高频电子线路课程设计报告-小功率调幅发射机
课程设计报告--小功率调幅发射机的设计

课程设计报告--小功率调幅发射机的设计高频电子线路课程设计报告设计题目:小功率调幅发射机设计一、设计题目小功率调幅发射机的设计。
二、设计目的、内容及要求设计目的:《高频电子线路》是一门理论与实践密切结合的课程,课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。
其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。
(1)加深对高频电子线路理论知识的掌握,使所学的知识系统、深入地贯穿到实践中。
(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。
任务及要求:小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。
技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻R A=50Ω。
三、工作原理3.1 小功率调幅发射机的认识目前,虽然调频技术以及数字化技术突飞猛进,其应用范围覆盖了无线通信技术的80%以上,但是由于小功率调幅发射机具有调制解调电路简单、调试容易、信号带宽窄和技术成熟等优点,因此仍然使其能够在中短波通信中广泛得以应用。
课题以电子线路课程设计实践教学为应用背景,在仿真软件与实验室中完成一个完整的调幅发射机,并实现无线电报功能。
发射机的主要任务是利用低频音频信号对高频载波进行调制,将其变为在适合频率上具有一定的带宽,有利于天线发射的电磁波。
一般来说,简易发射机主要分为低频部分、高频部分、以及电源部分。
高频部分主要包括:主振荡器、缓冲放大级、中间放大级、功放推动级以及末级功放级。
低频部分主要包括:话筒、低频电压放大级、低频功率放大级以及末级低频功率放大级等。
3.2 小功率调幅发射机的工作原理一条调幅发射机的组成框图如下图图1所示,其工作原理是:第一本机振荡产生一个固定频率的中频信号,它的输出送至调制器;话音放大电路放大来自话筒的信号,其输出也送至调制器;调制器输出是已调幅了的中频信号,该信号经中频放大后与第二本振信号混频;第二本振是一频率可变的信号源,一般选第二本振频率fo2是第一本振f1与发射载频foc之和,混频器输出经带通或低通滤波器滤波,是输出载频fc=fo2-fo1;功放级将载频信号的功率放大到所需发射功率。
(课程设计)小功率调幅发射机设计

毕业设计说明书系:电子信息工程系专业:电子信息工程题目:小功率调幅发射机设计小功率调幅发射机设计摘要:调幅发射机目前正广泛应用于无线电广播系统中,课题以电子线路课程设计实践教学为应用背景,通过查阅大量教学文献,并结合专业基础课程教学需要,以原教学内容为基础,完成了小功率调幅发射机从设计、仿真到安装、调试等一系列完整设计工作。
文中系统的设计了振荡器、音频放大器、振幅调制器和谐振功率放大器等系统单元电路,并通过具有射频仿真模块的软件Multisim,试验和仿真优化了系统电路。
文中还简明介绍了调幅技术与调频技术各自的特点,认识了两者在原理与应用上的不同。
关键词:调幅发射机功率放大器 MultisimTitle Design Of Low Power AM TransmitterAbstractAM transmitters are now widely used in radio broadcasting systems, this thesis as the background of electronic circuit,Through access to a large number of teaching literature, combined with teaching needs, based on the original teaching, completed the low-power AM transmitters from the design, simulation to the installation and commissioning of a full range of design work.Oscillator, audio amplifier, power amplifier and resonant amplitude modulator is designed by the system,using software Multisim circuit simulation and optimization of the system.The thesis also briefly describes each characteristics of AM and FM , know the different both in applications and principle.Keywords:Low-power AM transmitters Power Amplifier Crystal oscillator目次1 绪论 (1)1.1 小功率调幅发射机初步认识 (1)1.2 小功率调幅发射机国内外研究现状 (2)1.3 小功率相关技术及热点问题分析 (2)1.4 课题的研究任务和内容 (5)2 方案设计与单元电路形式选择 (6)2.1发射机的总体认识 (6)2.2单元电路的认识 (6)3 单元电路的设计与仿真 (8)3.1主振级与小信号放大级的设计 (8)3.2 缓冲隔离级的设计 (11)3.3 语音放大级的设计 (12)3.4 幅度调制电路的设计 (13)3.5 高频谐振功率放大器的设计 (16)3,6 谐振功率放大器的调整 (26)3.7天线的相关知识及设计 (27)4 单元电路调试与整机统调 (29)4.1 主振级调试 (29)4.2信号调制级调试 (29)4.3 功率放大级调试 (29)4.4整机统调 (30)4.5主要技术指标测试方法 (31)5 硬件电路调试过程及示波器影像图 (33)5.1 主振级硬件电路以及示波器图像 (33)5.2 音频信号输入级硬件电路以及示波器图像 (33)5.3 振幅调制级硬件电路以及示波器图像 (34)5.4 功率放大级硬件电路以及示波器图像 (35)6 另外一种调幅发射机设计方案 (38)6.1 主振级的选择与仿真波形 (38)6.2 语音放大级选择与仿真波形 (39)6.3 AM调至电路与仿真波形 (39)6.4 整机电路的连接与仿真 (40)河北工业大学城市学院2011届本科毕业设计说明书结论 (42)参考文献 (43)致谢 (45)附录 A 调幅技术与调频技术主要特点及区别 (46)附录 B 集成调幅与调频发射机设计 (47)附图 C 高频电路设计基本步骤 (54)附图 D 选择高频元器件的基本设想 (55)附图 1 整机所用元件列表 (56)附图 2 整机电路图 (57)附图3 整机电路PCB图 (58)附图 4 整机电路实体图 (59)1 绪论当今时代,信息技术发展十分迅猛,产品更新换代步幅更是明显加快,尤其是无线技术创新非常活跃,各类技术加快发展和融合,新技术新应用层出不穷,向社会各部门各领域的渗透日益广泛深入。
高频课程设计报告_调频发射机

调频发射机课程实验报告姓名:班别:学号:指导老师:组员:小功率调频发射机课程设计一、 主要技术指标:1. 中心频率:012f MHz =2. 频率稳定度 40/10f f -∆≤3. 最大频偏10m f kHz ∆>4. 输出功率 30o P mW ≥5. 天线形式 拉杆天线(75欧姆)6. 电源电压 9cc V V =二、 设计和制作任务:1. 确定电路形式,选择各级电路的静态工作点,并画出电路图。
2. 计算各级电路元件参数并选取元件。
3. 画出电路装配图4. 组装焊接电路5. 调试并测量电路性能6. 写出课程设计报告书 三、 设计提示:通常小功率发射机采用直接调频方式,并组成框图如下所示:其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。
1.频振荡级:由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。
关于该电路的设计参阅《高频电子线路实验讲义》中实验六内容。
克拉泼(clapp )电路是电容三点式振荡器的改进型电路,下图为它的实际电路和相应的交流通路:实用电路 交流通路如图可知,克拉泼电路比电容三点式在回路中多一个与C1 C2相串接的电容C3,通常C3取值较小,满足C3《C1 ,C3《C2,回路总电容取决于C3,而三极管的极间电容直接并接在C1 C2上,不影响C3的值,结果减小了这些不稳定电容对振荡频率的影响,且C3较小,这种影响越小,回路的标准性越高,实际情况下,克拉泼电路比电容三点式的频稳度高一个量级,达451010--。
小功率调频发射机的设计课程设计报告正文综述

东北石油大学课程设计课程高频电子线路题目小功率调频发射机的设计院系电子科学学院专业班级电信XXXXXXX班学生姓名XX学生学号XXXXXXXXXXXX指导教师2013年3月1日东北石油大学课程设计任务书课程高频电子线路题目小功率调频发射机的设计专业电子信息工程姓名XX 学号XXXXXXXXX主要内容、基本要求、主要参考资料等1、主要内容利用所学的高频电路知识,设计一个小功率调频发射机。
通过在电路设计、安装和调试中发现问题、解决问题,加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。
2、基本要求设计一个小功率调频发射机,主要技术指标为:(1) 载波中心频率06.5MHzf=;(2) 发射功率100mWAP>;(3) 负载电阻75LR=Ω;(4) 调制灵敏度25kHz/VfS≥;3、主要参考资料[1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006.[2] 张肃文,陆兆雄. 高频电子线路(第三版). 北京:高等教育出版社,1993.[3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000.[4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.完成期限2月25日-3月1 日指导教师专业负责人2013 年 2 月22 日一、电路基本原理1. 总设计方框图与调幅电路相比,调频系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。
如图1所示:图1 变容二极管直接调频电路组成方框图2.电路基本框图图2 电路的基本框图实际功率激励输入功率为1.56mW 拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。
单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。
由于本题要求的发射功率Po 不大,工作中心频率f0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图2所示,各组成部分的作用是:(1)LC 调频振荡器:产生频率f0=6MHz 的高频振荡信号,变容二极管线性调频,最大频偏,整个发射机的频率稳定度由该级决定。
高频课程设计调幅发射机

高频课程设计调幅发射机一、教学目标本章节的教学目标分为三个部分:知识目标、技能目标和情感态度价值观目标。
1.知识目标:学生需要掌握调幅发射机的基本原理、工作方式和应用场景。
具体包括调幅发射机的工作原理、调幅电路的组成、调幅信号的传输和调幅技术的优点等。
2.技能目标:学生能够通过实验和实践,掌握调幅发射机的搭建和调试方法,培养动手能力和实验技能。
3.情感态度价值观目标:培养学生对通信技术的兴趣和好奇心,提高学生对科学技术的认同感和自豪感,培养学生的创新精神和团队合作意识。
二、教学内容本章节的教学内容主要包括调幅发射机的基本原理、工作方式和应用场景。
具体包括以下几个部分:1.调幅发射机的工作原理:介绍调幅发射机的工作原理,包括调幅电路的组成、调幅信号的生成和传输等。
2.调幅电路的组成:介绍调幅电路的基本组成部分,包括放大器、调制器、滤波器等,并解释它们在调幅发射机中的作用。
3.调幅信号的传输:讲解调幅信号在传输过程中的特点和优点,以及调幅信号在通信中的应用。
4.调幅技术的应用场景:介绍调幅技术在实际通信中的应用场景,如无线电广播、卫星通信等。
三、教学方法为了提高教学效果,本章节将采用多种教学方法相结合的方式进行教学。
具体包括以下几种方法:1.讲授法:通过讲解调幅发射机的基本原理、工作方式和应用场景,使学生掌握相关知识。
2.实验法:学生进行调幅发射机的搭建和调试实验,培养学生的动手能力和实验技能。
3.案例分析法:分析实际应用中的调幅技术案例,使学生更好地理解和掌握调幅技术的应用。
4.讨论法:学生进行小组讨论,分享学习心得和实验经验,提高学生的团队合作意识。
四、教学资源为了支持本章节的教学,我们将准备以下教学资源:1.教材:提供相关章节的学习资料,帮助学生掌握调幅发射机的基本原理和应用。
2.参考书:提供相关的参考书籍,为学生提供更多的学习资料和拓展知识。
3.多媒体资料:制作PPT、视频等多媒体资料,形象地展示调幅发射机的工作原理和应用场景。
小功率调频发射机高频课设报告

课程设计报告——小功率调频发射机的设计与制作一、框图及原理图图1.1 调频发射机组成框图图1.2 调频发射机组成原理图二、原理一、震荡级 震荡级电路常见的是三点式,电容三点式和电感三点式。
虽然电容三点式的频偏大,但频率稳定度较低。
因此选用电容三点式的改进型电路——克拉泼振荡电路。
克拉泼电路的主要部分是电感和与它串联的小电容C3,要求这个小电容C3远小于另两个电容C1和C2,这样三个电容串联的值主要取决于小电容C3,从而减小了三极管极间电容对振荡频率的影响。
一般来说,这个小电容越小,振荡频率越稳定,但过小的电容会减小开环增益,引起起振困难,所以综合考虑,C3去220p 比较合理。
三极管采用分压式偏执,以提高电路的稳定度。
Rb1、Rb2、Re 、Rc 为偏置电阻,使得三极管工作在放大区。
Cb 为高频旁路电容,使得交流通路可实现射同它反。
调 频 震荡级 缓 冲 放大级 功 率 输出级图2.1 震荡级电路二、缓冲级缓冲级作为前级振荡器与末级功率放大部分的桥梁,一方面它将前级信号放大到足以激励功率放大级的程度,另一方面它将两级隔离,避免相互影响。
本电路采用L1和C1组成的网络实现滤波和阻抗匹配。
由于频率固定在12M ,根据)2/(10LC f π=可以确定相应的电感和电容,这里采用100p 的电容和可调电感组合可以达到最好的效果。
其中可调电感通过圈数粗调电感值,通过转动中心磁芯细调电感值。
R1、R2、R3为偏置电阻,将三极管的静态工作点调在放大区。
C1和C3为前后级耦合电容,这两个电容的取值不能太大也不能太小。
如果取值过大,则前后级耦合效果虽然增强,但相互影响也增大;相反,如果取值太小,则导致前后级的容抗较大,影响耦合效果。
综合考虑,取值在100p 到200p 较好。
图2.2 缓冲级三、功率放大级功率放大级做为最后一级,其最主要的任务是提供较大的放大倍数和发射功率,以保证信号较远距离的传输。
放大倍数受Re(即图中R2)和Rc(即LC回路的谐振阻抗)影响较大,其中放大倍数与Re成反比,而与Rc成正比。
高频课程设计报告_调频发射机

高频课程设计报告_调频发射机目录1. 内容概述 (2)1.1 课程背景 (3)1.2 报告目的 (3)1.3 报告结构 (4)2. 调频发射机概述 (5)2.1 调频通信原理 (6)2.2 调频发射机组成 (7)3. 调频发射机设计要求 (8)3.1 系统指标 (10)3.2 性能要求 (11)4. 设计方案与实现 (11)4.1 发射机结构设计 (13)4.2 高频电路设计 (14)4.3 调制和解调电路设计 (15)4.4 电源模块设计 (17)5. 调试与优化 (19)5.1 测试方法 (21)5.2 调试过程 (22)5.3 性能优化 (23)6. 测试结果与分析 (25)6.1 发射功率 (26)6.2 频谱纯度 (27)6.3 调制质量 (28)6.4 系统稳定性 (30)7. 结论与展望 (31)7.1 设计总结 (32)7.2 存在问题 (34)7.3 未来改进方向 (35)1. 内容概述本报告详细介绍了调频发射机的高频课程设计,围绕其工作原理、设计要点、实现路径以及未来改进方向展开深入探讨。
从调频发射机的基本原理出发,我们讨论了信号调制、载波频率的调整以及功率放大等关键技术点。
报告紧密结合实际工程需求,详尽阐述了调频发射机的工作著魔步骤和各个模块的功能设计,包括射频前端、调制器、功率放大器等核心部件。
在分析过程中,我们考虑了复杂信号环境下的抗干扰性设计,确保信号传输的稳定性和清晰度。
通过对调频发射机的仿真和数据分析,本报告优化了不同负载条件下的性能表现,为实际生产提供了有效的理论支持。
本课程设计报告还包括了项目实施过程中的遇到的挑战和解决方案,同时讨论了调频发射机在现代无线通信技术中的应用及其市场潜力。
报告最后展望了的未来科技发展趋势,提出了进一步提升调频发射机性能的潜在技术和创新方向。
通过本报告的学习与应用,读者能够获得关于高频调频发射机设计过程的全面了解,并为后续相关研究提供有益的参考和指导。
电子线路课程设计报告

电子线路课程设计报告小功率调幅AM发射机设计(理论设计仿真报告)班级:姓名:学号:指导教师:日期:小功率调幅发射机的设计与仿真1.设计内容及要求1.1设计内容1.经过方案比较,确定小功率调幅发射机的设计方案,根据设计指标对既定方案进行理论设计及分析,并给出各单元电路的理论设计方法2.利用multisim仿真软件,对设计电路进行仿真和分析,依据设计指标对电路参数进行调整直至满足设计要求1.2设计要求载波频率MHz 10=cf输出功率mW 2000 ≥P负载电阻Ω =50AR输出信号带宽kHz 9=BW残波辐射dB 40≤单音调幅系数8 .0=am ;平均调幅系数 3 .0≥am发射效率% 50≥η2.设计方案及论证2.设计方案及论证2.1系统框图说明:调幅发射机主要包括四个组成部分:载波振荡器、音频放大器、振幅调制器和功率放大器四部分。
总体思路为:10MHz的载波信号与1KHz的音频信号经过缓冲器以及电压放大后输入到振幅调制器进行调幅得到调幅波,然后经过高频功率放大后输出。
2.2各单元电路设计方案论证2.2.1 主振器电路载波振荡电路是调幅发射机的核心部分,作用是产生高频载波信号用以调制信号。
载波的频率稳定度和波形的稳定度直接影响到已调信号的质量。
因此,载波振荡电路产生的载波信号必须有较高的频率稳定度和较小的波形失真度。
载波振荡电路可以有多种设计方案,方案一:LC三点式正弦波振荡电路方案二:克拉泼振荡器电路方案三:石英晶体振荡器克拉泼振荡器(Clapp oscillator)又称为电容反馈改进型振荡器,它是一种电容三点式振荡器的改进型线路。
电容三点式振荡器,当需要改变频率而调节振荡回路的电容参数时,也会影响电路的起振,为此,把一个电容C3串入振荡回路的电感支路中,这样改变电容C就可以调节振荡频率,而不影响电路的起振。
这种振荡器频率相比LC振荡器来说更加稳定2.2.2 音频放大器音频放大器是在产生声音的输出元件上重建输入的音频信号的设备,其重建的信号音量和功率级都要理想——如实、有效且失真低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提供全套毕业设计,欢迎咨询吉林建筑大学电气与电子信息工程学院高频电子线路课程设计报告设计题目:小功率调幅发射机专业班级:电子信息工程学生姓名:学号:指导教师:设计时间:2014.12.08-2014.12.19一、设计题目:小功率调幅发射机的设计二、设计目的、内容及要求:2.1 设计目的(1)加深对《高频电子线路》理论知识的进一步理解,进一步巩固理论知识,能够建立起无线发射机的整机概念,学会分析电路、设计电路的步骤和方法,深入地贯穿到实践中。
(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。
2.2 设计内容及要求小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。
技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻RA=50Ω。
三、工作原理:由振荡器产生一个固定频率的载波信号,载波信号经缓冲级送至振幅调制电路,缓冲级将振荡级与调制级隔离,减小调制级对晶体振荡级的影响,放大级将低频信号放大至足够的电压后送到振幅调制电路,振幅调制电路的输出信号经高频功率放大器,高放级将载频信号的功率放大到所需的发射功率。
调幅发射机常用于通信系统与其他无线电系统中,在中短波领域应用极为广泛,由于调幅简便,占用频带窄,设备简单等优点,因此在发射机系统中应用非常广泛。
在实际的广播发射系统中,中波调幅的频率范围为535 ~ 1605 千赫,音频信号中的高音频率应该被限制在 4.5 千赫以下,发射功率需要达到300W以上才能使空间覆盖面达到比较好的状态,此次设计需要在实验室环境中研究发射机的工作原理与原件选择,因此,根据实验室条件适当降低技术指标,载波频率采用实验室较为常用的6MHz,单音频调制信号选择1KHz,发射机功率初步定为1W。
四、总体方案:1、调幅发射机的设计方案发射机的主要任务是利用低频音频信号对高频载波进行调制,将其变为在适合频率上具有一定的带宽,有利于天线发射的电磁波。
根据设计要求,载波频率f 0=1MHz~ 10MHz ;低频调制信号1KHz 正弦信号。
其总体电路结构可分为主振级,缓冲级,放大级,振幅调制电路和音频放大电路 。
2、调幅发射机的原理框图所谓调幅,就是按照调制信号的变化规律去改变载波的幅度,使输出信号的频谱搬移到高频波段,而输出信号的振幅携带调制信号的相关信息。
调幅发射机的主要任务是完成有用的低频信号对高频载波的幅度调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。
通常,调幅发射机包括三个部分:高频部分,低频部分,和调制部分。
高频部分一般包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。
主振器的作用是产生频率稳定的载波。
为了提高频率稳定性,主振级往往采用石英晶体振荡器或LC 振荡电路,并在它后面加上缓冲级,以削弱后级对主振器的影响。
低频部分包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。
低频信号通过逐渐放大,在末级功放处获得所需的功率电平,以便对高频末级功率放大器进行调制。
调制部分即振幅调制电路,它将要传送的信息装载到某一高频振荡(载频)信号上去的过程。
调幅发射机的原理框图如图1示:图1 调幅发射机原理框图3、主振级(1)三点式振荡器:电容三点式振荡器的输出波形比电感三点式振荡器的输出波形好。
为提高频率稳定度,可采用改进三点式振荡电路,如克拉波振荡电路、西勒振荡电路。
主振荡隔离放大低频信号低频功放调制器(2)晶体振荡器:晶体振荡器频率稳定度高,振荡频率不易受外界因素(温度湿度、电压变化等)影响。
频率稳定度是振荡器的一项十分重要的技术指标,它表示在一定时间范围内或一定温度、湿度、电压、电源等变化范围内振荡频率的相对变化程度,振荡频率的相对变化量越小,则表明振荡期的频率稳定度越高。
改善振荡器频率稳定度,从根本上来说就是力求减小振荡频率受温度、负载、电源等外界因素影响的程度,振荡回路是决定振荡频率的主要部件。
因此改善振荡频率稳定度的最重要措施是提高振荡回路在外界因素变化时保持频率不变的能力,这就是所谓的提高振荡回路的标准性。
提高振荡回路标准性除了采用稳定性好和高Q的贿赂电容电感外,还可以采用与正温度系数电感作相反变化的具有氟温度系数的电容,以实现温度补偿作用。
因此,RC振荡器不符合要求,可以采用西勒振荡器或者晶体振荡器,由于multisim软件没有10Mhz晶振,为便于进行仿真,所以这次设计采用西勒振荡器。
4、低频放大器生活中音频信号的频率范围是300Hz~3400Hz,所以对音频信号的放大一般采用低频放大器即可。
低频信号放大器的作用就是放大音频信号,使其达到调制电路输入信号的要求。
低频信号放大电路可以用三极管来实现,也可以用集成的运算放大器来实现。
本次设计采用LM741的芯片来实现放大功能。
5、振幅调制(1)低电平调幅电路输出功率小,适用于低功率系统。
它的电路形式有多种,如斩波调幅、平衡调幅器、模拟乘法器调幅等,比较常用的是采用模拟乘法器形式制成的集成调幅电路,即集成模拟乘法器调幅。
这种集成电路的出现,使产生高质量调幅信号的过程变得极为简单,而且成本很低。
(2)高电平调幅电路输出功率大,一般在系统末级直接产生满足发射要求的调幅波。
它的电路形式主要有集电极调幅和基极调幅两种。
集电极调幅电路的优点是效率高,晶体管获得充分的应用;缺点是需要大功率的调制信号源。
基极调幅电路的优缺点正好与之相反,它的平均集电极效率不高,但所需要的调制功率很小,有利于调幅发射系统整机的小型化。
6、高频功率放大器高频功率放大器是调幅发射机的末级,它的任务是要给出发射机所需要的输出功率。
本设计研究的是小功率调幅发射系统,通过前面的电路以后,进入功率放大级的是已调信号。
但由于信号的功率太小,发射出去存在很大衰减,影响信号的传送,所以要进行功率放大。
末极放大可以采用高频小信号谐振放大器电路。
高频小信号谐振放大器的主要性能指标有:(1)中心频率0f 指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元器件参数的依据。
(2)增益 指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和功率增益。
电压增益 o i vo A V V =功率增益 p o o i A P P = 式中,o V、i V分别为放大器中心频率上的输出、输入电压;o p 、i p 分别为放大器中心频率上的输出、输入功率。
通频带 指放大电路增益由最大值下降3dB 时所对应的频带宽度,用0.7BW 表示。
它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度。
五、 单元电路设计:1、主振级主振级是调幅发射机的核心部件,主要用来产生一个频率稳定、幅度较大、波形失真小的高频正弦波信号作为载波信号。
该电路通常采用晶体管LC 正弦波振荡器。
常用的正弦波振荡器包括电容三点式振荡器即考毕兹振荡器、克拉泼振荡器、西勒振荡器。
本级用来产生4MHz 左右的高频振荡载波信号,由于整个发射机的频率稳定度由主振级决定,因此要求主振级有较高的频率稳定度,同时也要有一定的振荡功率(或电压),其输出波形失真较小。
为此,这里我采用西勒振荡电路,可以满足要求。
为了解决频率稳定度和振荡幅度的矛盾,常采用部分接入方式。
由前述可知,为了保证振荡器有一定的稳定振幅及容易起振,当静态工作点确定后,晶体管内部参数f Y 的值就一定,对于小功率晶体管可以近似认为26f m CQ Y g I mV ==,反馈系数大小应在0.15~0.5范围内选择。
如图2西勒振荡器电路所示1R 、2R 、4R 提供偏置电压使三极管工作在放大区,4C 起到滤波作用。
输出电路的总电容:234545233424C C C C C C C C C C C C C =+≈+++振荡频率为:c f ∞=≈在此西勒振荡器电路中,由于5C 和L 并联,,所以5C 变化不会影响回路的接入系数,如果使4C 固定,可以通过改变5C 来改变振荡频率,因此,西勒振荡器可用作波段振荡器,适用于较宽波段工作。
图2 西勒振荡器西勒振荡电路仿真如下:图3 载波频率图4西勒振荡器的输出波形4、放大级这里选用高频小信号放大器最典型的单元电路如下图5所示,这里由1L 、2C 构成LC 单调谐回路,由LC 单调谐回路作为负载构成晶体管调谐放大器。
晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号频率0f 上,能够对输入的高频小信号进行反相放大。
由LC 调谐回路的作用主要有两个:一是选频滤波,选择放大f =0f 工作信号频率,抑制其他频率的信号;二是提供晶体管集电极所需的负载电阻,同时进行匹配交换。
设计的推动级采用高频小信号谐振放大器电路。
由于推动级还起到隔离缓冲的作用,故它的电路一般用谐振放大器加一级射随器组成。
高频小信号谐振放大器的主要性能指标有:(1)中心频率0f 指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元器件参数的依据。
(2)增益 指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和功率增益。
电压增益 o i vo A V V =功率增益 p o o iA P P = 式中,o V、i V分别为放大器中心频率上的输出、输入电压;o p 、i p 分别为(3) 通频带 指放大电路增益由最大值下降3dB 时所对应的频带宽度,用0.7BW 表示。
它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度(4)选择性 指放大器对通频带之外干扰信号的衰减能力。
通常有两种表征方法:1)用矩形系数说明邻近波道选择性的好坏。
矩形系数0.1r K 定义为0.10.10.722r K ff=∆∆ 理想矩形系数应为1,实际矩形系数均大于1。
2)用抑制比来说明对带外某一特定干扰频率n f 信号抑制能力的大小,其定义为中心频率上功率增益()0p A f 与特定干扰频率n f 上的功率增益()p n A f 之比。
()()0p p n A f d A f =用分贝表示,则为:()()010lgp p n A f d A f =图5 放大级图6 音频信号与放大3、音频放大音频放大是将信号放大到调制电路所需要的调制电压,经过放大后的信号送入调制级对高频载波信号进行调制,音频信号源由图中所示电压源代替,采用3554BM对输入的语音信号进行不失真的放大。
图7音频放大电路仿真结果如图9所示图8 音频放大级仿真5、AM调制电路调幅是使高频载波信号的振幅随调制信号的瞬时变化而变化。