。

2、窗户的左右两条边。

3、公路上的双黄线。

二、垂直(一)垂直的定义如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

(二)垂直的特点1、两条直线互相垂直时,形成的四个角都是直角。

2、垂线是直线,垂线段是线段。

(三)垂直的表示方法通常用“⊥”来表示垂直,比如直线 a 与直线 b 垂直,可以记作 a⊥b,交点 O 为垂足,记作“a⊥b 于点O”。

(四)画垂线的方法1、过直线上一点画垂线:将三角尺的一条直角边与已知直线重合,让三角尺的另一条直角边经过已知点,沿着这条直角边画直线,就是已知直线的垂线。

2、过直线外一点画垂线:先将三角尺的一条直角边与已知直线重合,让三角尺的另一条直角边靠近已知点,然后平移三角尺,使三角尺的另一条直角边经过已知点,沿着这条直角边画直线,就是已知直线的垂线。

平行线和垂直线知识点

平行线和垂直线知识点

平行线和垂直线知识点在几何学中,平行线和垂直线是两个基本的概念。

它们在直线和平面的研究中具有重要的意义。

本文将介绍平行线和垂直线的定义、性质以及它们之间的关系。

一、平行线的定义和性质平行线是指在同一个平面上永远不会相交的直线。

具体而言,对于两条直线l和m,如果它们在同一个平面上且不相交,我们可以说直线l与直线m是平行的,记作l ∥ m。

根据平行线的定义,我们可以得出以下性质:性质1:如果一条直线与两条平行线相交,那么它将分成两个相对应的锐角和两个相对应的钝角。

性质2:平行线具有传递性,即如果直线l与直线m平行,直线m 与直线n平行,那么直线l与直线n也平行。

性质3:如果两条平行线分别与第三条直线相交,那么相应的对应角是相等的。

性质4:如果两条直线分别与一组平行线相交,那么对应角是相等的。

二、垂直线的定义和性质垂直线是指两条直线形成的角度为90度的直线。

具体而言,对于两条直线l和m,如果它们相交且所成的角度为90度,我们可以说直线l与直线m是垂直的,记作l ⊥ m。

垂直线具有以下性质:性质1:一条直线与平面上的一条垂直线相交,则它与该垂直线所成的角度为90度。

性质2:如果两条直线互相垂直,那么它们是共面的。

三、平行线和垂直线的关系平行线和垂直线是两种不同的情况,但它们之间存在一些重要的关系。

性质1:如果两条平行线被一条横切线相交,那么所成的对应角是相等的。

性质2:如果两条直线互相垂直,那么它们的斜率乘积为-1。

性质3:如果一条直线与一组平行线相交,那么它所成的角度与这组平行线的对应角度相等。

性质4:如果两条直线互相垂直,那么它们的方向余弦的乘积为0。

以上是平行线和垂直线的一些基本定义和性质。

这些概念在几何学中占有重要地位,不仅在纸上的学习中有用,也在实际生活中的测量和建筑等领域有广泛的应用。

对于学习几何学的人来说,掌握这些知识点是必不可少的。

总结:通过本文的介绍,我们了解到平行线和垂直线的定义、性质以及它们之间的关系。

立体几何平行和垂直知识点整理

立体几何平行和垂直知识点整理

立体几何平行和垂直知识点整理立体几何是研究三维空间中的几何关系的一个分支。

在立体几何中,平行和垂直是两个基本的几何关系。

本文将整理平行和垂直的相关知识点,包括定义、性质、判定方法和应用。

一、平行线1.定义:平行线是在同一个平面上永不相交的两条直线。

2.性质:a.平行线上的任意两点与直线外的一点构成的角是等于180度的;b.平行线上的任意两条直线与直线外的一条直线构成的对应角是等于180度的;c.平行线的斜率相等;d.平行线之间的距离是恒定的,且等于两条平行线上任意一点与另一条线的垂直距离;e.平行线可以用符号“∥”表示。

3.判定方法:a.若两条直线的斜率相等且有一个公共点,则这两条直线平行;b.若两条直线的斜率乘积为-1,则这两条直线垂直。

4.应用:a.平行线的概念经常用于几何证明和推理;b.在建筑和工程中,平行线可用于制定准确的测量和构图;c.在计算机图形学中,平行线的概念可用于处理线段的遮挡和相交问题。

二、垂直线1.定义:垂直线是与另一条线段、直线或平面成直角的线。

2.性质:a.垂直线上的任意两点与直线外的一点构成的角是等于90度的;b.垂直线上的任意两条直线与直线外的一条直线构成的对应角是等于90度的;c.两条直线垂直时,它们的斜率乘积为-1;d.垂直线可以用符号“⊥”表示。

3.判定方法:a.通过斜率判断:若两条直线的斜率乘积为-1,则这两条直线垂直;b.通过直角边判断:若两条直线上各自有一条线段互相垂直,且这两条直线有一个公共点,则这两条直线垂直;c.通过垂线判断:若两条直线上各自有一条线段的延长线相交于一点,则这两条直线垂直。

4.应用:a.垂直线的概念广泛用于建筑、土木工程和制图中,可用于确定垂直墙壁、柱子、支柱等;b.在三角测量和地理测量中,垂直线可用于构建垂直边、垂直角、垂线等。

总结:平行和垂直是立体几何中两个重要的几何关系。

平行线在同一个平面上永不相交,其性质包括构成的角相等、斜率相等等,可用于几何证明和计算机图形学中。

平行线与垂直线知识点总结

平行线与垂直线知识点总结

平行线与垂直线知识点总结平行线和垂直线是几何中重要的概念。

它们之间存在一些关键性的属性和定理,了解这些知识点对于理解几何学的基础原理和解题技巧至关重要。

本文将对平行线和垂直线的定义、性质以及相关定理进行总结。

一、平行线1. 定义:平行线是在同一个平面中,永远不相交的两条直线。

用符号“//”表示两条平行线。

2. 性质:- 平行线之间存在等距离:两条平行线的任意两点之间的距离相等。

- 平行线的斜率相等:两条平行线的斜率是相等的。

- 平行线具有传递性:若直线a//b,b//c,则a//c。

3. 平行线的判定:- 垂直平分线判定法:如果两条线段的中垂线重合,则这两条线段平行。

- 角平分线判定法:如果两条角的角平分线平行,则两条角所在的直线平行。

- 逆否命题判定法:如果两条直线的对应角都不相等,则这两条直线平行。

- 同位角定理:两条平行线被一条横切线所交,所形成的同位角相等。

- 内错角定理:两条平行线被一条横切线所交,所形成的内错角互补。

- 外错角定理:两条平行线被一条横切线所交,所形成的外错角相等。

二、垂直线1. 定义:垂直线是在同一个平面中,相交时所成的角度为90度的两条直线。

2. 性质:- 垂直线之间的角度为90度。

- 垂直线的斜率乘积为-1。

- 垂直线上的任意线段之间距离相等。

3. 垂直线的判定:- 垂直平分线判定法:如果两条线段的中垂线垂直,则这两条线段垂直。

- 互相垂直的直线判定法:如果两条直线斜率的乘积为-1,则这两条直线垂直。

- 同位角定理:两条垂直线被一条直线所交,所形成的同位角相等。

- 内错角定理:两条垂直线被一条直线所交,所形成的内错角互补。

- 外错角定理:两条垂直线被一条直线所交,所形成的外错角相等。

总结:平行线和垂直线是几何学中十分重要的概念。

平行线具有等距离和相等斜率的特点,垂直线具有90度的角度和斜率乘积为-1的特点。

我们可以利用垂直线和平行线的性质来判断线段和直线的关系,以及解决各类几何题目。

平面平行和垂直知识点总结

平面平行和垂直知识点总结

平面平行和垂直知识点总结1.定义平面平行: 平面上的两条直线,如果它们的方向相同或重合,则这两条直线是平行的。

平面垂直: 平面上的两条直线,如果它们的方向互相垂直,则这两条直线是垂直的。

2.平行线的性质(1) 两条平行线平行于同一平面;(2) 两条平行线的斜率相同;(3) 平行线上任意一组对应角,必有相等的对应角;(4) 平行线被斜线切割,相交角互补,即对应角相等;(5) 平行线被一条直线所切,对应角相等;(6) 平行线横跨两条直线,内错角、内外角互补;(7) 平行线横跨三条直线,内错角、内外角互补。

3.垂直线的性质(1) 垂直线的斜率乘积为-1;(2) 垂直线必然相交于一点;(3) 垂直线上的任意两组对应角相等;(4) 垂直线被斜线切割,相交角互补,即对应角相等。

4.平面中的垂直线和平行线(1) 垂直线和平行线的关系:平面内一直线和另一直线相互垂直,则这两直线必然平行;(2) 平行线的垂直平分线:若平面上一直线同时是两条平行线的垂直平分线,则这两条平行线必定对称。

5.平行线和垂直线的判定平行线:两条直线斜率相等则平行;或平面内一直线与另一直线相交角相等,则这两直线平行。

垂直线:两条直线相互垂直的条件是它们的斜率乘积为-1;或两条直线的相交角为90度。

6.平面中的平行线和垂直线关系(1) 平面中一条直线被另一直线切割为等角,则这两条直线必然平行;(2) 平面中一条直线被另一直线垂直平分,则这两条直线必然平行。

7.平行线和垂直线的性质应用(1) 平行线性质的应用:在平面上两直线平行,则它们的任意一组对应角相等;或两直线被一直线斜切,则对应角相等。

(2) 垂直线性质的应用:在平面上两直线相互垂直,则它们的任意一组对应角相等。

8.解题技巧(1) 利用斜率判断平行、垂直关系;(2) 利用对应角、内错角、内外角关系判断平行线;(3) 利用斜线的垂直平分性质判断平行关系;(4) 利用斜线的垂直平分性质判断垂直关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何知识点
一.平行关系:
1.线线平行:
方法一:用线面平行实现。

如果一条直线
和一个平面平行,经过这条直线的平面和
这个平面相交,那么这条直线和交线平行
m
l
m
l
l
//
//






=


β
α
β
α
方法二:用面面平行实现。

两平行平面与同一个平面相交,那么两条
交线平行
m
l
m
l//
//






=

=

β
γ
α
γ
β
α
方法三:用线面垂直实现。

若,则。

α
α⊥
⊥m
l,m
l//
④中位线定理、平行四边形、比例线
段……,
⑤平行于同一直线的两直线平行,即若
a∥b,b∥c,则a∥c.(公理4)
2.线面平行:
方法一:用线线平行实现。

如果平面外一条直线和这个平面内的一条
直线平行,则这条直线与这个平面平行.
α
α
α//
//
l
l
m
m
l








方法二:用面面平行实现。

两个平面平行,其中一个平面内的直线
平行于另一个平面
α
β
β
α
//
//
l
l





3.面面平行:
方法一:用线面平行实现。

如果一个平面内有两条相交直线都平行于
另一个平面,那么这两个平面平行
β
α
β
α
α
//
,
//
//






⊂且且且
m
l
m
l
三.垂直关系:
1.两直线垂直的判定
①定义:若两直线成90°
角,则这
两直线互相垂直.
方法一:用线面垂直实现。

一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.
m
l m l ⊥⇒⎭
⎬⎫
⊂⊥αα②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c
③如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.2. 线面垂直:
方法一:用线线垂直实现。

如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
α
α⊥⇒⎪⎪⎭

⎪⎬⎫
⊂=⋂⊥⊥l AB AC A AB AC AB l AC l ,方法二:用面面垂直实现。

如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面
αββαβα⊥⇒⎪⎭

⎬⎫
⊂⊥=⋂⊥l l m l m ,2. 面面垂直:
方法一:用线面垂直实现。

如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
βαβα⊥⇒⎭
⎬⎫
⊂⊥l l 方法二:计算所成二面角为直角。

二.夹角问题。

(一)
异面直线所成的角:
(1) 范围:]90,0(︒︒(2)求法:方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(二)
线面角
(1)定义:直线l 上任取一点P (交点除外),作PO 于O,连结AO ,则AO 为斜

α线PA 在面内的射影,(图中)
αPAO ∠θ为直线l 与面所成的角。

α
(2)范围: ]90,0[︒︒当时,或︒=0θα⊂l α//l 当时,︒=90θα⊥l (3)求法:方法一:定义法。

步骤1:作出线面角,并证明。

步骤2:解三角形,求出线面角(三)
二面角及其平面角
(1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角为二面角—l —的平θαβ面角。

(2)范围: ]180,0[︒︒(3)求法:方法一:定义法。

步骤1:作出二面角的平面角,并证明。

步骤2:解三角形,求出二面角的平面角。

(一)
正棱锥:底面是正多边形且顶点
在底面的射影在底面中心。

(二)
正棱柱:底面是正多边形的直棱柱。

(三)正多面体:
(四)
棱锥的性质:平行于底面的的截
面与底面相似,且面积比等于顶点到截面的距离与棱锥的高的平方比。

正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形。

(五)
体积:
=且且
V
=且且
V。

相关文档
最新文档