四旋翼飞行器基本原理
四旋翼飞行原理

四旋翼飞行原理
四旋翼是一种无人机,它通过电机驱动四个旋翼,产生向上的升力,从而实现飞行。
这种飞行方式成为垂直起降(VTOL)型飞行器。
四旋翼的工作原理非常简单,它通过四个旋翼产生的向上的升力来支撑整个飞行器的重量。
四个旋翼的速度可以通过电机的变速调节来进行调整,使得四旋翼向前、向后、向左、向右等方向进行平移飞行。
同时,四个旋翼也可以通过变速调节来产生旋转力矩。
四旋翼中心的姿态控制是通过调整四个旋翼的转速和方向来实现的。
不同的旋翼转速和方向的组合可以使得四旋翼产生不同的姿态,并且这些姿态可以通过传感器和计算机进行实时监测和调整。
四旋翼的飞行控制还包括位置和速度控制。
位置控制是通过测量四旋翼与地面的距离和位置,来计算四旋翼需要向上或向下的力度。
速度控制是通过测量四旋翼的速度,来计算四旋翼需要变换方向和速度的程度。
四旋翼的飞行方式可以分为手动和自动两种模式。
手动模式下,人类操控四旋翼的飞行姿态和飞行路径,自动模式下,机载计算机根据程序自主控制四旋翼的飞行。
四旋翼的应用十分广泛,既可以用于军事侦察和打击,也可以用于民用摄影和搜救等各种领域。
随着技术的发展,四旋翼未来的应用也将更加广阔。
四轴 原理

四轴原理
四轴原理即为四旋翼飞行器的工作原理。
四旋翼飞行器由四个相对对称的旋翼组成,每个旋翼都由一个电动机驱动,并通过控制电路进行精确的调节。
四轴飞行器的飞行原理是通过对四个旋翼的转速进行精确控制,实现悬停、上升、下降、前进、后退、向左、向右平移以及旋转等多种飞行动作。
具体原理如下:
1. 升力平衡原理:四个旋翼产生的升力将飞行器维持在空中,飞行器的重力与升力平衡,实现悬停状态。
2. 空气动力学平衡原理:四个旋翼的转速可以通过电机转速控制器进行精确调节,进而调节各个旋翼产生的升力大小,实现空气动力学平衡。
3. 控制算法原理:通过搭载的传感器(如加速度计、陀螺仪、磁力计等)实时监测飞行器的姿态信息,将监测到的数据传输给飞行控制器。
飞行控制器根据姿态信息计算出相应的控制指令,通过电调调节四个旋翼的转速,控制飞行器的姿态。
如需向前飞行,则增加后面两个旋翼的转速,减小前面两个旋翼的转速,使飞行器倾斜向前。
类似地,对其他方向的飞行也是通过对相应旋翼转速的调节实现的。
4. 电源与电路原理:四轴飞行器通过电池为电动机提供能量,电路控制系统将飞行器的控制信号转化为电流和电压输出供电给电动机。
通过对四个旋翼的转速进行精确控制,在合适的气动力学平衡和姿态控制下,四轴飞行器能够实现精确悬停、稳定飞行及各种飞行动作,具有广泛的应用前景。
四轴飞行器的飞行原理

四轴飞行器的飞行原理四轴飞行器,作为一种现代飞行器形式,具有独特的设计和飞行原理。
其飞行原理主要基于空气动力学和控制理论。
四轴飞行器采用四个旋翼组件来产生升力和推力,并通过控制这些旋翼的转速和角度来实现飞行动作。
升力产生四轴飞行器的主要飞行模式是垂直起降,因此需要产生足够的升力来使其脱离地面并维持空中飞行。
四轴飞行器的四个旋翼通过旋转产生气流,这些气流在旋翼叶片的空气动力学作用下产生升力。
旋翼的升力与其旋转的速度成正比,因此控制旋翼的转速可以调节飞行器的升力。
姿态控制除了产生升力,四轴飞行器还需要控制其姿态,即控制其在空中的方向和倾斜角度。
四轴飞行器通过调节各个旋翼的推力和速度来实现姿态控制。
例如,如果要向前飞行,可以增加后方旋翼的推力或减小前方旋翼的推力,以产生向前的倾斜力矩。
稳定性控制为了保持飞行器在空中的稳定性,四轴飞行器需要进行实时的稳定性控制。
通常采用陀螺仪和加速度计等传感器来监测飞行器的姿态和运动状态,然后通过飞行控制系统来计算并调节旋翼的转速和姿态,使飞行器保持平稳飞行。
飞行模式四轴飞行器可以实现多种飞行模式,如手动控制飞行、自动悬停和自动返航等。
在手动控制模式下,飞行器由操纵员通过遥控器进行操控。
在自动悬停和自动返航模式下,飞行器通过预先设定的飞行控制算法和传感器数据来实现自主飞行。
综上所述,四轴飞行器的飞行原理基于空气动力学和控制理论,并通过旋翼产生升力、姿态控制和稳定性控制来实现飞行动作。
其独特的设计和飞行原理使其成为一种灵活多用途的飞行器形式,广泛应用于航拍、搜救、科研等领域。
四轴飞行器知识简介

四轴飞行器知识什么是四轴飞行器?四轴飞行器也叫四旋翼飞行器。
通俗点说就是拥有四个独立动力旋翼的飞行器,有四个旋翼来悬停、维持姿态及平飞。
四轴飞行器是多轴飞行器其中的一种,常见的多轴飞行器有两轴,三轴,四轴,六轴,八轴或者更多轴。
四轴飞行器飞行原理重心的距离相等, 当对角两个轴产生的升力相同时能够保证力矩的平衡, 四轴不会向任何一个四轴飞行器有四个电机呈十字形排列,驱动四片桨旋转产生推力; 四个电机轴距几何中方向倾转; 而四个电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡,保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式相对应。
1,4号电机顺时针方向旋转, 2,3号电机逆时针方向旋转. 四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向和偏航方向上的运动: 当四轴需要向前方运动时, 2,3号电机保持转速不变, 1号电机转速下降, 4号电机转速上升, 此时4号电机产生的升力大于1号电机的升力, 四轴就会沿几何中心向前倾转,桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转向时, 1,4号电机转速上升, 2,3号电机转速下降, 使向左的反扭距大于向右的反扭矩, 四轴在反扭距的作用下向左旋转.四个桨产生的推力, 超过或者低于四轴本身重力的时候能够实现竖直方向上升与下降的运动, 当桨的升力与四轴本身的重力相等的时候即实现悬停。
其他方式的运动原理与以上过程类似. 四轴飞行原理虽然简单, 但实现起来还需很多工作要做.四轴飞行器需要的零件无刷电机(4个)、电子调速器(简称电调,4个,)、螺旋桨(4个,需要2个正浆,2个反浆)、飞行控制板(常见有瑞伯达、KK等品牌)、电池(11.1v航模动力电池)、遥控器(最低四通道遥控器)、机架(非必选)、充电器(尽量选择平衡充电器)怎样知道是否能正常起飞?一切准备完毕,怎么知道可以试飞了呢,我个人建议为了避免匆忙上马,秒炸。
先拿手上试飞比较好,但要注意离身体距离。
四旋翼飞行器的工作原理

四旋翼飞行器的工作原理
四旋翼飞行器,作为一种无人机类型,由四个电动马达驱动,每个马达带动一
个螺旋桨,通过旋转螺旋桨产生的升力和推力来实现飞行。
在四个螺旋桨的作用下,四旋翼飞行器可以进行上升、下降、前进、后退、向左、向右移动等各种飞行动作。
结构组成
四旋翼飞行器的主要结构包括机架、电机、螺旋桨、飞控以及电池等部件。
其中,电机和螺旋桨的组合负责提供飞行器的动力,飞控系统则控制着电机的转速,从而操控四旋翼飞行器的姿态和飞行方向。
工作原理
四旋翼飞行器的工作原理主要是通过控制四个电动马达的转速,来调节四个螺
旋桨产生的推力大小和方向,在空气中形成动力平衡,从而实现飞行。
当四个电动马达以相同的速度旋转时,四旋翼飞行器将悬停在空中;当电机转速有所不同时,四旋翼飞行器就会产生倾斜,从而实现前进、后退、向左或向右移动。
升力和推力
四旋翼飞行器的飞行靠的是螺旋桨产生的升力和推力。
当四个螺旋桨以适当的
速度旋转时,它们将向下推动大量的空气,产生向上的升力。
通过协调四个螺旋桨的转速和方向,四旋翼飞行器可以在空中保持平衡,实现稳定的飞行。
飞控系统
飞控系统是四旋翼飞行器的大脑,负责控制电机的转速和姿态,以实现飞行器
的稳定飞行。
飞控系统通过传感器感知四旋翼飞行器的姿态和环境信息,然后通过内置的控制算法计算出最优的控制指令,控制电机的运行状态,确保飞行器能够稳定飞行。
结语
总的来说,四旋翼飞行器的工作原理是通过控制螺旋桨产生的升力和推力来实
现飞行。
通过合理设计机身结构和配备飞控系统,四旋翼飞行器能够实现各种复杂的飞行动作,是一种十分便捷和灵活的无人机类型。
四旋翼飞行器无人机结构和原理

四旋翼飞行器结构和原理1.结构形式旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。
结构形式如图 1.1所示。
2.工作原理四旋翼飞行器通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。
四旋翼飞行器是一种六自由度的垂直升降机,但只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。
四旋翼飞行器的电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
在上图中,电机1和电机3作逆时针旋转,电机2和电机4作顺时针旋转,规定沿x轴正方向运动称为向前运动,箭头在旋翼的运动平面上方表示此电机转速提高,在下方表示此电机转速下降。
(1)垂直运动:同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
(2)俯仰运动:在图(b)中,电机1的转速上升,电机 3 的转速下降(改变量大小应相等),电机2、电机 4 的转速保持不变。
由于旋翼1的升力上升,旋翼 3 的升力下降,产生的不平衡力矩使机身绕y 轴旋转,同理,当电机1 的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。
(3)滚转运动:与图b 的原理相同,在图 c 中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x 轴旋转(正向和反向),实现飞行器的滚转运动。
四旋翼飞行原理是什么

四旋翼飞行原理解析四旋翼无人机在现代社会中逐渐成为一种重要的飞行器。
但是,许多人对四旋翼飞行的原理仍然知之甚少。
在本文中,我将深入探讨四旋翼飞行的根本原理,以帮助读者更好地理解这项技术。
1. 四旋翼结构概述四旋翼无人机通常由四个对称分布的旋翼组成,这些旋翼通过电机叶片驱动。
每个旋翼的转速和叶片角度可以独立调节,从而实现对无人机的飞行姿态控制。
2. 升力的产生四旋翼飞行器的升力产生与传统固定翼飞行器有着明显的不同。
固定翼飞行器通过机翼形状和速度差产生升力,而四旋翼无人机则通过旋翼产生升力。
旋翼在高速旋转时,会吸入空气并产生向下的推力,从而推动整个机体向上飞行。
3. 姿态控制原理四旋翼无人机通过调节四个旋翼的转速和叶片角度来控制飞行器的姿态,包括横滚、俯仰和航向。
当需要向前飞行时,前方的两个旋翼加大推力,而后方的两个旋翼减小推力,从而使得飞行器产生向前的倾斜角度。
4. 悬停技术原理四旋翼无人机在空中保持悬停状态是其最基本的飞行技巧之一。
悬停技术的实现依赖于飞行控制系统对四个旋翼的高频率调节。
通过细微地调整旋翼的转速和叶片角度,飞行控制系统可以使飞行器在空中保持静止。
5. 起飞与降落原理四旋翼无人机的起飞和降落过程也是其飞行技术中的重要部分。
在起飞时,四个旋翼需要以足够的转速产生足够的升力来克服重力,使得飞行器脱离地面。
而在降落时,飞行器需要逐渐减小升力以平稳降落。
结语通过本文的介绍,希望读者能对四旋翼飞行的原理有一个更清晰的认识。
四旋翼无人机的飞行技术是一个综合了物理学、工程学和控制理论的复杂系统,只有深入理解其原理才能更好地驾驭这一技术。
四旋翼无人机原理

四旋翼无人机原理
四旋翼无人机是一种飞行器,由四个独立旋转的螺旋桨提供推力和操纵力。
其工作原理主要包括气动、电力和控制三个方面。
在气动方面,四旋翼无人机的螺旋桨凭借高速旋转来产生升力。
通过调整螺旋桨的旋转速度和角度,可以控制无人机的升降、前进、后退和悬停等动作。
在电力方面,四旋翼无人机通常由电动机驱动。
这些电动机通过内置的电子调速器来控制转速,并根据用户输入的指令调整螺旋桨的旋转速度。
电力系统还配备了锂电池供电,提供无人机所需的电能。
在控制方面,四旋翼无人机通过无线遥控器或自动飞行控制系统进行操作。
遥控器通过发送无线信号,控制飞行器的姿态和动作。
自动飞行控制系统通常由陀螺仪、加速度计和飞行控制器等组件组成,用于感知无人机的状态,并根据事先设定的飞行路径和任务执行相应的动作。
综上所述,四旋翼无人机通过螺旋桨产生升力,通过电动机提供动力,并通过遥控器或自动飞行控制系统进行控制。
这种飞行器具有垂直起降、悬停能力强的特点,广泛应用于航拍、物流配送、科学研究等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四旋翼飞行器无刷直流电机调速系统的设计
孟磊,蒋宏,罗俊,钟疏桐
武汉理工大学自动化学院、武汉理工大学信息工程学院
摘要,关键字:略
近年来,无人机的研究和应用广泛受到各个方面的重视。
四旋翼飞行器作为无人机的一种,能够垂直起落、空中悬停、可适用于各种飞行速度与飞行剖面,具有灵活度高、安全性好的特点,适用于警务监控、新闻摄影、火场指挥、交通管理、地质灾害调查、管线巡航等领域实现空中时时移动监控。
四旋翼飞行器的动力来源是无刷直流电机,因此针对该型无刷直流电机的调速系统对飞行器的性能起着决定性的作用。
为了提高四旋翼飞行器的性能,本文设计制作了飞行试验平台,完成了直流无刷电机无感调速系统的硬件、软件设计。
通过实验证明该系统的设计是可行的。
四旋翼飞行器平台结构
四旋翼平台呈十字形交叉,有四个独立电机驱动螺旋桨组成。
当飞行器工作时,平台中心对角的螺旋桨转向相同,相邻的螺旋桨转向相反同时增加减少四个螺旋桨的速度,飞行器就垂直上下运动;相反的改变中心对角的螺旋桨速度,可以产生滚动、俯仰等运动。
结构图如下:
四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。
飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥控器通信。
4个无刷直流电机调速系统通过I²C总线与飞行控制器通信,通过改变4个无刷直流电机的转速来改变飞行姿态,系统采用12V电池供电。
控制系统结构图如下:
无刷直流电机调速系统
无刷直流电动机既具有运行效率高、调速性能好,同时又具有交流电动机结构简单、运行可靠、维护方便的优点,是电机主要发展方向之一,现已成功运用与军事、航空、计算机数控机床、机器人、电动自行车等多个领域。
在该四旋翼飞行器上使用了新西达2217外转子式无刷直流电机,其结构为12绕组7对磁极,典型KV值为1400.
通常无刷直流电机的控制方式分为有位置传感器控制方式和无位置传感器控制方式。
有位置传感器控制方式通过再定子上安装电磁式、光电式或者磁敏式位置传感器来检测转子的位置,为驱动电路提供转向信息。
无位置传感器的控制方式有很多,包括磁链计算法‘反电动势法、状态观测器法、电感法等。
在各种无位置传感器控制方法中,反电动势法是目前技术最为成熟的、应用最为广泛的一种位置检测方法。
本系统采用的饭店董事过零检测法是反电动势法中的一种,通过检测各相绕组反电动势的过零点来判断转子的位置。
根据无刷直流电机的特性,电机的最佳转向时刻是想反电动势过零点延迟30电角度的时刻,而该延迟的电角度对应的时间可以有两次过零点时间间隔计算得到。
无刷直流电机调速系统硬件设计
该无刷直流电机调速系统有三相全桥驱动电路、反电势过零电路、电流电压检测电路组成电机驱动器。
使用一片ATmega8单片机作为控制器,该单片机内部集成了8kB的flash,最多具有23个可编程的I/O口,输出时为推挽结构输出,驱动能力较强。
片上集成了AD 转换器、模拟比较器、通用定时器、可编程计数器等资源。
三相全桥驱动电路利用功率型MOS管作为开关器件,选用P型MOS管FD6637与N型MOS管FD6635搭配使用,设计容量为允许通过的最大电流为30A。
FD6637的开关利用三极管9013进行驱动、FD6635的开关直接用单片机的I/O口进行驱动。
电路如图3所示。
通过R17、R19、R25来减少下管FDD6635的栅极充电电流峰值,防止震荡并保护MOS管;R16、R23、R24作为下拉电阻,保证下关的正常导通与关断;R2、R5、R8作为上管栅极上拉电阻,阻值选择470Ω,既保证了MOS管的开关速率不降低,同时也防止三极管Ic电流过大。
A+、B+、C+提供驱动桥的上桥臂的栅极导通信号,分别通过ATmega8的三个硬件PWM通道驱动,通过改变PWM信号的占空比来实现电机调速;A-、B-、C-提供下桥臂栅极驱动信号,由单片机的I/O口控制,只有导通和关闭两种状态。
反电动势过零检测电路设计
电机运行时,同一时刻只有两组绕组导通,另外一组绕组悬空,切割磁感线产生反电动势。
反电动势过零点指其绕组端电压等于三相绕组的中点电压,因此通过非导通相绕组的端电压与三相绕组的中点电压比较,就能得到过零点信号。
但是电机三相绕组的中点连线未引出,采用三个阻值相同、心型连接的电阻虚拟得到中点电压。
如图所示N点位虚拟中点电压,UA、UB、UC为衰减后的电机相电压接单片机的AD0~AD2通道。
利用ATmega8内部的模拟比较器实现过零比较,N接比较器的正向输入端,该模拟比较器的负向输入端可以通过软件配置选择片内AD转换器的AD0~AD2通道,用单比较器实现三相电压比较。
电流电压监测电路设计
电流电压监测电路用来监测无刷直流电机驱动电路的总电流与系统供电电池电压的值。
电路如图所示,利用康铜丝构成阻值为0.01Ω的电阻,总电流流过该电阻形成的电压通过R11与C8组成的截止频率为2.3kHz的一阶低通滤波器后连入单片机的AD3端口,通过计算可得系统电流。
电压检测电路通过简单的电阻分压形式将系统电池供电电压tiaozhengdaoAD 转换器的量程范围内。
通过电流电压监测防止因为故障发生时因为电流过大而烧毁设备,也防止飞行器升空后由于电池电压不足摔毁。
无刷直流电机调速系统软件设计
该无刷直流电机的调速系统应用于四旋翼飞行器上,电机的转速与飞行器的升力之间没有确定的关系,而且受电机参数、螺旋桨结构与尺寸影响很大,因此该电机调速系统对电机的调速精度要求不高。
飞行姿态的控制则是通过机载IMU惯性测量单元与该调速系统结合形成负反馈系统完成的,调速系统控制器通过I²C总线与飞行控制器通信,接收PWM占空比信号值。
飞行姿态的调整在本文不做研究,因此该调速电路只要实现开环调速即可满足性能要求。
该系统软件流程图如下图所示
电机启动程序设计
改直流无刷电机调速系统的驱动采用软件启动方式。
直流无刷电机在静止或低速运行的时候非导通相反电动势为零或者极低,不利于测量,难以实现电机的自启动。
本设计采用三段式启动方法:首先给AB相通较低电压较长时间实现电机转子的预定位,其次给估测的换相时间换相逐步提高电压缩短通电时间,最后检测反电动势过零点信号是否正常,正常后转入无刷直流电机运行状态。
期间监测系统总电流值,若超过20A则产生中断信号并关断所有MOS管,启动失败,重新启动。
电机调速控制程序
当电机自启动以后,则进入无刷直流电机无传感器状态。
选择相应的未导通相,设置模拟比较器相应的输入通道,打开比较器中断,进行反电动势检测,并且记录中断响应时刻,计算相邻两次转相时间差,计算换相延迟30°电角度需要的时间,等待换相。
电机速度的调整通过PWM信号的占空比来进行调节。
电机保护程序设计
为了防止电机堵转、控制信号故障、硬件驱动电路故障引起的电流过大烧毁电机设计了保护程序。
首先系统上电时会检测系统电池电压是否在额定范围内,如果电池电压低于10V,则关闭所有MOS管,禁止启动飞行。
若电池电压正常则进行MOS管短路检测,首先全部关断所有MOS管,检测系统漏电流是否在安全范围内,然后依次导通每个MOS管,关闭其他MOS管,检测系统电流如果远大于系统漏电流则表明有MOS管被击穿,停止启动。
如果MOS管自检全部通过则进入正常启动程序。
正常工作中监测系统总电流,弱电刘超过20A 则进入保护状态,产生中断信号并关断所有MOS管。
系统测试
经过调试,此方案下实现的四旋翼飞行器无刷直流电机调速系统能够满足要求。
用安捷伦6054示波器观测该电机调速器控制新西达2217无刷直流电机空载运行时的三相绕组相电压波形,下图所示PWM占空比为50%时的波形。
经测量系统设置电机为最高转速时系统总电流低于7A,电机没有发热现象。
结束语
针对四旋翼飞行器的要求设计了该款基于ATmega8单片机的无刷直流电机调速系统,采用反电动势过零检测法实现无传感器控制,完成了硬件设计与软件调试,同时设计了电机保护策略,尽可能保证系统的安全。
经实验证明,该系统能够正常驱动无刷直流电机,为四旋翼飞行器提供动力来源。