小功率调幅发射机的设计方案

合集下载

最新小功率调幅发射机设计

最新小功率调幅发射机设计

小功率调幅发射机设计一、设计题目小功率调幅发射机二、设计目的、内容及要求2.1 设计目的(1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。

(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。

2.2 设计原理小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。

技术指标:载波频率f=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数=50Ω。

Ma=50%±5%;负载电阻RA2.3 设计要求根据原理,要求设计一个小功率调幅发射机,(1)主要参数:已知+Vcc=+10V、-VEE=-10V;话音放大级输出电压为5mV;负载电阻R A=50Ω(2)主要元器件:主要元件有MC1496、3DG100、3DG130、4MHz晶振、NXO-10磁环;=8MHz;低频调制信号1KHz正弦信号;调制系数 (3)技术指标:载波频率fMa=50%;发射功率P0=300mW三、调幅发射机的原理与分析3.1调幅发射机的原理框图所谓调幅,就是按照调制信号的变化规律去改变载波的幅度,使输出信号的频谱搬移到高频波段,而输出信号的振幅携带调制信号的相关信息。

调幅发射机的主要任务是完成有用的低频信号对高频载波的幅度调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,调幅发射机包括三个部分:高频部分,低频部分,和调制部分。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振器的作用是产生频率稳定的载波。

为了提高频率稳定性,主振级往往采用石英晶体振荡器或LC振荡电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。

低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。

低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。

课程设计报告--小功率调幅发射机的设计

课程设计报告--小功率调幅发射机的设计

课程设计报告--小功率调幅发射机的设计高频电子线路课程设计报告设计题目:小功率调幅发射机设计一、设计题目小功率调幅发射机的设计。

二、设计目的、内容及要求设计目的:《高频电子线路》是一门理论与实践密切结合的课程,课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。

其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。

(1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。

(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。

任务及要求:小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。

技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻R A=50Ω。

三、工作原理3.1 小功率调幅发射机的认识目前,虽然调频技术以及数字化技术突飞猛进,其应用范围覆盖了无线通信技术的80%以上,但是由于小功率调幅发射机具有调制解调电路简单、调试容易、信号带宽窄和技术成熟等优点,因此仍然使其能够在中短波通信中广泛得以应用。

课题以电子线路课程设计实践教学为应用背景,在仿真软件与实验室中完成一个完整的调幅发射机,并实现无线电报功能。

发射机的主要任务是利用低频音频信号对高频载波进行调制,将其变为在适合频率上具有一定的带宽,有利于天线发射的电磁波。

一般来说,简易发射机主要分为低频部分、高频部分、以及电源部分。

高频部分主要包括:主振荡器、缓冲放大级、中间放大级、功放推动级以及末级功放级。

低频部分主要包括:话筒、低频电压放大级、低频功率放大级以及末级低频功率放大级等。

3.2 小功率调幅发射机的工作原理一条调幅发射机的组成框图如下图图1所示,其工作原理是:第一本机振荡产生一个固定频率的中频信号,它的输出送至调制器;话音放大电路放大来自话筒的信号,其输出也送至调制器;调制器输出是已调幅了的中频信号,该信号经中频放大后与第二本振信号混频;第二本振是一频率可变的信号源,一般选第二本振频率fo2是第一本振f1与发射载频foc之和,混频器输出经带通或低通滤波器滤波,是输出载频fc=fo2-fo1;功放级将载频信号的功率放大到所需发射功率。

(课程设计)小功率调幅发射机设计

(课程设计)小功率调幅发射机设计

毕业设计说明书系:电子信息工程系专业:电子信息工程题目:小功率调幅发射机设计小功率调幅发射机设计摘要:调幅发射机目前正广泛应用于无线电广播系统中,课题以电子线路课程设计实践教学为应用背景,通过查阅大量教学文献,并结合专业基础课程教学需要,以原教学内容为基础,完成了小功率调幅发射机从设计、仿真到安装、调试等一系列完整设计工作。

文中系统的设计了振荡器、音频放大器、振幅调制器和谐振功率放大器等系统单元电路,并通过具有射频仿真模块的软件Multisim,试验和仿真优化了系统电路。

文中还简明介绍了调幅技术与调频技术各自的特点,认识了两者在原理与应用上的不同。

关键词:调幅发射机功率放大器 MultisimTitle Design Of Low Power AM TransmitterAbstractAM transmitters are now widely used in radio broadcasting systems, this thesis as the background of electronic circuit,Through access to a large number of teaching literature, combined with teaching needs, based on the original teaching, completed the low-power AM transmitters from the design, simulation to the installation and commissioning of a full range of design work.Oscillator, audio amplifier, power amplifier and resonant amplitude modulator is designed by the system,using software Multisim circuit simulation and optimization of the system.The thesis also briefly describes each characteristics of AM and FM , know the different both in applications and principle.Keywords:Low-power AM transmitters Power Amplifier Crystal oscillator目次1 绪论 (1)1.1 小功率调幅发射机初步认识 (1)1.2 小功率调幅发射机国内外研究现状 (2)1.3 小功率相关技术及热点问题分析 (2)1.4 课题的研究任务和内容 (5)2 方案设计与单元电路形式选择 (6)2.1发射机的总体认识 (6)2.2单元电路的认识 (6)3 单元电路的设计与仿真 (8)3.1主振级与小信号放大级的设计 (8)3.2 缓冲隔离级的设计 (11)3.3 语音放大级的设计 (12)3.4 幅度调制电路的设计 (13)3.5 高频谐振功率放大器的设计 (16)3,6 谐振功率放大器的调整 (26)3.7天线的相关知识及设计 (27)4 单元电路调试与整机统调 (29)4.1 主振级调试 (29)4.2信号调制级调试 (29)4.3 功率放大级调试 (29)4.4整机统调 (30)4.5主要技术指标测试方法 (31)5 硬件电路调试过程及示波器影像图 (33)5.1 主振级硬件电路以及示波器图像 (33)5.2 音频信号输入级硬件电路以及示波器图像 (33)5.3 振幅调制级硬件电路以及示波器图像 (34)5.4 功率放大级硬件电路以及示波器图像 (35)6 另外一种调幅发射机设计方案 (38)6.1 主振级的选择与仿真波形 (38)6.2 语音放大级选择与仿真波形 (39)6.3 AM调至电路与仿真波形 (39)6.4 整机电路的连接与仿真 (40)河北工业大学城市学院2011届本科毕业设计说明书结论 (42)参考文献 (43)致谢 (45)附录 A 调幅技术与调频技术主要特点及区别 (46)附录 B 集成调幅与调频发射机设计 (47)附图 C 高频电路设计基本步骤 (54)附图 D 选择高频元器件的基本设想 (55)附图 1 整机所用元件列表 (56)附图 2 整机电路图 (57)附图3 整机电路PCB图 (58)附图 4 整机电路实体图 (59)1 绪论当今时代,信息技术发展十分迅猛,产品更新换代步幅更是明显加快,尤其是无线技术创新非常活跃,各类技术加快发展和融合,新技术新应用层出不穷,向社会各部门各领域的渗透日益广泛深入。

小功率调频发射机的设计

小功率调频发射机的设计

小功率调频发射机的设计一、设计原理1.调频器:负责将音频信号转换成频率调制信号。

在调频器中,我们可以使用电容或电感进行频率调制。

2.放大器:负责将调频器输出的调制信号放大到适合无线传输的功率水平。

放大器主要使用晶体管、场效应管或管子放大器等器件。

3.混频器:负责将振荡器产生的射频信号与调制信号进行混频,形成调频发射信号。

4.振荡器:用于产生稳定的射频信号,其频率由调频电路控制。

5.滤波器:用于滤除混频后产生的杂散分量,只保留感兴趣的射频信号。

6.功率放大器:负责将滤波器输出的射频信号放大到更高的功率水平,使其能够被天线辐射出去。

二、设计步骤1.确定应用场景和需求:首先需要确定该小功率调频发射机的应用场景和需求,包括工作频率范围、传输距离、功率要求等。

2.确定天线类型和参数:根据应用场景的不同,选择适合的天线类型和参数,如定向天线、全向天线、增益、方向性等。

3.确定调制方式:根据应用需求,选择合适的调制方式,如频率调制、相位调制、脉冲调制等。

4.按照电路图设计电路:根据设计需求,绘制出整个调频发射机的电路图。

根据电路图,选择合适的器件和数值进行电路设计。

5.PCB设计和制作:将电路图转化为PCB图,设计并制作出电路板。

在设计电路板时,需要注意布局合理性和信号线的走向,以避免干扰和噪声。

6.组件的选择和安装:根据设计需求,选择合适的器件和元件,并进行焊接和安装。

7.调试和测试:将制作完成的发射机进行调试和测试,确保其可以正常工作并满足设计需求。

8.优化和改进:根据测试结果,对发射机进行优化和改进,提高其性能和稳定性。

小功率调频发射机的设计需要一定的电子技术和通信原理的基础,对器件的选择和电路设计也需要一定的经验和专业知识。

在设计过程中,需要考虑信号传输的稳定性、抗干扰性和功率效率等因素,以保证发射机的性能和可靠性。

总结:小功率调频发射机的设计是一个综合性较强的工程项目,它需要掌握多种电子技术和通信原理知识,并进行电路设计、PCB制作和调试等工作。

小功率调幅发射机设计

小功率调幅发射机设计

一、设计题目小功率调幅发射机二、设计目的、内容及要求2.1 设计目的(1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。

(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。

2.2 设计原理小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。

=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制技术指标:载波频率f系数=50Ω。

Ma=50%±5%;负载电阻RA2.3 设计要求根据原理,要求设计一个小功率调幅发射机,(1)主要参数:已知+Vcc=+10V、-VEE=-10V;话音放大级输出电压为5mV;负载电阻R=50AΩ(2)主要元器件:主要元件有MC1496、3DG100、3DG130、4MHz晶振、NXO-10磁环;=8MHz;低频调制信号1KHz正弦信号;调制系数 (3)技术指标:载波频率fMa=50%;发射功率P0=300mW三、调幅发射机的原理与分析3.1调幅发射机的原理框图所谓调幅,就是按照调制信号的变化规律去改变载波的幅度,使输出信号的频谱搬移到高频波段,而输出信号的振幅携带调制信号的相关信息。

调幅发射机的主要任务是完成有用的低频信号对高频载波的幅度调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,调幅发射机包括三个部分:高频部分,低频部分,和调制部分。

高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振器的作用是产生频率稳定的载波。

为了提高频率稳定性,主振级往往采用石英晶体振荡器或LC振荡电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。

低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。

低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。

小功率调频发射机的设计.

小功率调频发射机的设计.

一、电路原理1.电路原理及用途通常小功率发射机采用直接调频方式其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

晶体管器件课程设计是电子科学与技术专业学科实践性课程,其任务是使学生运用模拟电路等电路课程中所学的知识,利用晶体管等器件,设计出一些完成一定功能的电路,并对电路进行分析和调试。

掌握设计和调试电路的一些方法和技巧。

与调幅电路相比,调频系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用.2.主要技术指标设计一个小功率调频发射机,主要技术指标为:(1) 载波中心频率f0=6.5MHz;(2) 发射功率PA>100mW;(3) 负载电阻RL=75Ω;(4) 调制灵敏度Sf≥25kHz/V;二、设计步骤和调试过程1、总体设计电路2、电路工作状态或元件参数的确定实际功率激励输入功率不高拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。

由于本题要求的发射功率Po不大,工作中心频率f0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,各组成部分的作用是:(1)LC调频振荡器:产生频率f0=6.5MHz的高频振荡信号,变容二极管线性调频,最大频偏,整个发射机的频率稳定度由该级决定。

(2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。

因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。

小功率调频发射机的设计与制作.

小功率调频发射机的设计与制作.

小功率调频发射机的设计和制作小功率调频发射机的设计与制作一、设计任务与要求1、主要技术指标:1、中心频率:2、频率稳定度3、最大频偏4、输出功率5、电源电压二、原理及图1、小功率调频发射机原理:拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减小级间的相互感应、干扰和自激。

在实际应用中,很多都是采用调频方式,与调幅相比较,调频系统有很多的优点,调频比调幅抗干扰能力强,频带宽,功率利用率大等。

调频可以有两种实现方法,一是直接调频,就是用调制信号直接控制振荡器的频率,使其按调制信号的规律线性变化。

另一种就是间接调频,先对调制信号进行积分,再对载波进行相位调制。

两种调频电路性能上的一个重大差别是受到调频特性非线性限制的参数不同,间接调频电路提供的最大频偏较小,而直接调频可以得到比较大的频偏。

所以,通常小功率发射机采用直接调频方式,它的组成框图如图1所示。

小功率调频发射机的设计和制作图1 调频发射机组成其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免末级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

(1)振荡级振荡电路主要是产生频率稳定且中心频率符合指标要求的正弦波信号,目前应用较为广泛的是三点式振荡电路和差分对管振荡电路。

三点式振荡电路又可分为电感和电容三点式振荡电路,由于是固定的中心频率,因而采用频率稳定度较高的克拉拨振荡电路来作振荡级。

(2)缓冲级因为本次实验对该级有一定的增益要求,而中心频率是固定的,因此用LC并联回路作负载的小信号谐振放大器电路。

缓冲放大级采用谐振放大,L2和C10谐振在振荡载波频率上。

若通频带太窄或出现自激则可在L2两端并联上适当电阻以降低回路Q值。

小功率调幅发射机课程设计

小功率调幅发射机课程设计

小功率调幅发射机课程设计
今天,我们将谈论一个课程题目:小功率调幅发射机课程的设计。

门课程的目的是帮助学生们更加深入地理解小功率调幅发射机,以及调幅调制的原理和技术。

小功率调幅发射机是一种用于发射信号的设备,可以用于无线电广播、移动通信、无线控制系统,以及电力系统中的通信和遥测信号传输。

功率调幅发射机由一系列组成,包括发射机模块、调制机模块、收发机模块、功率放大器模块、电缆等。

课程的设计应包括以下方面的内容:首先,要讲授小功率调幅发射机的原理和结构,深入讲解小功率调幅发射机的各个模块的功能和原理;其次,介绍调幅调制的技术,以及用于调制的信号的特点和分类;第三,探讨常用的小功率调幅发射机的设计方法;第四,介绍小功率调幅发射机的试验和调试方法;最后,安排课程实验,以帮助学生更加深入理解小功率调幅发射机的设计、测试和调试技术。

同时,课程的设计还应考虑到学生的体会和思维的培养。

例如,可以安排学生分组研讨小功率调幅发射机的设计问题,引导学生分析问题,分析技术难点,给出解决方案;可以安排学生设计实验,试验不同参数调整,观察信号调制后的不同变化;也可以安排学生完成调制信号传输模拟实验,数字信号调制和传输及其在通信系统中的应用。

上述就是小功率调幅发射机课程的设计方案,最后要说的是,尽管这是一门理论性的课程,但是课程的设计应该结合当今实际的技术发展,为学生提供有用的知识和技能,为他们今后的发展做好准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路课程设计总结报告学生姓名:王翠红学号: 108005专业:电子信息工程班级:电子C102报告成绩:评阅时间:教师签字:河北工业大学信息学院2018年3月课题名称:小功率调幅发射机理论设计王翠红电子C102 108005摘要小功率调幅发射机具有实现调幅简便,调制所占的频带窄,并且与之对应的调幅接收设备简单的优点,常用于通信系统和其它无线电系统中,特别是在中短波广播通信的领域里得到了广泛应用。

本次课程设计采用PROTEl99SE软件对小功率条幅发射机电路进行设计与绘制,从理论上对电路进行分析,选择适合的元器件,设计出满足技术指标的小功率调幅发射机。

此设计思路为将调幅发射机分成本机震荡、高频放大、缓冲、振幅调制、高频功放等几个个部分。

低频信号采用音频放大器对调制信号进行放大,以便对高频末级功率放大器进行调制;高频部分包括主振荡器、缓冲放大、末级功放三部分,主振器采用频率稳定度高的石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响,经过音频放大后的信号在高频部分的末级功放实现对载波信号的调幅。

关键词:晶体振荡器,振幅调制一、设计内容及要求1.1 内容:本次课程设计内容为小功率振幅发射机的设计1.2技术指标:载波频率:f0 =10MHZ,载波频率稳定度不低于10-3;输出负载:RL=50Ω;总的输出功率:500mW≥PA≥200mW;调幅系数平均值:ma≥30%,单音调制ma≥80%;调制频率:f = 20Hz~10kHz;输出信号带宽:BW=9kHz <双边带)残波辐射:不要求二、方案选择及系统框图2.1方案论证与比较<1)本级振荡模块方案一:RC正弦波振荡器。

其中RC振荡电路是用电阻与电容器组成的,因此并无调谐电路。

所以不能够抑制高谐波的产生,不适于当做高频的振荡电路。

方案二:石英晶体振荡器。

石英晶体振荡器具有很高的稳定度,可高达10-4~10-11量级。

频率稳定度要求高的情况下,可以采用晶体振荡器。

方案三:三点式LC正弦波振荡器。

三点式振荡电路有电容三点式和电感三点式之分。

电容三点式振荡器的输出波形比电感三点式振荡器的输出波形好。

在电感三点式振荡器中,晶体管的极间电容与回路电感相并联,在频率高时可能改变电抗的性质;在电容三点式振荡器中,极间电容与电容并联,频率变化不改变电抗的性质。

因此振荡器的电路型式一般采用电容三点式。

在频率稳定度要求不高的情况下,可以采用普通三点式电路、克拉泼电路、西勒电路。

LC回路由于受到标准性和品质因数的限制,其频率稳定度只能达到10-4量级。

因此,作为高频的振荡电路通常使用的是LC振荡电路或晶体振荡电路。

与LC回路相比,技术指标要求频率稳定度不低于10-3,因此LC 振荡器与晶体振荡器均符合要求。

本设计选用晶体振荡电路。

(2)缓冲隔离电路为了减小调制电路对主振荡电路的影响,需要采用加入缓冲级的方法。

在缓冲隔离级的选择上不论是在低频电路还是高频电路的整机设计中,缓冲隔离级常采用射极跟随器电路。

缓冲隔离级电路如下:<3)音频振荡模块方案一:电容三点式LC 正弦波振荡器 方案二:石英晶体振荡器 方案三:RC 正弦波振荡器音频振荡部分频率大概在1KHz 左右,石英晶体振荡器提供的频率过高,用LC 或RC 正弦振荡器都可实现音频振荡部分的功能,与LC 振荡电路相比,RC振荡电路具有电路简单、参数计算容易的特点,因此音频部分采用RC 振荡电路。

<4)振幅调制模块方案一:二极管平衡电路。

在电路中为减少无用组合频率分量,应使二极管工作在大信号状态,即控制电压的信号<载波信号的电压)的幅值至少应大于0.5V 以上。

方案二: MC1496模拟相乘器的核心电路是差分对模拟相乘器,实现调幅和同步检波。

MC1496线性区和饱和区的临界点在15~20mV 左右,仅当输入信号电压均小于26mV 时,器件才有理想的相乘作用,否则电压中会出现较大的非线性误差。

在2、3引脚之间接入1k Ω反馈电阻,可扩大调制信号的输入线性动态范围,满足设计需要。

由于MC1496模拟相乘器混频输出电流频谱纯净,组合频率分量少,允许输入信号动态范围较大,有利于减少交调和互调失真,因此选用MC1496芯片。

2.2调制信号图2-2系统框图三、单元电路设计、参数计算和器件选择3.1单元电路设计图2-1 缓冲隔离级电路调幅发射机是由本级振荡电路、缓冲级,振幅调制电路,高频功率放大,音频放大电路等电路组成。

3.1.1、本级振荡电路图3-1本级振荡电路图本级振荡电路采用改进型晶体振荡电路<克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。

调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。

3.1.2、振幅调制级电路振幅调制级电路使用MC1496模拟相乘器进行调制,C21、C22使本振信号和音频信号振幅衰减,均小于26mV,这样MC1496芯片才能不失真调制。

电阻RE可提高音频信号变化的线性度。

RP3用来调节调制系数Ma。

3.1.3、功率放大电路图3-3 功率放大级电路图功放电路由三部分组成:缓冲级、激励级、功放级。

缓冲级为射极跟随器,主要起缓冲和滤波的作用,使输出的调幅信号较为清晰,由于MC1496相乘器输出的电压非常小,不满足功放级的要求,因此须接激励级,然后再连接到功放级。

双联电容通过调节输出电压,使输出功率达到最大,可调节范围比较小。

3.1.4、音频放大电路该部分为音频振荡部分,可使用音频振荡电路,也可通过话筒输入,使用音频振荡部分时,将JP6短路,话筒不接信号。

调节R11可使振荡电路谐振,振荡频率在4.5KHz左右。

RP4可调节放大倍数,使音频信号放大2~3倍,RP5用来调节音频信号的幅度。

3.2、器件选择及参数计算3.2.1、本振级部分三极管发射极的电流一般在0.5~4mA左右才能正常工作,不出现较大失真。

偏置电阻R4、R5分压,使三极管的基极偏置电压为7V左右,发射极与基极近似相等,固选择1K电阻和1K电位器,即可使发射极电流不至于过大而失真。

设晶体管β=60,I cq=2mA,,由三极管的回路计算方法可推算出R1=150kΩ,R2=100Ω,R3=3kΩ。

3.2.2、音频放大部分RC振荡电路振荡频率为fosc=1/(2πRC>要求输出信号为双边带信号,信号带宽9KHz,因此fosc应取4.5KHz左右,才能达到设计要求。

令R=7KΩ,C=0.005uF由此可得出计算出振荡频率为4.5KHz左右,能够达到设计要求。

四、整体电路设计及工作原理4.1、调幅发射机整体电路设计图4-1 整体电路图4.2、工作原理整机电路由本地振荡器、音频放大器、振幅调制电路和功率放大电路组合而成。

本地振荡器输出6MHz载波信号,可通过本地振荡模块调节载波信号幅值;音频放大器输出调制信号,两者通过振幅调制电路进行模拟相乘得到调制后的信号,即高频信号振幅随调制信号变化而变化,将调制信号由低频段搬移到高频段;然后再经过功率放大器进行功率放大,发射出去,从而达到远距离传输的目的。

六、电路设计总结通过本次设计小功率调幅发射机电路,复习了以前学过的高频电子线路的理论知识,加深了对高频电子线路的理解。

掌握了电子线路设计的一般过程,将小功率调幅发射机电路分成若干功能模块,逐级进行设计。

该电路采用模块化设计方式,将各功能模块分级设计,从而将复杂的问题简单化。

逐级设计另一大好处就是层次清晰,思路明确,便于检测与修正。

但是,该电路也存在串扰的问题。

各功能模块不能互相屏蔽,容易产生干扰,从而影响电路功能的实现,在以后的逐级测试过程中则显示出了这种存在干扰的问题,是的测试得出的图形及数据与理论值存在一定的误差。

七、参考文献1 查光明,熊贤祚. 《扩频通信》西安:西安电子科技大学出版社,19902 王秉钧等. 《扩频通信》天津:天津大学出版社,19933 梅温华,杨义先. 《调频通信地址编码理论》北京:国防工业出版社,19964 朱近康. 《CDMA通信技术》北京:人民邮电出版社,2001.5 竺南直,肖辉,刘景波.《码分多址<CDMA)移动通信系统》北京:电子工业出版社,19996 沈允春. 《扩谱技术》北京:国防工业出版社,19957 [美]A,J 维特比著.《 CDMA扩频通信原理》李世鹤等译,北京:人民邮电出版社,19978 祁玉生,邵世祥. 《现代移动通信系统》北京:人民邮电出版社.,1999八、收获、体会<另附手写板)电子C102班姓名:级:李佳音王翠红马荣同组人:108005学号:课程名称:电子线路课程设计实验室:第一实验室实验时间:20013年3月14—19日实验工程名称:小功率调幅发射机的安装与调试一、实验目的:1、熟悉小功率调幅发射机的工作原理,对所学高频电子线路知识加以巩固。

2、熟悉并测试电路元件参数3、熟悉印刷版与电路、元件的对应关系4、学会对小功率调幅发射机的整体测试。

5、通过整机装配和调试提高独立分析问题和解决问题的能力。

二、实验内容与原理:1、实验原理图<见理论设计部分)2、实验内容:1>熟悉实验电路原理七、熟悉并测试电路元件参数八、熟悉印刷板与电路、元件的对应关系九、电路焊接、调试十、测试并记录参数三、实验器材<设备、元器件、软件工具、平台):1、双踪示波器2、数字万用表3、函数信号发生器4、电烙铁及支架、镊子,螺丝刀、焊锡、钳子等5、直流稳压电源四、实验步骤:1、分析电路原理图电路分四个部分:本级振荡电路部分、音频振荡信号部分、振幅调制电路部分、功率放大电路部分。

1)本地振荡电路采用6MHz晶体振荡电路,晶振等效为电感,构成电容三点式振荡电路,振荡电路后面接推动级,一方面起隔离缓冲作用,还把高频信号加以放大。

2)音频振荡部分采用RC振荡电路,由同相集成运算放大器与串并联选频电路组成。

3)振幅调制电路由集成模拟乘法器MC1496构成,RP3用来调节振幅调制系数,经缓冲级放大。

乘法器可实现调幅和同步检波,该电路的缺点是输出功率小。

后面须接功率放大器才能达到指定的发射功率。

4)功率放大电路部分前一级高频磁环为细线的12:6,后一级的磁环为粗线的6:3。

2、核对器件3、焊接焊接方法:从较小、较矮的元件开始焊接,然后再焊接较大的、较高的元件;逐级进行焊接,而且每一级焊接完毕检查无误后立即测试该级的波形图及相关的参数是否在正确的范围之内,若有则及时修改电路图,以确保电路整体在正常的工作状态。

焊点要呈光亮的锥形,焊好后逐级检查,避免虚接和短接及元器件的错误焊接。

相关文档
最新文档