《组合图形面积》教学设计与评析

合集下载

《组合图形的面积》教学设计(优秀10篇)

《组合图形的面积》教学设计(优秀10篇)

《组合图形的面积》教学设计(优秀10篇)《组合图形的面积》教学设计篇一一、教材分析:这是小学数学人教版第九册第五单元的内容。

学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。

本节课重点探索组合图形面积的方法。

教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。

通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

二、学情分析:根据学生已有的生活经验,对组合图形的认识并不很难。

学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。

对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。

三、教学目标1、掌握组合图形面积计算的方法并正确计算。

2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,初步解决生活中组合图形的实际问题。

四、教学重点和难点1、掌握组合图形面积的计算方法。

2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。

3、学会运用“分割”与“添补“的方法计算组合图形的面积。

五、教学过程(一)、谜语激趣,以旧引新(课前)将一些教学用具的纸片发给学生1、谈话导入,课件出示谜语。

(①草地上来了一群羊。

打一水果名称②又来了一群狼。

打一水果名称)(1)思考:谜语的谜底是什么?(①草莓②杨(羊)莓(没))设计意图:抓住教学内容的特点,运用知识的正迁移。

给学生以启示,调动学生的学习兴趣。

(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。

)(3)学生回答后教师出示答案,从而导出新课,并板书课题。

设计意图:用猜谜语的形式让学生来明事理,从而导出新课。

2、课件出示各种学过的基本图形。

(如长方形、正方形、平行四边形、梯形、三角形)(1)同桌交流、讨论。

“组合图形的面积”教学设计(10篇)

“组合图形的面积”教学设计(10篇)

“组合图形的面积”教学设计(10篇)作为一无名无私奉献的教育工作者,就难以避免地要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。

怎样写教学设计才更能起到其作用呢?下面作者为大家整理了10篇“组合图形的面积”教学设计,希望可以帮助您更好的写作组合图形的面积教学设计。

《组合图形面积》教案篇一一、教材分析《组合图形面积》是北师大版五年级上册第五单元一课时的内容,在此之前,学生已掌握了长方形、正方形、平行四边形、三角形、梯形等基本图形面积的计算方法。

本节课既是对已学知识的巩固和综合运用,更是注重渗透解决问题的方法和策略。

由于学生解决问题的过程中,需要对组合图形进行切割、添补和平移等,因此,我选择了mp_lab平台做为教学辅助工具,它提供的可任意操作图形的环境是学习本课的好助手,使学生在实验过程中能更有效地进行自主探究,获取新知识以完成知识的建构。

二、目标定位1、教学目标(1)在自主探索的活动中,归纳计算组合图形面积的方法。

(2)能根据各种图形的条件,有效地选择方法进行计算。

(3)激发学生探索数学问题的积极性,渗透“转化”的数学思想。

2、教学重难点借助对教材的分析以及教学目标的导向,我确定本课的教学重难点是:能根据组合图形的特点,有效地选择计算方法。

三、教法学法本节课,我创设了“有趣的七巧板”这一情景,通过播放由七巧板拼成的小猫这一动画引入新课,直观地展示了生活中的组合图形,以问题的形式让学生发现组合图形与基本图形的关系,运用mp_lab信息平台通过看、说、算、画、拼等多种形式,调动学生的多种感官,引导学生探索组合图形面积的计算方法。

鉴于以上想法,我采用了“情境导入,探究方法——运用方法,解决问题——拓展思维,课外延伸”的教学模式展开教学,设置了教学流程的三大环节。

四、教学过程(一)情景导入,认识组合图形课始,在mp_lab平台上播放由七巧板拼成小猫的动画,以生动活泼的方式展示了有趣的组合图形,接着我及时提出“这只可爱的小猫是由哪些图形组合而成的?”让学生带着问题进行观察,发现原来很多有趣的图形都是由简单的基本图形组成,我们称这种有趣的图形为组合图形。

《组合图形的面积》教案优秀8篇

《组合图形的面积》教案优秀8篇

《组合图形的面积》教案优秀8篇《组合图形的面积》教案篇一一、知识要点在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

二、精讲精练【例题1】求图中阴影部分的面积(单位:厘米)。

【思路导航】如图所示的特点,阴影部分的面积可以拼成圆的面积。

62×3.14× =28.26(平方厘米)答:阴影部分的面积是28.26平方厘米。

练习1:1.求下面各个图形中阴影部分的面积(单位:厘米)。

2.求下面各个图形中阴影部分的面积(单位:厘米)。

3.求下面各个图形中阴影部分的面积(单位:厘米)。

【例题2】求图中阴影部分的面积(单位:厘米)。

【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

3.14× -4×4÷2÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米。

练习2:1.计算下面图形中阴影部分的面积(单位:厘米)。

2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO1O的面积。

【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。

又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。

所以3.14×12×1/4×2=1.57(平方厘米)答:长方形长方形ABO1O的面积是1.57平方厘米。

练习3:1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

小学数学组合图形的面积教学设计与反思

小学数学组合图形的面积教学设计与反思

小学数学组合图形的面积教学设计与反思下面就是作者给大家带来的小学数学组合图形的面积教学设计与反思(共含15篇),希望大家喜欢阅读! 篇1:组合图形的面积教学设计与反思组合图形的面积教学设计与反思课题:小学数学《平面图形》内容体系研究北师大版五年级上册组合图形的面积西北大学附属小学马红娟【教学目标】1、让学生在自主探索的活动中,掌握将组合图形通过分割和添补的方法探讨组合图形面积的计算方法,使学生学会计算组合图形的面积。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

【教学重点】经历自主探索的过程,掌握将组合图形通过分割和添补的方法计算组合图形面积的方法。

【教学难点】能够根据组合图形的条件,正确运用分割法和添补法的策略,有效地选择计算方法,解决实际问题【学具准备】七巧板、答题纸、每小组一张例题一的平面图【教具准备】课件【教学过程】一、活动激趣,认识图形1、课件激趣:猜一猜,这个盒子里到底藏了哪些平面图形?(课件演示图形从盒子里跑出来)复习基本图形的面积计算公式。

2、学生动手拼一拼:拿出准备好的七巧板,一分钟竞赛,在一分钟内拼出有趣图形。

3、展示学生作品:这些图形和基本图形有什么联系和区别?这些图形有什么共同点?揭示组合图形的概念:基本图形拼成的图形叫组合图形。

4、生活中哪里还有组合图形?(学生说;课件展示。

)5、练眼力:看看这个组合图形是由哪些基本图形组成的?(学生试着分一分,老师总结:可见,几个基本图形组合在一起就是组合图形,同样的,一个组合图形也可以分成几个基本图形。

运用这样的思想,可以解决实际生活中的很多问题。

)二、情景出示,体验探索1、课件出示情境:小华家新买了住房,计划在客厅铺地板(客厅平面图如下)。

大家能帮小华计算一下要买多大面积的地板吗? 7m 4m 6m 3m2、客厅平面图,要铺地砖需要知道什么?3、面积如何求?小组一起研究,在老师发的平面图纸上试一试,寻找计算办法,并计算出得数。

五年级《组合图形的面积》教学设计4篇

五年级《组合图形的面积》教学设计4篇

五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。

教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。

学生在解决问题的过程中,获得数学学习方法。

在对学习过程与结果的反思中,提高解决问题的能力。

【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。

3.自主探索,合作交流。

养成认真思考,团结协作的能力。

4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。

【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。

【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。

(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。

2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。

)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。

《组合图形的面积》教学设计优秀4篇

《组合图形的面积》教学设计优秀4篇

《组合图形的面积》教学设计优秀4篇《组合图形的面积》数学教案篇一教材分析:《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

教学目标:知识目标1、在自主探索的活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中有关组合图形的实际问题。

过程和方法让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

情感、态度与价值观1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

2、渗透转化的数学思想和方法。

教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

教学准备:多媒体课件和组合图形图片。

教学过程:一、激趣导入、复习铺垫、认识组合图形1、介绍笑笑和她家的新房子师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)2、引导学生观察,复习有关平面图形面积的计算公式师:从这座房子中可以找到哪些平面图形?会求它们的。

面积吗?3、欣赏图片(课件出示一组图片)师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)4、教师总结,揭示课题并板书师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)二、创设情境、探究新知笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。

组合图形的面积教学设计、反思、点评

组合图形的面积教学设计、反思、点评

组合图形的面积教学设计、反思、点评1. 教学设计1.1 教学目标•理解组合图形的概念及其应用;•掌握组合图形的面积计算方法;•能够解决在实际情境中遇到的组合图形的面积问题。

1.2 教学内容•组合图形的定义;•组合图形的分类;•组合图形的面积计算方法;•组合图形的应用。

1.3 教学方法•探究式教学法:通过观察、实验等方式引导学生发现组合图形的规律;•合作学习:学生分组合作,共同解决问题,促进学生之间的互动和合作;•图像展示:通过图像展示引入教学内容,提高学生的学习兴趣。

1.4 教学步骤步骤一:导入通过展示一组具有不同形状和面积的组合图形,引发学生对组合图形的兴趣,并提出相关问题,如“如何计算组合图形的面积?”、“在实际生活中,我们能够应用组合图形的面积吗?”等。

步骤二:引入概念介绍组合图形的定义,并通过举例进行说明,例如“由一个正方形和一个矩形组成的图形是组合图形”。

步骤三:分类讨论将学生分为小组,每个小组负责研究一个特定的组合图形分类,例如“由两个矩形组成的组合图形”、“由圆形和矩形组成的组合图形”等。

每个小组需要讨论该种组合图形的特点、计算方法以及应用领域,并向其他小组进行分享。

步骤四:计算实践在每个小组讨论完毕后,进行计算实践环节。

每个小组成员根据所分配到的组合图形,利用所学的计算方法,计算出该图形的面积,并将计算过程记录下来。

完成后,小组成员交换并相互点评。

步骤五:应用拓展让学生思考并探讨在实际生活中应用组合图形的场景,例如街道的规划、房间的设计等。

鼓励学生展示自己的想法,并进行讨论和点评。

步骤六:总结反思进行课堂总结,对本节课所学的内容进行回顾。

引导学生对组合图形的面积计算方法进行梳理,并总结规律。

同时,对本节课的教学进行评价和反思。

2. 反思通过本节课的教学设计,学生在合作学习和实践中积极参与,增强了对组合图形面积计算方法的理解和应用能力。

在分组合作的过程中,学生之间相互交流、讨论,在分享和点评中进一步提升了彼此之间的学习效果。

《组合图形的面积》教学设计(精选13篇)

《组合图形的面积》教学设计(精选13篇)

《组合图形的面积》教学设计(精选13篇)《组合图形的面积》篇1教学内容:组合图形的面积(义务教育课程标准是实验教科书五年级上册p92-93)设计思路:学生在本节课之前,已认识了长方形、正方形、平行四边形、三角形、梯形等这些简单的平面图形及计算方法。

同时,在生活中已经对组合图形有了初步的接触。

通过本节课的教学,让学生将所学的知识进行整合,并注重将解决问题的思考策略渗透其中,提高学生综合能力。

培养学生动手操作的能力和创新意识,发展学生的空间观念。

尤其是课堂中对转化思想的渗透,学生在探索组合图形面积的计算方法时,应该能通过自主探索、合作交流,达到方法的多样化。

但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。

教学过程:一、认识组合图形。

1、师生谈话导入:什么是组合图形?(1)出示火箭模型的平面图。

观察一下,你有什么发现?(2)像长方形、三角形、梯形等这些都是我们已经认识的简单的平面图形,那么这个图形与它们有什么关系呢?(3)揭示名称与含义:组合图形是由几个简单的平面图形组合而成的。

2、在我们身边有不少物体表面的形状是组合图形。

说一说,这些组合图形是由哪些图形组成的?3、学生自己试举例说明。

二、计算组合图形的面积。

1、揭示课题。

(1)出示中队旗,计算它的面积。

80cm20cm30cm30cm(2)谈话:中队旗是什么形状?要求做一面队旗要多少布就是求它的什么?怎样求组合图形的面积,下面我们一起来研究这个问题。

(出示课题:组合图形的面积)2、学生尝试。

(1)学生讨论算法。

(2)独立计算。

鼓励用不同的做法。

演板:(80-20+80)×30÷2 80×(30+30)-(30+30)×20÷2= 4200(平方厘米) = 4200(平方厘米)(80-20)×(80-20)+30×20÷2×2= 4200(平方厘米)(3)比较:哪种方法比较简便?2、小结:用哪些方法可以计算组合图形的面积?三、巩固练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《组合图形面积》教学设计与评析
【教学内容】北师大版小学数学五年级上册第五单元“组合图形的面积”
【教材简析】
“组合图形的面积”是北师大版五年级上册第五单元第一节课的内容,是小学阶段平面几何直线型内容的最后章节。

学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。

教材在内容的呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点,让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。

【学情分析】
学生已经学习了基本图形的计算方法,有了一定的经验基础,尤其是第二单元转化思想的渗透,所有这些知识储备都会使学生学习的难度相对减少。

学生在探索组合图形面积的计算方法时,由于思考问题的角度不同,他们在解答问题的过程中会产生不同的思考方法,对于方法的交流、借鉴、反思需要教师的有效组织。

五年级学生已经具有了独立思考、与人交流的习惯和能力,思维上也有了一定的深度,但如何让每个学生都积极地参与到探索的活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。

【教学目标】
1、认识组合图形,能在自主探索的活动中理解计算组合图形的多种方法,能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

2、能利用所学的知识解决生活中组合图形的实际问题,培养学生独立思考与合作交流的习惯。

3、让学生感觉到数学与生活的密切联系,获得成功的学习体验。

4、进一步渗透转化的数学思想。

【教学过程】
一、复习铺垫,唤醒旧知
1、师:同学们,我们学过的平面图形有什么呢?它们的面积你们会计算吗?
2、计算各种基本图形的面积
3、师:这些都是我们以前学过的一些基本图形(板书:基本图
形)
师:看来这些基本图形的面积是难不倒你们了!
【设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作下铺垫。


二、自主探索,合作交流
1、情境引入、估算图形
三、应用练习,提升认识
出示田地平面图:
师:如果要把它转化成尽量少的基本图形,你能想出几种方法?
师:同学们想出的方法可真多,现在请你们选择自己的喜欢的方法,计算出它的面积,看谁算得又对又快。

(重点交流缺少数据的方法)
师小结:看来,虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活选择合理、简便的方法进行计算。

(板书:合理简便)【设计意图:在尊重编者意图的基础上进行了改动,主要是进一步培养学生能根据组合图形的条件,有效地选择计算方法并进行正确的解答。


四、畅谈收获,总结提升
师:通过这节课的学习,大家有哪些新的收获?
师:转化是一种重要的数学思想,对于我们数学学习有很大的帮助,其实在我们前面的学习中,也经常运用转化来学习新知识,看,在学习这些图形的面积时,我们都是把它转化成了我们学过的图形,在学习除数是小数的除法时,也把它转化成了除数是整数的除法,在今后的学习中,我们也会经常利用它学习新知识!
【设计意图:使每个学生在回顾中学会整理、归纳、反思,提高自我学习的能力,获得成功学习的体验。

同时引导学生在总结中有所提升,不仅仅在知识方面,重要的还有数学方法和数学思想方面的交流。


【教学评析】
以往的小学数学教材中,组合图形的面积为选学内容,而且内容仅局限于计算给出的组合图形的面积。

但现实生活中存在着大量的组合图形,学生要解决现实问题必然会接触到,所以,借助课堂教学的平台,给学生一些解决类似问题的方法就显得更为重要,这也是培养学生空间观念的需要。

在本节课中,王老师注重让学生动手操作、合作交流、比较反思等活动,使学生理解和探索组合图形的面积。

在发展空间观念的同时,渗透解决问题的思考策略,培养了学生解决问题的能力。

下面我从以下几个方面对本节课进行简要评析。

一、复习铺垫,沟通新旧知识的联系
组合图形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。

教师在学习新知之前,组织学生通过复习,回忆旧知,从学生已有的经验和已有的知识背景出发,找准新知的最佳切入点,为知识的迁移做好铺垫。

二、培养估算意识,鼓励学生解决问题策略的多样化
估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值。

本节课,教师没有急于让学生直接计算客厅的面积,而是让学生先估一估,然后汇报估算的方法,把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力。

三、自主探索,形成解决问题的基础策略
教育家苏霍姆林斯基说:“在人的心灵深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。

”在儿童的精神世界中,这种需要特别强烈,儿童有一种与生俱来的,以自我为中心的探究活动方式,他们对客观现实的认识来自于外界探究性活动,而探索活动一定是在学生自主思考的基础上进行的。

所以本课在探索计算方法时,王老师先给学生独立思考的时间,自已想一想,在图形上画一画,把计算过程写下来,同时考虑到学生的差异性,王老师还提倡多样的学习方式,“请同学们独立思考,如有不懂的可跟同桌讨论,还不明白的可以举手请老师帮忙”,有的学生将图形分成长方形和正方形;有的是分成两个长方形;有的是分成两个梯形;有的补上一个正方形转化成长方形;有的通过又割又补,把不规则图形转化成了长方形……通过自主探索,学生们想出好几种不同的方法,这正是教师的精心设计,教师的智慧激活了学生灵动的思考。

四、合作交流,使学生在数学思想与方法上得到发展
2011版新课标明确指出:“学生学习应当是一个生动活泼、主动的和富有个性的过程。

”因此,在教学中教师应注意留给学生充分的时间和空间,让学生在主动参与、自主探索的基础上进行交流,使学生体会到独立思考、合作交流、与人分享和认真反思的乐趣。

由于学生的智力水平,以及基础存在较在的差异,因此,面对同一个问题就可以采用不同层次的方法,所以要允许不同方法的存在。

本节课,学生就出现了几种不同的方法。

教师在给予肯定后,引导学生进行交流,让学生通过表达、倾听、思维碰撞,一起再现了探索的过程。

体会到算法的多样化。

在学生自主探究得出客厅面积的5种不同的算法时,教师并没有就此止步,而是借助5种不同方法的图片,在学生观察、分类的基础上,抽取出其中的不同特点,并加以命名:分割法(求和),添补法(求差)及割补法,然后对这三种数学方法再次进行提升:“它们有什么共同点?”,引出都是把组合图形转化为基本图形,感受“转化”这一数学思想方法的力量,其特色充分展现在他精美的板书设计中。

在教学中,数学知识是一条明线,得到数学教师的重视,数学思想方法是一条暗线,容易被教师所忽视,但数学思想方法渗透比交待知识更重要,因为这是数学的精髓和灵魂。

纵观本节课,可以说上得扎实、有效。

“实”中求“活”,“活”中有“新”,“新”中务“实”。

在教学活动中,创设学生思维的空间,我们的课堂就会焕发生命的活力,我们的课堂时时刻刻以学生的发展为本,就能使学生在获得知识的同时,获得更多的解决问题的策略,我们的数学课堂会因此更加绚丽多彩!。

相关文档
最新文档