第二章-泊松过程-随机过程
泊松(possion)过程

显然有:
p( i
m j
)
(n)
≥
0
(i, j ∈ S)
∑ p(m) ij
(n)
=
1
j∈S
m = 1时,即为一步转移矩阵。
(i ∈ S)
规定:
p( i
0) j
(n)
= δi j
=
1 0
i= j i≠ j
(二)切普曼-柯尔莫哥洛夫(C-K)方程
定理:对于 m 步转移概率有如下的 C-K 方程:
∑ p (m+r ij
= ∑ P{X (n + m + r) = j X (n + m) = k}P{X (n + m) = k X (n) = i} k∈S
∑ =
p(m) ik(n)Leabharlann p(r) kj(n
+
m)
k∈S
对于齐次马氏链的情形:我们可以写成矩阵的形式即有:
P = P P (m+r)
(m) (r)
中科院研究生院 2008~2009 第一学期 随机过程讲稿 孙应飞
考虑顾客到达一服务台排队等待服务的情况。
若服务台前至少有一顾客等待,则在单位时间周期内,服务员完成一个顾客
的服务后,该顾客立刻离去;若服务台前没有顾客,则服务员空闲。
在一个服务周期内,顾客可以到达,设第 n 个周期到达的顾客数ξn 是一个取 值为非负整数的随机变量,且{ξn , n ≥ 1} 相互独立同分布。在每个周期开始时 系统的状态定义为服务台前等待服务的顾客数。若现在状态为 i ,则下周期的状 态 j 应该为:
中科院研究生院 2008~2009 第一学期 随机过程讲稿 孙应飞
第二章 Markov 过程
二章Poisson过程-精品文档

k t exp t Poison分布,即:p N s t N t k ,k 0 , 1 ,
• 例2.1顾客依Poisson过程到达某商店,速率为4人/小时。 已知商店上午9:oo开门。试求到9:30时仅到一位顾客,
而到11:30时总计已到达5位顾客的概率。
互独立同分布的随机变量,且与 相互独立, N t, t 0
称随机过程 为复合泊松过程。 X t, t 0
i位旅客的 NtΒιβλιοθήκη 位客人,就是 。 Et Wi i1
Nt
W t .而所要求的平均总等待时间
• 为求出它可以先求条件期望:
N t n E t W N t n t W N t n i i E 1 1 i i n nt E W t n i N 1 i
m 12 sds 195
12 0
195 195 p N 12 N 0 100 e ! K 0 K
100 K
• 2.3.2 复合Poisson过程 • 定义2.3设 是一个泊松过程, 是一列相 Y1,Y2 , N t, t 0
• 注意到给定 N 的联合密度是与 ( 0, t ] t n , W , i 1 , 2 , , n i 上均匀分布中随机样本 ,的次序统计量 U i 1 , 2 , ,n i,
U i 1 , 2 , ,n的联合密度是一样的。所以: i,
n n n nt E W t n E U E U iN i i i 1 i 1 i 1 2
的Poisson过程到达车站。若火
随机过程的泊松过程与泊松分布

随机过程的泊松过程与泊松分布泊松过程是概率论中研究随机事件发生的一种数学模型,它是一种重要的随机过程。
本文将着重讨论泊松过程以及与之相关的泊松分布。
泊松过程是一种以时间为参数的随机过程,它描述了一个随机事件在一段时间内发生的次数。
泊松过程的引入是为了描述稀有事件的发生概率。
它满足以下几个基本条件:1. 事件在不同的时间段内是相互独立的。
2. 事件在任意时间段内发生的概率是恒定的。
3. 事件在一个非常短的时间段内发生的概率与该时间段的长度成正比。
在泊松过程中,我们通常关心的是某个时间段内事件发生的次数。
假设事件在单位时间内发生的平均次数为λ,则在一个长度为t的时间段内,事件发生的次数就是服从参数为λt的泊松分布。
泊松分布是一种离散型概率分布,它描述了在一个固定时间段内,随机事件发生的次数的概率分布。
泊松分布的概率质量函数如下:P(X=k) = (λ^k * e^(-λ)) / k!其中,X表示事件发生的次数,k表示发生的次数,λ表示单位时间内事件发生的平均次数。
泊松分布有一些重要的性质:1. 期望值:E(X) = λ,即单位时间内事件发生的平均次数。
2. 方差:Var(X) = λ,即单位时间内事件发生次数的方差等于其均值。
3. 独立性:在不同的时间段内,事件发生的次数是相互独立的。
泊松过程和泊松分布在实际生活中有着广泛的应用。
例如,在排队理论中,泊松过程可以用来描述到达某个服务点的顾客数量;在通信系统中,泊松过程可以用来描述信道中到达的信号数量等等。
总结起来,泊松过程是一种重要的随机过程,它描述了随机事件在一段时间内发生的次数。
泊松分布则是泊松过程中事件发生次数的概率分布。
它们在概率论、统计学和应用领域都有着广泛的应用。
通过研究泊松过程和泊松分布,我们可以更好地理解和描述随机事件的发生规律。
泊松过程poisson

研究如何将泊松过程与其他 随机过程进行更有效的结合,
以更好地描述复杂现象。
探索如何利用机器学习方法改 进泊松过程的参数估计和模型 选择,以提高模型的预测能力
和解释性。
THANKS
泊松分布的性质
泊松分布具有指数衰减的性质, 即随着时间的推移,事件发生的
概率逐渐减小。
泊松分布的期望值和方差都是参 数λ(λ > 0),即E(X)=λ, D(X)=λ。
当λ增加时,泊松分布的概率密 度函数值也增加,表示事件发生
的频率更高。
泊松分布的应用场景
通信网络
泊松分布用于描述在一定 时间内到达的电话呼叫或 数据包的数量。
生物信息学中的泊松过程
在生物信息学中,泊松过程用于描述基因表达、蛋白质相互 作用等生物过程中的随机事件。例如,基因表达数据可以用 泊松过程来分析,以了解基因表达的模式和规律。
通过泊松过程,生物信息学家可以识别出与特定生物学功能 或疾病相关的基因,为药物研发和个性化医疗提供有价值的 线索。
06 泊松过程的扩展与展望
交通流量分析
泊松分布用于描述在一定 时间内经过某个地点的车 辆数量。
生物学和医学研究
泊松分布可以用于描述在 一定时间内发生的事件数 量,例如基因突变或细菌 繁殖。
04 泊松过程的模拟与实现
离散时间的模拟
01
定义时间间隔
首先确定模拟的时间区间,并将其 划分为一系列离散的时间点。
随机抽样
使用随机数生成器,在每个时间间 隔内随机决定是否发生事件。
有限可加性
在有限的时间间隔内,泊松过 程中发生的事件数量服从二项
分布。
与其他随机过程的比较
与马尔可夫链的比较
随机过程——泊松过程(2)

4.2.2 复合Poisson过程
二、定义
设 N t , t 0 为一齐次 Poisson 过程,n , n 1是 i.i.d 序列,且与N t , t 0相互独立,令
Yt n1 n
Nt
Y 则称随机过程 t , t 0 为复合 Poisson 过程.
• 4.1 到达时间间隔与等待时间分布 • 4.1’ Poisson过程的分解 • 4.2 非齐次和复合Poisson过程
4.1’ Poisson过程的分解
一、Poisson过程的分解
N t , t 0为 一 齐 次 sson 程, 有 时 会 Poi 过
将 事 件 分 类 ,型 和II型 , 事 件 被 分 为 哪 I 一类依赖于发生的时,即事件发生在 间 时 刻s, 则 以 概 率 s 被 归 为 型 , 以 P I 的归类独立,则有如结论: 下
s 0
P0 t , s 1 t s h oh
ln P0 t , s t x dx m t s m t
P0 t , s e
m t s m t
再来看k 1的情形
4.2.1 非齐次P机过程 N t 是一个计数过程,若满 足
(2)N t 是独立增量过程 .
(1) N 0 0
(4)h 0,PN t h N t 1 t h oh
则 称N t 具 有 强 度 函 数t 的 非 齐 次 为 Poisson 程 . 过
u t s P0 t , s t
k 1 e iuk t s Pk t , s t s Pk 1 t , s
iuk iu
随机过程课程第二章 随机过程的基本概念

第一节 随机过程的定义及其分类 第二节 随机过程的分布及其数字特征 第三节 复随机过程 第四节 几种重要的随机过程简介
第一节 随机过程的定义及其分类
一、直观背景及例
例1 电话站在时刻t时以前接到的呼叫次数 一般情况下它是一个随机变数X ,并且依赖 时间t,即随机变数X(t),t[0,24]。
首页
(4)平稳随机过程
平稳过程的统计特性与马氏过程不同,它不 随时间的推移而变化,过程的“过去”可以对 “未来”有不可忽视的影响。
首页
返回
第二节 随机过程的分布及其数字特征
一、随机过程的分布函数
设{ X (t) ,t T }是一个随机过程,
一维
分布 对于固定的t1 T ,X (t1) 是一个随机变量,
F (t1,t2;x1, x2 ) =
x1
x2
f (t1, t2;y1, y2 )dy1dy2
则称 f (t1,t2;x1, x2 ) 为 X (t) 的二维概率密度
n维
n 维随机向量(X (t1 ) ,X (t2 ) ,…, X (tn ) )
分布 函数
联合分布函数
F (t1,t2 , ,tn;x1, x2 , , xn )
分布函数
FXY (t1, ,tn ;t1, ,tm ;x1, , xn ; y1, , ym )
P{X (t1) x1, , X (tn ) xn;Y(t1) y1, ,Y(tm ) ym }
称为随机过程和的n + m维联合分布函数
首页
相互 设 X (t) 和Y (t) ,t1,t2 , ,tn ,t1,t2 , ,tm T
首页
2.方差函数
随机过程{ X (t) ,t T }的二阶中心矩
泊松过程

第二讲 泊松过程1.随机过程和有限维分布族现实世界中的随机过程例子:液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数;到某个时刻服务器到达的数据流数量,等。
特征:都涉及无限多个随机变量,且依赖于时间。
定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族}),({T t t X ∈为随机过程。
注 一个随机过程是就是一个二元函数E T t X →⨯Ωω:),(。
固定ω,即考虑某个事件相应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。
映射的值域空间E 称为状态空间。
例 随机游动(离散时间,离散状态)质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。
如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。
这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。
如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。
两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01nn kk S S X==+∑习题 计算n ES 和n DS (设00S =)。
提示 利用∑==nk kn XS 1,其中k X 是时刻k 的移动方式。
习题 设从原点出发,则()/2()/2()/2,2()0,21n k n k n k n n C q p n k iP S k n k i +-+⎧+===⎨+=-⎩。
例 服务器到达的数据流(连续时间,离散状态)在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程,其指标集}{+∈=R t T ,状态空间},1,0{ =E 。
例 布朗运动(连续时间,连续状态)直线上质点的位移是连续的。
在时刻t 的位置为t X 。
泊松过程

pk (t +h) −pk (t) o(h) , = −λpk (t) +λpk−1(t) + h h pk'(t) = −λpk (t) + λpk−1(t) h ,(k = 0,1,2,L ) 令 →0得 , pk (0) = P{N(0) = k} = 0
k=1时 k=1时, p1'(t) = −λp1(t) + λe−λt p1(0) = 0 解得: (t)= 所以k=1时结论成立。 k=1时结论成立 解得:p1(t)=λte-λt,所以k=1时结论成立。
(λt)k−1 −λt e 。 假设k-1时结论成立, pk−1(t) = 假设k 时结论成立, (k −1)! pk'(t) = −λpk (t) + λpk−1(t) (λt)k −λt 解 , 得 pk (t) = e 。 pk (0) = 0 k!
结论成立。 结论成立。 由归纳法知,对一切k=0,1,2, k=0,1,2,…,结论成立。 由归纳法知,对一切k=0,1,2, ,结论成立。 (λt)k −λt 得证
j=0
k
k
{N(t) = j}P N(h = k − j} { ) = ∑P
) ) ) p ) = ∑pj(t)pk−j(h = pk(t)p0(h +pk−1(t)p1(h + ∑ j(t)pk−j(h
j=0 j=0
j=0 k
k−2
(t)[1(t)[λh+o(h)]+o(h), =pk(t)[1-λh+o(h)]+pk-1(t)[λh+o(h)]+o(h),
定义3 如果取非负整数值得计数过程{N(t),t 0}满足下列 {N(t),t≥ 定义3 如果取非负整数值得计数过程{N(t),t≥0}满足下列 条件: 条件: N(0)= a) N(0)=0; 具有独立增量; b) 具有独立增量; P{N(h)=1}= h+0(h); c) P{N(h)=1}=λh+0(h); P{N(h)≥2}= d) P{N(h)≥2}=0(h) 则称{N(t),t 0}为参数(或平均率、强度) {N(t),t≥ 齐次) 则称{N(t),t≥0}为参数(或平均率、强度)为λ的(齐次)泊 松过程。 松过程。 考虑某一电话交换台在某段时间接到的呼唤.令 例1 考虑某一电话交换台在某段时间接到的呼唤 令X(t)表 表 示电话交换台在(0,t]内收到的呼唤次数 则{X(t),t≥0}满足定义 内收到的呼唤次数,则 满足定义3 示电话交换台在 内收到的呼唤次数 ≥ 满足定义 的条件, 是一个泊松过程. 的条件 故{X(t), t≥0}是一个泊松过程 ≥ 是一个泊松过程 考虑到某车站售票窗口购买车票的旅客,若记 若记X(t)为在时间 例2 考虑到某车站售票窗口购买车票的旅客 若记 为在时间 [0,t]内到达售票窗口的旅客数 则{X(t),t≥0}为一泊松过程 内到达售票窗口的旅客数,则 内到达售票窗口的旅客数 ≥ 为一泊松过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
布的指数随机变量。Sn Xi ,n 1,第 n 个事件在时刻 Sn 发生,N(t) i1
表示到时刻 t 为止已发生的“事件”的总数,即 N (t) sup{n : Sn t}, 则
计数过程{N(t),t≥0}是参数为的泊松过程。
三、来到时刻的条件分布(conditional distribution of the arrival
X1=x1
X2=x2
x1
x1+ x2
Xn-1=xn-1 x1+ x2+…+ xn-1
Xn>t x1+ x2+…+ xn-1+t
所以,从上可得,Xn 也是一个具有均值 1/的指数随机变量,且 Xn
独立于 X1, …, Xn-1。
注记 这个命题不应使我们惊奇。平稳独立增量的假定等价于说在概率 意义上过程在任何时刻都重新开始,即从任何时刻起过程独立于先前已 发生的一切(由独立增量),且有与原过程完全一样的分布(由平稳增量)。 换言之,过程无记忆,因此指数间隔是预料之中的。
n
f ( yi1 ) f ( yin ) f ( yi ) , 所 以 Y(1),Y(2),, Y(n) 的 联 合 密 度 为 i1 n
f ( y1, y2 , , yn ) n! f ( yi ), y1 y2 yn i1
若 Yi,i=1,2,,n,都是(0,t)上均匀分布,则由上面的讨论可知,顺序统
Pn (t ) Pn (t ) Pn1(t ) 于是
Pn (t ) et ( Pn1(t )etdt Cn )
P1(t ) et ( P0 (t )etdt C1 )=et ( etetdt C1 )=et (t C1 ),
f (t ) et ( t ) j1 et ( t ) j et ( t )n1
jn
( j 1)! jn
j!
(n 1)!
3. 泊松过程第三个定义 命题 2.2.1 又给我们定义泊松过程的另一个方法。
泊松过程的第三个等价定义:{Xn,n1}是一列均值为 1/的独立同分
2.等待时间的分布(waiting time distributions)
第 n 个事件来到的时间记为 Sn,也称为第 n 个事件的等待时间。则
n
Sn Xi , n 1 i 1
命 题 Sn 有 参 数 为 n 与 的 — 分 布 , 即 其 概 率 密 度 为
f (t) (t)n1 et , t 0
times)
1. 顺序统计量(the order statistics)
设 Y1,Y2,, Yn 是 n 个随机变量,如果 Y(k)是 Y1,Y2,, Yn 中的第 k 个最 小值,i=1,2,,n,则称 Y(1),Y(2),, Y(n)是对应于 Y1,Y2,, Yn 的顺序统计量 (the order statistics corresponding to Y1,Y2,, Yn)。
定义 2.1.1 (1) N(0)=0 (2)过程有独立增量(3)在任意长度为 t 的区间中
事 件 的 个 数 服 从 均 值 为 t 的 泊 松 分 布 。 即 对 一 切 s,t 0 ,
P{N(t s) N (s) n} et (t)n , 0, n 0,1, 2,
因此
条件(3)(4)
= P0 (t)(1 h o(h)) P0 (t)(1 h) o(h)
P0 (t
h) h
P0 (t)
P0 (t)
o(h) h
令 h 0得 P0(t) P0 (t) 解得 P0 (t) et
类似地,当n 1时 Pn (t h) P{N (t h) n}
考虑一泊松过程,以 X1 记第一个事件来到的时刻。对 n1 以 Xn 记第 n-1 个到第 n 个事件之间的时间。序列{Xn,n1}称为来到间 隔序列(the sequence of interarrival times)。
命题 2.2.1 Xn,n=1,2,,为独立同分布的均值为 1/的指数随机变量。
P{N(t h) n 2, N(t h) N(t) 2}= Pn (t)(1 h) Pn1(t)h o(h) 量与独立增量⑶ P{N(h)=1}=λh+o(h)⑷
Pn (t
h) h
Pn (t )
Pn (t )
Pn1(t )
o(h) h
(4)P{N(h)≥2}= o(h)
n!
则称计数过程{N(t),t≥0}为具有速率 的泊松过程。
注意,从条件(3)可知泊松过程有平稳增量且 E[N(t)] t ,这正是称 为此过程的速率的原因(单位时间内发生的事件的平均个数)。
2.泊松过程第二个定义 为了确定一个任意的计数过程是一泊松过程,必须证明它满足条件
(1),(2)及(3)。条件(1)只是说明事件的计数是从时刻 0 开始的。条件(2) 通常可从我们对过程了解的情况去直接验证。然而全然不清楚如何去确 定条件(3) 是否满足。为此泊松过程的一个等价定义将是有用的。
(n 1)!
证明:利用关系 N (t) n Sn t
注意到第 n 个事件在时刻 t 或 t 之前发生当且仅当到时间 t 已发
生的事件数目至少是 n,即 N (t) n Sn t
因此 P{Sn
t}
P[N (t)
n}
et
jn
( t ) j
j!
,
求导得 Sn 的密度函数
因
P1 (0)
0 ,得 0
C1, P1(t)
te t
.用数学归纳法可证明 Pn (t)
et
(t)n
n!
于是定义 2.1.2 蕴含了定义 2.1.1。逆命题的证明留给读者去作。
二 、 来 到 间 隔 与 等 待 时 间 的 分 布 (interarrival and waiting time distributions) 1. 来到间隔时间的分布(interarrival time distributions)
<n-1 >1
n-1 1
P{N(t) n, N(t h) N(t) 0}
n
0
t
t+h
P{N(t) n 1, N(t h) N(t) 1} P{N(t h) n, N(t h) N(t) 2}=
P{N(t) n}{N(t h) N(t) 0} P{N(t) n 1}{N(t h) N(t) 1}+ ⑴N(0)=0⑵过程有平稳增
P{在[0, s]内有一个事件,在(s,t]内没有事件} P{N (t) 1}
P{在[0, s]内有一个事件}P{在(s,t]内没有事件} P{N (t) 1}
se s e (t s ) tet
s t
可以推广这个结果.
定理 2.3.1 在已知 N(t) n 的条件下,n 随机变量的顺序统计量有相同的分 布。
计数过程有独立增量(independent increments):计数过程在不相交的时 间区间中发生的事件个数是独立的。
计数过程有平稳增量(stationary increments):在任一时间区间中发生的事 件个数的分布只依赖于时间区间的长度。
(二)泊松过程(the Poisson process) 1.泊松过程第一个定义
发生的时刻的分布。因为泊松过程有平稳独立增量,看来有理由认为
[0,t]内长度相等的区间包含这个事件的概率应该相同。换言之,这个
事件的来到时刻应在[0,t]上均匀分布。容易验证此事,因为对s t 有
P{X1
s
|
N (t)
1}
P{X1 s, N (t) 1} P{N (t) 1}
定义 2.1.1 如果计数过程{N(t),t≥0}满足 (1) N(0)=0 (2)过程有独立增量, (3)在任意长度为 t 的区间中事件的个数服从均值为t 的泊松分布。
即对一切 s,t 0, P{N(t s) N(s) n} et (t)n , 0,n 0,1,2,
n!
定义 2.1.2 计数过程{N(t),t≥0}称为具有速率, 0泊松过程,如果
⑴N(0)=0
⑵过程有平稳增量与独立增量
⑶P{N(h)=1}=λh+o(h) ⑷P{N(h)≥2}= o(h)
定理 2.1.1 定义 2.1.1 与 2.1. 2 是等价的。
证明 首先我们证明定义 2.1. 2 蕴含定义 2.1.1。为此设
定理 2.3.1 在已知 N(t) n 的条件下,n 个来到时刻 S1,S2,, Sn,与相
应于 n 个(0,t)上均匀分布的独立随机变量的顺序统计量有相同的分布。
证明 我们来计算给定 N(t) n 的条件时,S1,S2,, Sn 密度函数,设
0 t1 t2 tn1 t ,且取 hi 充分小使得ti hi ti1,i 1, 2, , n.。现在 P{ti Si ti hi ,i 1, 2, , n | N (t) n}=
命题:若 Yi,i=1,2,,n,是独立同分布的连续随机变量,具有概率密度 f,则顺序统计量 Y(1),Y(2),, Y(n)的联合密度为
n
f ( y1, y2 , , yn ) n! f ( yi ), y1 y2 yn i 1
证明: (1)对 y1 y2 yn,如果(Y1,Y2,, Yn)等于(y1,y2,,yn)的 n!个排 列中的任一个,Y(1),Y(2),, Y(n)将等于(y1,y2,,yn);(2)当( yi1 , yi2 , , yin )是 (y1,y2,,yn)的一个排列时,Y1,Y2,, Yn 等于( yi1 , yi2 , , yin )的概率密度是