初中学业统一考试数学试卷 (16)

合集下载

2023年江西省(中考)初中学业水平考试试卷及参考答案(数学答案)

2023年江西省(中考)初中学业水平考试试卷及参考答案(数学答案)

一、单项选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.A2.B3.D4.A5.C6.D 二、填空题(本大题共6小题,每小题3分,共18分)7.-58.1.8×1079.2a +110.211.612.90°或180°或270°三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解:原式=2+1-1=2.(2)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC .在△ABC 和△ADC 中,∴△ABC △ADC (SAS ).14.解:(1)如下左图(右图中的C 1~C 5亦可):ABC12C C 答:△ABC 即为所求.(2)如下图:(方法一)(方法二)(方法三)答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式=éëêùûúx (x -1)(x +1)(x -1)+x (x +1)(x -1)(x +1)·x 2-1xA B CDìíîïïAB =AD ,∠BAC =∠DAC ,AC =AC ,江西省2023年初中学业水平考试数学试题参考答案=x (x -1)+x (x +1)(x +1)(x -1)·(x +1)(x -1)x =2x 2(x +1)(x -1)·(x +1)(x -1)x =2x .按乙同学的解法化简:原式=x x +1·x 2-1x +x x -1·x 2-1x=x x +1·(x +1)(x -1)x +x x -1·(x +1)(x -1)x =x -1+x +1=2x .16.解:(1)随机.(2)解法一列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)同学1同学2由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.解法二画树状图如下:甲乙丙丁乙甲丙丁丙甲乙丁丁甲乙丙由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.所以P (甲、丁同学都被选为宣传员)=212=16.17.解:(1)∵直线y =x +b 与反比例函数y =kx(x >0)的图象交于点A (2,3),∴2+b =3,3=k2.∴b =1,k =6.∴直线AB 的表达式为y =x +1,反比例函数图象的表达式为y =6x(x >0).(2)过点A作AD⊥BC,垂足为D.∵直线y=x+1与y轴交点B的坐标为(0,1),BC∥x轴,∴C点的纵坐标为1.∴6x=1,x=6,即BC=6.由BC∥x轴,得BC与x轴的距离为1.∴AD=2.∴S△ABC=12BC·AD=12×6×2=6.四、解答题(本大题共3小题,每小题8分,共24分)18.解:(1)设该班的学生人数为x人.依题意,得3x+20=4x-25.解得x=45.答:该班的学生人数为45人.(2)由(1)可知,树苗总数为3x+20=155.设购买甲种树苗y棵,则购买乙种树苗(155-y)棵.依题意,得30y+40(155-y)≤5400.解得y≥80.答:至少购买了甲种树苗80棵.19.(1)证法一证明:∵AB=AC,∴∠B=∠ACB.∵AC=AD,∴∠ADC=∠ACD.∴∠BCD=∠ACB+∠ACD=12(∠ACB+∠B+∠ACD+∠ADC)=12×180°=90°.∴DC⊥BC.证法二证明:∵AB=AC=AD,∴点B,C,D在以点A为圆心,BD为直径的圆上.∴∠BCD=90°,即DC⊥BC.(2)解:过点E作EF⊥BC,垂足为F.在Rt△BCD中,cos B=BCBD,BC=1.8,∴BD=BCcos B=1.8cos55°≈3.16.∴BE=BD+DE=3.16+2=5.16.在Rt△EBF中,sin B=EF BE,∴EF=BE·sin B=5.16×sin55°≈4.2.因此,雕塑的高约为4.2m.EDAB C F20.解:(1)连接OE .∵∠ADE =40°,∴∠AOE =2∠ADE =80°.∴∠BOE =180°-∠AOE =100°.∴ BE 的长l =100∙π∙2180=109π.(2)证明:∵OA =OE ,∠AOE =80°,∴∠OAE =180°-∠AOE2=50°.∵∠EAD =76°,∴∠BAC =∠EAD -∠OAE =26°.又∠C =64°,∴∠ABC =180°-∠BAC -∠C =90°.即AB ⊥BC .又OB 是⊙O 的半径,∴CB 为⊙O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,所以初中生的视力水平好于高中生.理由二:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,所以初中生的视力水平好于高中生.②方法一:26000×8+16+28+34+14+44+60+82200+320=14300(名).方法二:26000×(1-68+46+65+55200+320)=14300(名).所以,估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证法一证明:∵四边形ABCD 是平行四边形,∴OA =OC .又BD ⊥AC ,∴BD 垂直平分AC .∴BA =BC .∴□ABCD 是菱形.证法二证明:∵四边形ABCD 是平行四边形,∴OA =OC .A BCD OE A CBD O图1∵BD⊥AC,∴∠AOB=∠COB.又OB=OB,∴△AOB△COB(SAS).∴BA=BC.∴□ABCD是菱形.(2)①证明:∵四边形ABCD为平行四边形,AC=8,BD=6,∴OA=12AC=4,OD=12BD=3.∴OA2+OD2=42+32=25.又AD2=52=25,∴OA2+OD2=AD2.∴∠AOD=90°.即BD⊥AC.∴□ABCD是菱形.②方法一解:如图2,取CD的中点G,连接OG.∵□ABCD是菱形,∴BC=AD=5,OB=OD,∠ACB=∠ACD.∵∠E=12∠ACD,∴∠E=12∠ACB.即∠ACB=2∠E.又∠ACB=∠E+∠COE,∴∠E=∠COE.∴CE=CO=4.∵OB=OD,GC=GD,∴OG为△DBC的中位线.∴OG//BC,且OG=12BC=52.∴OG//CE.∴△OGF△ECF.∴OFEF=OGCE=58.方法二解:如图3,延长FO交AB于点H.同方法一可得CE=CO=4.∵□ABCD是菱形,∴BH//CF.∴HFFE=BCCE=54,HOOF=BOOD=1.∴HF=2OF.∴OFFE=58.ACBDOFEG图2ACBDO FEH图3六、解答题(本大题共12分)23.解:(1)①3.②S=t2+2.(2)方法一由图象可知,当点P运动到点B时,S=6.将S=6代入S=t2+2,得6=t2+2,解得t=2或t=-2(舍去).当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.方法二由图象可知,当点P运动到点B时,S=6,即BD2=6.∴BD=6.在Rt△DBC中,由勾股定理,得BC=BD2-CD2=2.∴点P由C运动到B的时间为2÷1=2s.当点P由点B运动到点A时,设S关于t的函数解析式为S=a(t-4)2+2.将(2,6)代入,得6=a(2-4)2+2.解得a=1.故S关于t的函数解析式为S=(t-4)2+2.由图象可知,当P运动到A点时,S=18.由18=(t-4)2+2,得t=8或t=0(舍去)∴AB=(8-2)×1=6.(3)①4.由(1)(2)可得S={t2+2,0≤t<2,(t-4)2+2,2≤t≤8.在图2中补全0≤t<2内的图象.根据图象可知0≤t≤2内的图象与2≤t≤4内的图象关于直线x=2对称.因此t1+t2=4.②方法一函数S=t2+2的图象向右平移4个单位与函数S=(t-4)2+2的图象重合.∵当t=t1和t=t3时,S的值相等,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.图1AFEB P CD图2方法二根据二次函数的对称性,可知t2+t3=8.由①可知t1+t2=4,∴t3-t1=4.又t3=4t1,∴4t1-t1=4,得t1=43.此时正方形DPEF的面积S=t21+2=349.。

2024年广东省初中学业水平考试数学(含详解)

2024年广东省初中学业水平考试数学(含详解)

2024年广东省初中学业水平考试数 学本试卷共4页,23小题,满分120分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案、答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的绝对值等于( )A .B .3C .D.2.据教育部统计,2024届全国普通高校毕业生规模预计达1179万人.数据1179万用科学记数法表示为()A .B .C .D .3.如题3图是一个由5个相同的正方体组成的立体图形,它的俯视图是()题3图A .B .C .D .4.不等式组的解集在数轴上表示为( )A .B .C .D .3-3-13-1380.117910⨯81.17910⨯611.7910⨯71.17910⨯22343x xx +≥⎧⎨+<⎩5.勾股定理在《九章算术》中的表述是:“勾股各自乘,并而开方除之,即弦.”即为勾,为股,为弦),若“勾”为2,“股”为3,则“弦”最接近的整数是( )A .2B .3C .4D .56.若关于的方程有实数根,则的值可能是( )A .4B .5C .6D .77.正方形与的位置如题7图所示,已知,则的度数为()题7图A .B .C .D .8.某校运动会的接力赛中,甲、乙两名同学都是第一棒,这两名同学各自随机从四个赛道中抽取一个赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为( )A.B .C .D .9.关于反比例函数,下列说法错误的是( )A .反比例函数图象经过点B .当时,C.该反比例函数图象与函数的图象没有交点D .若点在该反比例函数的图象上,则点也在其图象上10.如题10图,已知菱形的顶点,若菱形绕点逆时针旋转,每秒旋转,则第20秒时,菱形的对角线交点的坐标为()题10图c a =b c x 240x x c -+=c ABCO Rt DEO △AOD COE α∠+∠=DOC ∠90α︒-90α︒+902α︒-902α︒+4400m ⨯121416182y x=1x >02y <<y x =-(),P m n (),Q m n -OABC ()()0,0,2,2O B O 45︒DA .B .C .D .二、填空题:本大题共5小题,每小题3分,共15分.11.因式分解:______.12.一个多边形的内角和比外角和多,这个多边形的边数是______.13.代数式与代数式的值相等,则______.14.如题14图,是的直径,是上一点,过点作的切线交的延长线于点,连接,且,若的长为______.题14图15.北宋数学家贾宪提出一个定理“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如题15—1图中)”.问题解决:如题15—2图,是矩形的对角线上一点,过点作分别交于点,连接.若,则______.题15—1图 题15—2图三、解答题(一):本大题共3小题,第16题10分,第17、18题各7分,共24分.16.(1)计算:;(2)先化简,再求值:其中.17.漏刻是我国古代的一种计时工具.小轩依据漏刻的原理制作了一个简单的漏刻计时工具模型,研究中发现其水位与时间之间成一次函数关系.小轩通过多次计时并测量水位的高度,得到如下表数据:()1,1-()1,1--)(0,269x x -+=180︒31x -4xx =AB O e C O e A O e BC D AC BAC CAD ∠=∠AC =BD AEOM CFON S S =矩形矩形M ABCD AC M EF BC ∥,AB CD ,E F ,BM DM 4,3,2CF EM DF ===MF =()1012024sin452-⎛⎫-+-︒ ⎪⎝⎭21,11x x x x ⎛⎫÷+ ⎪--⎝⎭3x =()cm h ()min t…1235……2.42.83.24.0…(1)求关于的函数关系式;(2)若小轩开始测量的时间为早上9:30,当水位读数为14cm 时,求此时的时间.18.如题18图,在等边中,为边上的高.题18图(1)实践与操作:利用尺规,以为边在下方作等边,延长交于点;(要求:尺规作图并保留作图痕迹、不写作法,标明字母)(2)应用与证明:在(1)的条件下,证明.四、解答题(二):本大题共3小题,每小题9分,共27分.19.测速仪是协助道路安全工作必不可少的装置,如题19图.为保障学生安全,某中学入口处的街道安装了车辆自动测速仪,测速仪置于路面上方横杆的点位置,点到路面的距离米.已知,点,在同一平面内.求测速区间的距离.(结果保留整数,参考数据:,)题19图20.某市教育部启动“书香校园”的读书行动,鼓励学生多读书、读好书,好读书.现从某校八、九年级中各随机抽取20名学生的阅读时间.并分为五个类别:(6小时及以下),(7小时),(8小时),(9小时),(10小时),整理分析后绘制了如下统计图表:抽取的八年级学生阅读时间条形统计图抽取的九年级学生阅读时间扇形统计图题20图抽取的八、九年级学生阅读时间统计表()min t ()cm h h t ABC △AD BC CD CD CDE △ED AB M CE BM =C C 6CD =12,33CAD CBD ∠=︒∠=︒A ,,B C D AB sin120.21,cos120.98,tan120.21︒=︒≈︒≈sin330.54,cos330.84,tan330.65︒=︒≈︒≈A B C D E年级平均数中位数众数八年级7.58九年级8.210根据以上信息,解答下列问题:(1),.(2)该校八年级共有400名学生、九年级共有500名学生参加此次读书行动,若该校计划给阅读时间不低于9小时的学生颁发荣誉证书,请估计该校需准备多少份证书;(3)根据分析的数据,请从一个方面评价该校八、九年级中哪个年级抽取的学生阅读时间更好,并说明理由.21.综合与实践“转化”是一种重要的数学思想,将空间问题转化为平面问题是转化思想的一个重要方面.为了让同学们探究“转化”思想在数学中的应用,在数学活动课上,老师带领学生研究几何体的最短路线问题:问题情境:如题21—1图,一只蚂蚁从点出发沿圆柱侧面爬行到点C ,其最短路线正是侧面展开图中的线段,若圆柱的高为.底面直径为.问题解决:(1)判断最短路线的依据是______;(2)求出蚂蚁沿圆柱侧面爬行的最短路线的长(结果保留根号和);拓展迁移:如题21—2图,为圆锥的顶点,为底面圆周上一点,点是的中点,母线,底面圆半径为2,粗线为蚂蚁从点出发绕圆锥侧面爬行回到点时所经过的路径的痕迹.(3)请求出蚂蚁爬行的最短距离.题21—1图 题21—2图五、解答题(三):本大题共2小题,每小题12分,共24分.22.综合探究如题22图,在平面直角坐标系中.直线与抛物线交于两点,点的横坐标为.ab______a =______b =A AC AB 2cm BC 8cm AC πO M P OM 8OM =P P ()0y kx k =≠()20y ax c a =+≠()8,6,A B B 2-题22图(1)求抛物线的解析式;(2)点是直线下方抛物线上一动点,过点作轴的平行线,与直线交于点C .连接,设点的横坐标为.①若点在轴上方,当为何值时,;②若点在轴下方,求周长的最大值.23.综合运用如题23—1图,在平面直角坐标系中,点为,点为,连接.提出问题:(1)如题23—2图,以为边在右侧构成正方形,且正方形的边与轴相交于点,用含的代数式表示此时点的坐标;问题探究:(2)如题23—3图,以为对角线构成正方形,且正方形的边与轴相交于点,当时,求线段的值;问题深化:(3)若以为边在右侧构成正方形,过点作轴于点,连接,令的面积为,求关于的函数关系式.题23—1图 图题23—2图 题23—3图P AB P x AB PO P m P x m OC CP =P x POC △A ()0,4B (),0n AB AB AB ABCD ABCD y E n E AB ACBD ACBD y E 2n =-:BE CE AB AB ABCD D DF x ⊥F CF CDF △S S n数 学快速对答案一、选择题:共10小题,每小题3分,共30分。

2023年贵州省(初三学业水平考试)数学中考真题试卷 含详解

2023年贵州省(初三学业水平考试)数学中考真题试卷 含详解

贵州省2023年初中学业水平考试(中考)试卷卷数学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25题,满分150分.考试时间为120分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试卷卷上答题视为无效.3.不能使用计算器.一、选择题(每小题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.5的绝对值是()A.5±B.5C.5- D.2.如图所示的几何体,从正面看,得到的平面图形是()A. B. C. D.3.据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是()A.50.108710⨯ B.41.08710⨯ C.31.08710⨯ D.310.8710⨯4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是()A.39︒B.40︒C.41︒D.42︒5.化简11a a a +-结果正确的是()A.1 B.a C.1a D.1a-6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是()包装甲乙丙丁销售量(盒)15221810A.中位数B.平均数C.众数D.方差7.5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120︒,腰长为12m ,则底边上的高是()A.4mB.6mC.10mD.12m8.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.模出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同9.《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x 户人家,则下列方程正确的是()A.11003x += B.31100x += C.11003x x += D.11003x +=10.已知,二次数2y ax bx c =++的图象如图所示,则点(),P a b 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,在四边形ABCD 中,AD BC ∥,5BC =,3CD =.按下列步骤作图:①以点D 为圆心,适当长度为半径画弧,分别交,DA DC 于E ,F 两点;②分别以点E ,F 为圆心以大于12EF 的长为半径画弧,两弧交于点P ;③连接DP 并延长交BC 于点G .则BG 的长是()A.2B.3C.4D.512.今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y (km )与所用时间x (h )之间的函数关系的图象如图所示,下列说法正确的是()A.小星家离黄果树景点的路程为50kmB.小星从家出发第1小时的平均速度为75km/hC.小星从家出发2小时离景点的路程为125kmD.小星从家到黄果树景点的时间共用了3h二、填空题(每小题4分,共16分)13.因式分解:24x -=__________.14.如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,若贵阳北站的坐标是()2,7-,则龙洞堡机场的坐标是_______.15.若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是_______.16.如图,在矩形ABCD 中,点E 为矩形内一点,且1AB =,75,60AD BAE BCE =∠=︒∠=︒,则四边形ABCE 的面积是_______.三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(1)计算:20(2)1)1-+--;(2)已知,1,3A a B a =-=-+.若A B >,求a 的取值范围.18.为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是()A .0~4小时B .4~6小时C .6~8小时D .8~小时及以上问题2:你体育镀炼的动力是()E .家长要求F .学校要求G .自己主动H .其他(1)参与本次调查的学生共有_______人,选择“自己主动”体育锻炼的学生有_______人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.19.为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x 件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x 的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.20.如图,在Rt ABC △中,90C ∠=︒,延长CB 至D ,使得BD CB =,过点A ,D 分别作AE BD ,DE BA ∥,AE 与DE 相交于点E .下面是两位同学的对话:小星:由题目的已知条件,若连接BE ,则可证明BE CD ⊥.小红:由题目的已知条件,若连接CE ,则可证明CE DE =.(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若23CB AD AC ==,求AC 的长.21.如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围.22.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈ 1.41≈)23.如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.24.如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在C 处,对称轴OC 与水平线OA 垂直,9OC =,点A 在抛物线上,且点A 到对称轴的距离3OA =,点B 在抛物线上,点B 到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在OC 上找一点P ,加装拉杆,PA PB ,同时使拉杆的长度之和最短,请你帮小星找到点P 的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为221(0)y x bx b b =-++->,当46x ≤≤时,函数y 的值总大于等于9.求b 的取值范围.25.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC 中,,90CA CB C =∠=︒,过点B 作射线BD AB ⊥,垂足为B ,点P 在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线PA ,并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,根据题意在图中画出图形,图中PBE ∠的度数为_______度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】BA BP BE之间如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90 与BD交于点E,探究线段,,的数量关系,并说明理由.贵州省2023年初中学业水平考试(中考)试卷卷数学一、选择题(每小题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.5的绝对值是()A.5± B.5 C.5- D.【答案】B【分析】正数的绝对值是它本身,由此可解.【详解】解:5的绝对值是5,故选B .【点睛】本题考查绝对值,解题的关键是掌握正数的绝对值是它本身.2.如图所示的几何体,从正面看,得到的平面图形是()A. B. C. D.【答案】A【分析】根据从正面看得到的图象是主视图,可得答案.【详解】解:从正面看,得到的平面图形是一个等腰梯形,故选:A .【点睛】本题考查简单几何体的三视图,解题的关键是掌握主视图的定义.3.据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是()A.50.108710⨯ B.41.08710⨯ C.31.08710⨯ D.310.8710⨯【答案】B【分析】将10870写成10n a ⨯的形式,其中110a ≤<,n 为正整数.【详解】解:41087 1.08710=⨯,故选:B .【点睛】本题考查科学记数法,解题的关键是掌握10n a ⨯中110a ≤<,n 与小数点移动位数相同.4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是()A.39︒B.40︒C.41︒D.42︒【答案】B 【分析】根据“两直线平行,内错角相等”可直接得出答案.【详解】解: AB CD ,40C ∠=︒,∴40A C ∠=∠=︒,故选B .【点睛】本题考查平行线的性质,解题的关键是掌握“两直线平行,内错角相等”.5.化简11a a a +-结果正确的是()A.1B.aC.1aD.1a -【答案】A【分析】根据同分母分式加减运算法则进行计算即可.【详解】解:11111a a a a a ++--==,故A 正确.故选:A .【点睛】本题主要考查了分式加减,解题的关键是熟练掌握同分母分式加减运算法则,准确计算.6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是()包装甲乙丙丁销售量(盒)15221810A.中位数B.平均数C.众数D.方差【答案】C 【分析】根据众数的意义结合题意即可得到乙的销量最好,要多进即可得到答案.【详解】解:由表格可得,22181510>>>,众数是乙,故乙的销量最好,要多进,故选C .【点睛】本题考查众数的意义,根据众数最多销量最好多进货.7.5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120︒,腰长为12m ,则底边上的高是()A.4mB.6mC.10mD.12m【答案】B 【分析】作AD BC ⊥于点D ,根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒,再根据含30度角的直角三角形的性质即可得出答案.【详解】解:如图,作AD BC ⊥于点D ,ABC 中,120BAC ∠=︒,AB AC =,∴()1180302B C BAC ∠=∠=︒-∠=︒, AD BC ⊥,∴11126m 22AD AB ==⨯=,故选B .【点睛】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题的关键是掌握30度角所对的直角边等于斜边的一半.8.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.模出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同【答案】C【分析】根据概率公式计算摸出三种小球的概率,即可得出答案.【详解】解:盒中小球总量为:32510++=(个),摸出“北斗”小球的概率为:310,摸出“天眼”小球的概率为:21105=,摸出“高铁”小球的概率为:51102=,因此摸出“高铁”小球的可能性最大.故选C .【点睛】本题考查判断事件发生可能性的大小,掌握概率公式是解题的关键.9.《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x 户人家,则下列方程正确的是()A.11003x += B.31100x += C.11003x x += D.11003x +=【答案】C【分析】每户分一头鹿需x 头鹿,每3户共分一头需13x 头鹿,一共分了100头鹿,由此列方程即可.【详解】解:x 户人家,每户分一头鹿需x 头鹿,每3户共分一头需13x 头鹿,由此可知11003x x +=,故选C .【点睛】本题考查列一元一次方程,解题的关键是正确理解题意.10.已知,二次数2y ax bx c =++的图象如图所示,则点(),P a b 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【分析】首先根据二次函数的图象及性质判断a 和b 的符号,从而得出点(),P a b 所在象限.【详解】解:由图可知二次函数的图象开口向上,对称轴在y 轴右侧,∴0a >,02b a->,∴0b <,∴(),P a b 在第四象限,故选D .【点睛】本题考查二次函数的图象与系数的关系,以及判断点所在象限,解题的关键是根据二次函数的图象判断出a 和b 的符号.11.如图,在四边形ABCD 中,AD BC ∥,5BC =,3CD =.按下列步骤作图:①以点D 为圆心,适当长度为半径画弧,分别交,DA DC 于E ,F 两点;②分别以点E ,F 为圆心以大于12EF 的长为半径画弧,两弧交于点P ;③连接DP 并延长交BC 于点G .则BG 的长是()A.2B.3C.4D.5【答案】A 【分析】先根据作图过程判断DG 平分ADC ∠,根据平行线的性质和角平分线的定义可得CDG CGD ∠=∠,进而可得3CG CD ==,由此可解.【详解】解:由作图过程可知DG 平分ADC ∠,∴ADG CDG ∠=∠,AD BC ∥,∴ADG CGD ∠=∠,∴CDG CGD ∠=∠,∴3CG CD ==,∴532BG BC CG =-=-=,故选A .【点睛】本题考查角平分线的作图,平行线的性质,等腰三角形的判定,解题的关键是根据作图过程判断出DG 平分ADC ∠.12.今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y (km )与所用时间x (h )之间的函数关系的图象如图所示,下列说法正确的是()A.小星家离黄果树景点的路程为50kmB.小星从家出发第1小时的平均速度为75km/hC.小星从家出发2小时离景点的路程为125kmD.小星从家到黄果树景点的时间共用了3h【答案】D 【分析】根据路程、速度、时间的关系,结合图象提供信息逐项判断即可.【详解】解:0x =时,200y =,因此小星家离黄果树景点的路程为50km ,故A 选项错误,不合题意;1x =时,150y =,因此小星从家出发第1小时的平均速度为50km/h ,故B 选项错误,不合题意;2x =时,75y =,因此小星从家出发2小时离景点的路程为75km ,故C 选项错误,不合题意;小明离家1小时后的行驶速度为1507575km/h 21-=-,从家出发2小时离景点的路程为75km ,还需要行驶1小时,因此小星从家到黄果树景点的时间共用了3h ,故D 选项正确,符合题意;故选D .【点睛】本题主要考查从函数图象获取信息,解题的关键是理解题意,看懂所给一次函数的图象.二、填空题(每小题4分,共16分)13.因式分解:24x -=__________.【答案】(+2)(-2)x x 【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-14.如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,若贵阳北站的坐标是()2,7-,则龙洞堡机场的坐标是_______.【答案】()9,4-【分析】根据题意,一个方格代表一个单位,在方格中数出洞堡机场与喷水池的水平距离和垂直距离,再根据洞堡机场在平面直角坐标系的第三象限即可求解.【详解】解:如图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系, 若贵阳北站的坐标是()2,7-,∴方格中一个小格代表一个单位,洞堡机场与喷水池的水平距离又9个单位长度,与喷水池的垂直距离又4个单位长度,且在平面直角坐标系的第三象限,∴龙洞堡机场的坐标是()9,4-,故答案为:()9,4-.【点睛】本题考查了平面直角坐标系点的坐标,掌握在平面直角坐标系中确定一个坐标需要找出距离坐标原点的水平距离和垂直距离是解题的关键.15.若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是_______.【答案】94【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程2310kx x -+=有两个相等的实数根,∴()22Δ43400b ac k k ⎧=-=--=⎪⎨≠⎪⎩,∴94k =,故答案为:94.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.16.如图,在矩形ABCD 中,点E 为矩形内一点,且1AB =,75,60AD BAE BCE =∠=︒∠=︒,则四边形ABCE 的面积是_______.【答案】2312-【分析】连接AC ,可得30ACE BCA ︒∠=∠=,即AC 平分BCE ∠,在BC 上截取CF CE =,连接AF ,证明ACF ACE △≌△,进而可得ABF △为等腰直角三角形,则四边形ABCE 的面积ABC ACE ABC ACF S S S S =+=+ ,代入数据求解即可.【详解】解:如图,连接AC ,矩形ABCD 中,1AB =,AD =,∴BC AD ==90B Ð=°,∴3tan3AB ACB BC ∠===,tan BC BAC AB ∠==,∴30ACB ∠=︒,60BAC ∠=︒,60BCE ∠=︒,75BAE ∠=︒,∴30ACE BCA ︒∠=∠=,15CAE BAE BAC ∠︒=∠-∠=,在BC 上截取CF CE =,连接AF ,则ACE ACF ∠=∠,∵AC AC =,∴ACF ACE △≌△,∴15CAF CAE ︒∠=∠=,ACE ACF S S = ,∴301545AFB CAF ACB ︒+︒=︒∠=∠+∠=,∴45AFB BAF ︒∠=∠=,∴1AB FB ==,∴1FC BC BF =-=,∴四边形ABCE 的面积)111123111122222ABC ACE ABC ACF S S S S AB BC CF AB -=+=+=⋅+⋅=⨯+⨯-⨯= .故答案为:2312-.【点睛】本题考查矩形的性质,根据特殊角三角函数值求角的度数,等腰三角形的判定和性质,三角形外角的性质等,综合性较强,解题的关键是正确作出辅助线,将四边形ABCE 的面积转化为ABC ACF S S + .三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(1)计算:20(2)1)1-+--;(2)已知,1,3A a B a =-=-+.若A B >,求a 的取值范围.【答案】(1)4;(2)2a >【分析】(1)先计算乘方和零次幂,再进行加减运算;(2)根据A B >列关于a 的不等式,求出不等式的解集即可.【详解】解:(1)20(2)1)1-+--411=+-4=;(2)由A B >得:13a a ->-+,移项,得31a a +>+,合并同类项,得24a >,系数化为1,得2a >,即a 的取值范围为:2a >.【点睛】本题考查实数的混合运算,解一元一次不等式,解题的关键是掌握零次幂的运算法则(任何非0数的零次幂等于1),以及一元一次不等式的求解步骤.18.为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是()A .0~4小时B .4~6小时C .6~8小时D .8~小时及以上问题2:你体育镀炼的动力是()E .家长要求F .学校要求G .自己主动H .其他(1)参与本次调查的学生共有_______人,选择“自己主动”体育锻炼的学生有_______人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.【答案】(1)200,122(2)442人(3)见解析【分析】(1)先根据条形统计图求出参与调查的人数,再用参与调查的人数乘以选择“自己主动”体育锻炼的学生人数占比即可得到答案;(2)用2600乘以样本中每周体育锻炼8小时以上的人数占比即可得到答案;(3)从建议学生加强锻炼的角度出发进行描述即可.【小问1详解】解:36725834200+++=人,∴参与本次调查的学生共有200人,∴选择“自己主动”体育锻炼的学生有20061%122⨯=人,故答案为:200,122;【小问2详解】解:342600442200⨯=人,∴估计全校可评为“运动之星”的人数为442人;【小问3详解】解:体育锻炼是强身健体的一个非常好的途径,只有有一个良好的身体状况,才能更好的把自己的精力投入到学习中,因此建议学生多多主动加强每周的体育锻炼时间.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.19.为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x 件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x 的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.【答案】(1)1.25x(2)125件【分析】(1)根据“更新设备后生产效率比更新前提高了25%”列代数式即可;(2)根据题意列分式方程,解方程即可.【小问1详解】解: 更新设备前每天生产x 件产品,更新设备后生产效率比更新前提高了25%,∴更新设备后每天生产产品数量为:()125% 1.25x x +=(件),故答案为:1.25x ;【小问2详解】解:由题意知:500060002 1.25x x-=,去分母,得6250 2.56000x -=,解得100x =,经检验,100x =是所列分式方程的解,1.25100125⨯=(件),因此更新设备后每天生产125件产品.【点睛】本题考查分式方程的实际应用,解题的关键是根据所给数量关系正确列出方程.20.如图,在Rt ABC △中,90C ∠=︒,延长CB 至D ,使得BD CB =,过点A ,D 分别作AE BD ,DE BA ∥,AE 与DE 相交于点E .下面是两位同学的对话:小星:由题目的已知条件,若连接BE ,则可证明BE CD ⊥.小红:由题目的已知条件,若连接CE ,则可证明CE DE =.(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若22,3CB AD AC ==,求AC 的长.【答案】(1)见解析(2)32【分析】(1)选择小星的说法,先证四边形AEDB 是平行四边形,推出AE BD =,再证明四边形AEBC 是矩形,即可得出BE CD ⊥;选择小红的说法,根据四边形AEBC 是矩形,可得CE AB =,根据四边形AEDB 是平行四边形,可得DE AB =,即可证明CE DE =;(2)根据BD CB =,23CB AC =可得43CD AC =,再用勾股定理解Rt ACD △即可.【小问1详解】证明:①选择小星的说法,证明如下:如图,连接BE , AE BD ,DE BA ∥,∴四边形AEDB 是平行四边形,∴AE BD =,BD CB =,∴AE CB =,又 AE BD ,点D 在CB 的延长线上,∴AE CB ∥,∴四边形AEBC 是平行四边形,又 90C ∠=︒,∴四边形AEBC 是矩形,∴BE CD ⊥;②选择小红的说法,证明如下:如图,连接CE ,BE ,由①可知四边形AEBC 是矩形,∴CE AB =,四边形AEDB 是平行四边形,∴DE AB =,∴CE DE =.【小问2详解】解:如图,连接AD ,BD CB =,23CB AC =,∴243CD CB AC AC ==,∴43CD AC =,在Rt ACD △中,222AD CD AC =+,∴(22243AC AC ⎛⎫=+ ⎪⎝⎭,解得AC =即AC 的长为【点睛】本题考查平行四边形的判定与性质,矩形的判定与性质,勾股定理等,解题的关键是掌握平行四边形和矩形的判定方法.21.如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围.【答案】(1)反比例函数解析式为4y x=,()22E ,(2)30m -≤≤【分析】(1)根据矩形的性质得到BC OA AB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E 的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可;(2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案.【小问1详解】解:∵四边形OABC 是矩形,∴BC OA AB OA ∥,⊥,∵()4,1D 是AB 的中点,∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x=,在4y x =中,当42y x==时,2x =,∴()22E ,;【小问2详解】解:当直线y x m =+经过点()22E ,时,则22m +=,解得0m =;当直线y x m =+经过点()41D ,时,则41m +=,解得3m =-;∵一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),∴30m -≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.22.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈ 1.41≈)【答案】(1)600m(2)1049m【分析】(1)根据BAE ∠的余玄直接求解即可得到答案;(2)根据AB 、CD 两段长度相等及CD 与水平线夹角为45︒求出C 到DF 的距离即可得到答案;【小问1详解】解:∵A B 、两处的水平距离AE 为576m ,索道AB 与AF 的夹角为15︒,∴576600m cos150.96AE AB ===︒;【小问2详解】解:∵AB 、CD 两段长度相等,CD 与水平线夹角为45︒,∴600m CD =, 1.41cos 45600600423m 22CG CD =︒=⨯=⨯=,∴576504231049m AF AE BC CG =++=++=;【点睛】本题考查解直角三角形解决实际应用题,解题的关键是熟练掌握几种三角函数.23.如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD △;(2)证明见详解;(3)四边形OAEB 是菱形;【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【小问1详解】解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,。

2025年河北省初中学业水平考试数学试题(样卷)参考答案

2025年河北省初中学业水平考试数学试题(样卷)参考答案

第1页(共4页)2025年河北省初中学业水平考试数学试题(样卷)参考答案一、选择题题号123456789101112答案CADBACBDBCAC二、填空题13.14.2-15.32916三、解答题17.解:(1)列式为:(21)(2)3-+⨯--,原式1=-.(2)设这个数为x ,(3)(2)1x -⨯-+27x =-+.∵3x >,∴26x -<-,∴271x -+<.18.解:(1)第1题第一步,第2题第二步.(2)(任选其中一道作答)习题1:2111x x x +-+1(1)(1)(1)(1)(1)x x x x x x -=++-+-21(1)(1)x x x x -+=+-.习题2:解:方程两边同乘2(1)-x ,得21(1)1x x x +-=-.解得2x =.经检验2x =是原分式方程的解.19.解:(1)90520360n =÷=;20135336014420α-+++=⨯︒=︒().补全条形统计图(略).(2)中位数为10.0kg ,众数为10.0kg .(3)平均数:9.819.9310.0810.1510.23200.610.03kg 2020⨯+⨯+⨯+⨯+⨯==.总产量:g 100.03550501k 0000⨯=.第2页(共4页)20.解:(1)∵OE ⊥AB ,AB ∥CD ,∴OE ⊥CD .∵CD =cm,∴DF =cm .如图1,连接OD ,设⊙O 的半径OD r =,则30OF OM FM r =-=-.在Rt △ODF中,222(30)r r =+-.解得r =60,即⊙O 的半径为60cm .(2)∵△OAB 为等边三角形,∴∠OBE =60°.在Rt △BOE 中,OE=60+20=80cm ,2s n 3i OBE ∠=.∴sin O OE OB BE =∠S △OAB =12AB OE=180233⨯⨯=.∴260π60600π360POQS ⨯==扇形.∴264003600π (cm )3S =-阴影.21.解:(1)由题意,得B (4,0).设直线AB 解析式为y kx b =+,则有604.k b k b =+⎧⎨=+⎩,解得2.8k b =-⎧⎨=⎩,∴直线AB 的解析式为28y x =-+.(2)①当2a =时,点P 坐标为(2,5),将2x =代入28y x =-+得45y =≠,∴点P 不在直线AB 上.②当53=a 时,点P 在线段AB 上,AP BP +最小,最小值为=.(3)3553a <<.22.解:(1)30°,48m .(2)如图2,作OH ⊥AB 于点H ,EG ⊥AB 于点G ,则四边形HOEG 为矩形.由题意可知:sin ∠EFB =45.∴OH =EG=EF ·sin ∠EFB =4205⨯=16.∵OH ⊥AB ,∠ABO =30°.∴16321sin 2∠===OH OB ABO .∴点B 到地面DF 的最小距离为16m OD OB -=.G 图2EFBACDO H 图1CDOMlABP Q E F第3页(共4页)23.解:(1)∵点A (0,2),点B (6,0.5)在抛物线218y x bx c =-++上,∴210.53668c b c =⎧⎪⎨=-⨯++⎪⎩,.解得122b c ⎧=⎪⎨⎪=⎩,.∴211282y x x =-++.抛物线的顶点坐标为(2,52).(2)∵点B (6,0.5),BC ⊥OC ,点C 在x 轴上,∴点C 的坐标为(6,0).∴直线AC 的解析式为123y x =-+.∵点M 在直线AC 上,∴点M 的坐标可设为(m ,123m -+).∵MA = NA ,MN ⊥x 轴,点A (0,2),∴点N 的坐标可以表示为(m ,123m +).∵点N 在抛物线上,∴211122382m m m +=-++.解得143m =,20m =(舍去).∴点M 的坐标为(43,149).(3)①令)231()22181(2+--++-=x x x d .化简得x x d 65812+-=.∵ 1.25==DE MN ,∴当 1.25=d 时, 1.2565812=+-x x .解得110103-=x ,210103+=x .∵MN 在DE左侧,∴=M x=D x .∴20cos 9-==∠D E x x DM ACO .②23<m <103.第4页(共4页)24.解:(1)9,365.(2)∵AB =20,BC =15,DE =12,EF =9,∴53AB BC DE EF ==,又有∠B =∠DEF =90°,∴Rt △ABC ∽Rt △DEF ,∴∠A =∠EDF .又∵∠APD =∠DPE ,∴△ADP ∽△DEP .∴AP ADDP DE=.当DP =12时,DP =DE ,∴AP =AD .(3)①尺规作图如图3,AN 即为所求.②∵AM 垂直平分DE ,∴AE =AD .又∵AN ⊥DF ,∴∠MAN +∠MDN =180°.∴∠MAN =∠EDF =∠BAC .∴∠EAM =∠DAN .又∵AE =AD ,∠AME =∠AND ,∴△AME ≌△AND .∴AN =AM .如图4,延长ED 交AN 延长线于点G ,在Rt △DNG 中,DN =DM =6.又∵cos ∠GDN =45,∴DG =152.∴MG =DG +DM =6+152=272.在Rt △DNG 中,∵tan ∠MAG =34,MG =272.∴AM =18.∴AN =18.(4)10+.FC BDE A图3MN CFBDEA图4M NG。

2024年浙江省“山海联盟”初中学业水平考试6月联考数学试题(含答案)

2024年浙江省“山海联盟”初中学业水平考试6月联考数学试题(含答案)

2024年浙江省“山海联盟”初中学业水平考试数学 试题卷考生须知:1.本试题卷共4页,满分120分,考试时间120分钟.2.答题前,考生务必使用黑色字迹的钢笔或签字笔填写学校、班级、姓名、准考证号等信息.3.答题时,请按照答题卷上“注意事项”的要求,在答题卷相应的位置上规范作答,在本试题卷上的作答一律无效.4.本次考试不允许使用计算器.画图先用2B 铅笔,确定无误后用钢笔或签字笔描黑.卷Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在“答题卷”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.对称美是我国古代平衡思想的体现,常用于标识的设计上,使对称美惊艳了千年时光.下列校徽图标不属于轴对称图形的是()A .B .C .D .2.中国空间站离地球的远地点距离约为347000m ,其中数字347000用科学记数法可表示为( )A .B .C .D .3.一次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.在一次评比中,甲同学的面试成绩为84分,笔试成绩为92分,若分别赋予笔试、面试成绩的权为,则计算甲同学的平均分正确的是( )A.B .C .D .5.不等式组的解在数轴上表示正确的是( )A .B .C .D .434.710⨯43.4710⨯53.4710⨯60.34710⨯223y x =-+2:384922+8429232⨯+⨯84292323⨯+⨯+84392232⨯+⨯+215,342x x -≤⎧⎨+>-⎩6.某课外密码研究小组接收到一条密文:.已知密码手册的部分信息如下表所示:密文…8…明文…我爱中华大地…把密文用因式分解解码后,明文可能是( )A .中华大地B .爱我中华C .爱大中华D .我爱中大7.如图,两个同心圆的半径分别为15和12,大圆的一条弦有一半在小圆内,则这条弦落在小圆内部分的弦长等于()(第7题)A .B .C .D .8.下表是一个二次函数的自变量与函数值的4组对应值:…124……353…则下列说法正确的是( )A .函数图象的开口向上B .函数图象与轴无交点C .函数的最大值为5D .当时,的值随值的增大而减小9.如图,是等边三角形的边上一点,作于点,若,,则的长为( )(第9题)A .3B.C .D .10.已知二次函数的图象经过点,点的横坐标为,当时,总有()()222288x m n y m n ---m n-m n+x y-x y+x()()222288x m n y m n ---x y x1-y7-x 3x >y x D ABC AC AE BD ⊥E 7BC =150AEC ∠=︒CD 527374243y x x =-+P P m 4m x ≤≤,则的值为( )A .B .C .D.卷Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹的钢笔或签字笔将答案写在“答题卷”的相应位置上.二、填空题(本题共有6小题,每小题3分,共18分)11.计算:______.12.现有六张背面完全相同的不透明卡片,其正面分别写有数字,把这六张卡片背面朝上洗匀后放在桌面上,任意抽取一张卡片,抽取的卡片的数字为奇数的概率为______.13.如图是一个矩形木框,,,若在点处钉一根木条用来加固,则木条的长至少是______cm .(第13题)14.已知关于的一元二次方程有两个不同的解,其中一个解是,则该方程的另一个解是______.15.毕达哥拉斯学派通过研究正五边形和正十边形的作图,.已知顶角为的等腰三角形的底边上的高线为,腰上的高线为,则______.16.如图是直径的半圆,为圆心,点在半圆弧上,,为的中点,与相交于点,则点到直线的距离等于______.(第16题)三、解答题(本题共有8小题,共72分)17.(本题满分6分)14y m -≤≤m 44434()2222---=1,2,3,4,5,6ABCD 30cm AB =60cm BC =,A C x 260x ax a -+=3x a =2sin18=︒36︒H h hH=10AB =O C 4sin 5AOC ∠=P »AB AP BC Q Q AB小孙同学化简分式,解答过程如下:解:原式(第一步)(第二步).(第三步)你认为小孙的解答过程是否正确?如果不正确,请指出是从第几步开始出错的,并写出此题正确的解答过程.18.(本题满分6分)某数学学习小组计划制作一个款式如图1所示的风筝.图2是其示意图,已知两条侧翼的长均为60cm ,夹角为,平分,求两点间的距离.(参考数据:,,)(第18题)19.(本题满分8分)若以50千克为基准,超过基准的千克数记为正数,不足基准的千克数记为负数.称量6筐水果的重量,甲组为实际称量数据,乙组为记录数据,如下表所示(单位:千克): 序号组别123456甲485247495354乙234(第19题)22311x x +--()()()()231111x x x x =++-+-()()2311x x +=+-251x =-,AB AC BAC ∠100︒AD BAC ∠,B C sin500.77︒≈cos500.64︒≈tan50 1.19︒≈2-3-1-(1)将乙组数据画成折线图.(2)①甲,乙两组数据的平均数分别为,,写出与之间的关系式.②甲,乙两组数据的方差分别为,,比较的大小关系,并说明理由.20.(本题满分8分).在中国古代数学著作《周髀算经》中就对勾股定理和勾股数有过一定的描述,所谓勾股数一般是指能够成为直角三角形三条边长的三个正整数,观察下面的表格中的勾股数:………(1)当时,______,______.(2)按上面的规律归纳出一个一般的结论(用含的等式表示,为正整数).(3)请运用有关知识,推理说明这个结论是正确的.21.(本题满分10分)在项目化学习中,甲、乙两小组分别利用函数知识研究在不同条件下某物质的质量随时间的变化情况.设实验时间为分钟,甲、乙两小组研究的该物质的质量分别为克、克,与的几组对应值如下表:051015202523.52014.57252015105(1)根据上表中各组对应值,在如图所示的平面直角坐标系中画出函数的图象.(2)在你所学的一次函数、二次函数及反比例函数中,请选择合适的函数来反映与的变化规律,说明你选择的理由,并分别求出的函数表达式(不要求写出自变量的取值范围).(3)在上述实验中,当实验时间为多少分钟时,甲、乙两小组所研究的该物质的质量之差达到最大?最大为多少克?x 甲x 乙x 甲x 乙2S 甲2S 乙22,S S 甲乙abc312=+4212=⨯⨯52121=⨯⨯+523=+12223=⨯⨯132231=⨯⨯+734=+24234=⨯⨯252341=⨯⨯+945=+40245=⨯⨯412451=⨯⨯+11a =b =c =n n x 1y 2y 12,y y x x1y 2y 12,y y 12,y y x 12,y y(第21题)22.(本题满分10分)如图,在中,,点分别在的延长线上,连结,若.(第22题)(1)求证:.(2)若,,求的长.23.(本题满分12分)在平面直角坐标系中,设二次函数.(1)若为整数,二次函数图象过点(其中是正整数),求抛物线的对称轴.(2)若,为抛物线上两个不同的点.①当时,,求的值.②若对于,都有,求的取值范围.24.(本题满分12分)如图1,是半径为5的的直径,是的中点,连结交于点,连结,.图1图2(第24题)ABCD Y DA DB =,E F ,BA CB ,DF EF DFE C ∠=∠BDF BEF ∠=∠60DFE ∠=︒5CF =BE ()()210y ax a x a =-+≠a (),0n n ()11,M x y ()22,N x y 124x x +=12y y =a 122x x >≥12y y >a AB O e C ¼ABD CD AB E ,AC AD OC(1)求证:.(2)若,求的长.(3)如图2,作于点,交于点,射线交的延长线于点,若,求的长.OC AD ⊥1BE =AD CF AB ⊥H AD F CB AD G 1OH =AG2024年浙江省“山海联盟”初中学业水平考试参考答案一、选择题(本题共有10小题,每小题3分,共30分)题号12345678910答案BCCDDDDDCD二、填空题(本题共有6小题.每小题3分,共18分)11.12.13.14.1516.三、解答题(本题共有8小题,共72分)17.(本题满分6分)解:小孙的解答过程不正确,他是从第一步开始出错的.正确解答过程如下:原式.18.(本题满分6分)解:如答图,设与相交于点.(第18题答图),平分,,,,,,.答:B ,C 两点间的距离约为92.4cm .19.(本题满分8分)解:(1)如答图所示.8-122x =103()()()()()()()221325251111111x x x x x x x x x x +++=+==+-+-+--AD BC E 60cm AB AC == AD BAC ∠100BAC ∠=︒AE BC ∴⊥2BC BE =1502BAE BAC ∠=∠=︒()sin sin50600.7746.2cm BE AB BAE AB ∴=⋅∠=⋅︒≈⨯=()2246.292.4cm BC BE ∴==⨯=(第19题答图)(2)①.②.理由如下:,代入,得到,.20.(本题满分8分)(1)60 61解:(2).(3).结论成立.21.(本题满分10分)解:(1)函数的图象如答图所示.50x x =+甲乙22S S =甲乙()()()()()()222222214852474953545S x x x x x x ⎡⎤=-+-+-+-+-+-⎣⎦ 甲甲甲甲甲甲甲50x x =+甲乙()()()()()2222221485052504750495053505S x x x x x ⎡=--+--+--+--+--⎣甲乙乙乙乙乙()25450x +--⎤⎦乙()()()()()()222222212231345x x x x x x S ⎡⎤=--+-+--+--+-+-=⎣⎦乙乙乙乙乙乙乙22S S ∴=甲乙()()()2222121211n n n n n ⎡⎤⎡⎤++⨯+=⨯++⎣⎦⎣⎦()()()()()()22211212112121121n n n n n n n n n n n n ⎡⎤⎡⎤⎡⎤⎡⎤⨯++-⨯+=⨯+++⨯+⨯++-⨯+⎣⎦⎣⎦⎣⎦⎣⎦()22222212244121n n n n n n n =++++=++=+12,y y(第21题答图)(2)由图可知、函数的图象是抛物线的一部分.所以是关于的二次函数,函数的图象是直线的一部分,所以是关于的一次函数.由题意可设.把点(10,20)和点(20,7)分別代入,得解得;设.把点和点分别代入,得解得.(3),当时,取最大值,最大值为.答:当实验时间为分钟时,甲、乙两小组所研究的该物质的质量之差达到最大,最大为克.22.(本题满分10分)解:(1)四边形是平行四边形,.,.,.又,.(2)如答图.在延长线上截取.连结.1y 1y x 2y 2y x ()21250y ax bx a =++≠100102520,40020257,a b a b ++=⎧⎨++=⎩0.04,0.1,a b =-⎧⎨=-⎩210.040.125y x x ∴=--+()20y kx m k =+≠()0,25()5,2025,520,m k m =⎧⎨+=⎩1,25,k b =-⎧⎨=⎩225y x ∴=-+()22212145810.040.125250.040.925416y y x x x x x x ⎛⎫-=--+--+=-+=--+ ⎪⎝⎭∴454x =12y y -81164548116ABCD BAD C ∴∠=∠DA DB = BAD ABD ∴∠=∠DFE C ∠=∠ DFE ABD ∴∠=∠DFE BEF ABD BDF ∠+∠=∠+∠ BDF BEF ∴∠=∠DB BG BF =FG(第22题答图)由(1)可知,.四边形是平行四边形,,是等边三角形,,是等边三角形,,,.又,,.,,.,.23.(本题满分12分)解:(1)代入,得,解得,,.是正整数,为整数,(舍去),.则,对称轴为直线.(2)①时,,,两点关于抛物线的对称轴对称,则对称轴为直线,.②由题意可知.对于任意的,随的增大而增大,可得60BAD ABD C DFE ∠=∠=∠=∠=︒ ABCD BC DA DB ∴==BCD ∴△60FBG DBC ∴∠=∠=︒FBG ∴△BG BF FG ∴==60BFG DFE ∠=︒=∠GFD BFE ∴∠=∠BDF BEF ∠=∠ ()AAS GFD BFE ∴≌△△BE DG ∴=BG BF = DB BC =DG CF ∴=5CF = 5BE CF ∴==(),0n ()210an a n -+=10n =21a n a+=n a 10n ∴=2111a n a a+==+1a =∴()112a x a-+=-=124x x += 12y y =()11,M x y ∴()22,N x y ()12112222a x x a x a a -+++=-===13a ∴=2x ≥y x解得.24.(本题满分12分)解:(1)如答图1,连结.(第24题答图1)是的中点,,.,垂直平分,.(2)如答图2.延长交于点.连结.(第24题答图2),,是直径,,,,,.,,,,,在中,(3)解法一:如答图3.延长交于点.()0,12,2a a a >⎧⎪-+⎨-≤⎪⎩13a ≥OD C ¼ABD »»CA CD ∴=CA CD ∴=OA OD = CO ∴AD OC AD ∴⊥CO AD P BD OC AD ⊥ 90CPA ∴∠=︒AB 90ADB ∴∠=︒ADB CPA ∴∠=∠OC BD ∴∥DBE COE ∴∽△△BD BE OC OE ∴=5OB OC OA === 1BE =4OE OB BE ∴=-=10AB =55441BD ⨯∴==∴Rt ABD △AD ==CO AD P(第24题答图3),.,,,,,,,,,,,.,.,,.,,,解得.解法二:,.,,,,.是的直径,,.,.,,,,即.设.在Rt 中,,解得.CF AB ⊥ 90CHA CHB ∴∠=∠=︒1OH = 5OC OA OB ===6AH ∴=4BH =CH ∴==AC ==BC ==DC AC ∴==90CHA CPA ∠=∠=︒ COH AOP∠=∠OC OA =()AAS COH AOP ∴≌△△AP CH ∴==OC AD ⊥ 2AD AP ∴==»»BDBD = BAD BCD ∴∠=∠G G ∠=∠ GBA GDC ∴∽△△AG GB AB CG GD CD∴==GD AG AD =- GBCG BC =-AG CG ∴==AG =CF AB ⊥ 90CHA CHB ∴∠=∠=︒1OH = 5OC OA OB ===6AH ∴=4BH =CH ∴==AB O e 90ACB ∴∠=︒ABC ACH ∴∠=∠CA CD = CAD CDA ∴∠=∠CDA ABC ∠=∠ CAD ACH ∴∠=∠FA FC ∴=FA FG ∴=2AG AF =HF x =AHF △(2226x x +=+x =,注:如果选择两种解法分别作答、按第一个解法计分.FA ∴=AG ∴=。

2024年辽宁省初中学业水平考试数学试卷(样卷)

2024年辽宁省初中学业水平考试数学试卷(样卷)

2024年辽宁省初中学业水平考试数学试卷(样卷)学校:___________姓名:___________班级:___________考号:___________A ....3.下列图形既是轴对称图形又是中心对称图形的是()A ....4.下列运算正确的是()A .246a a+=.235a a a ⋅=22(2)2a a =33a a a÷=5.一元二次方程210x -=根的情况是(A .有两个不相等的实数根.有两个相等的实数根C .没有实数根.只有一个实数根6.解分式方程2x x =时,将方程两边都乘同一个整式.得到一个一元一次方程,这个整式是()A .x.1x -(1)x x +(1)x x -7.一次函数y kx =+的图象如图所示,下列结论正确的是(A .0k <y 随x 增大而增大C .图象经过原点.图象经过第一、二、三象限A.20︒B.30︒10.如图,线段8AB=,点P在线段的长为半径作孤,两弧相交于点的距离是()A.245B.485二、填空题11.计算:23⨯=.12.如图,AOB顶点A,B的坐标分别为点D的坐标是(1,2),则点B的对应点13.甲袋中装有1个白球、1个黄球,乙袋中装有外无其他差别,在看不到球的情况下,从两个袋子中各随机摸出一个球,摸出的两个球的颜色都是白色的概率是14.如图,矩形OABC 的顶点A 函数(0)ky x x=>的图象相交于点k 的值是.15.如图,在ABC 中,AB BC =,A ,C ,D ,E 按逆时针方向排列)BF 向点F 运动,到达点F 时停止,点连接EP ,PQ ,QE ,当EPQ △的面积为三、计算题16.计算:(1)23(13)(16)8⨯-+--÷;(2)211111x x x x x ⎛⎫+-⋅ ⎪++-⎝⎭.(1)当4x ≥时,求销售金额y (2)乙超市南果梨的标价为20销售.若购买12千克南果梨,通过计算说明在哪个超市购买更划算.20.某临街店铺在窗户上方安装如图长度200cm AB =,遮阳棚前端自然下垂边的长度面高度296.8cm AD =,遮阳棚与墙面的夹角(1)如图2,求遮阳棚前端B 到墙面AD 的距离;(2)如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度DF 的长(结果精确到1cm ).(参考数据:五、证明题(1)求证:BD CD=;(2)若2420,tan7BD EDC=∠=,求六、应用题22.【发现问题】“速叠杯”是深受学生喜爱的一项运动,杯子的叠放方式如图1所示:每层都是杯口朝下排成一行,自下向上逐层递减一个杯子,直至顶层只有一个杯子.爱思考的小丽发现叠放所需杯子的总数随着第一层(最底层)杯子的个数变化而变化.【提出问题】叠放所需杯子的总数y与第一层杯子的个数x之间有怎样的函数关系?【分析问题】小丽结合实际操作和计算得到下表所示的数据:第一层杯子的个数x12345⋯杯子的总数y1361015⋯然后在平面直角坐标系中,描出上面表格中各对数值所对应的点,得到图图2中点的分布情况,猜想其图象是二次函数图象的一部分;为了验证自己的猜想,小丽从“形”的角度出发,将要计算总数的杯子用黑色圆表示(如图3),再借助“补”的思想,补充相同数量的白色圆,使每层圆的数量相同,进而求出y 与x 的关系式.【解决问题】(1)直接写出y 与x 的关系式;(2)现有36个杯子,按【发现问题】中的方式叠放,求第一层杯子的个数;(3)杯子的侧面展开图如图4所示,ND ,MA 分别为上、下底面圆的半径, AB 所对的圆心角60AOB ∠=︒,24cm 15cm OA OD ==,.将这样足够数量的杯子按【发现问题】中的方式叠放,但受桌面长度限制,第一层摆放杯子的总长度不超过80cm ,求杯子叠放达到的最大高度和此时杯子的总数.(提示:杯子下底面圆周长与AB 的长度相等)七、证明题23.【问题初探】(1)在数学活动课上,李老师给出如下问题:如图1,在ACD 中,2D C AB CD ∠=∠⊥,,垂足为B ,且BC AB >.求证:BC AD BD =+.①如图2,小鹏同学从结论的角度出发给出如下解题思路:在BC 上截取BE BD =,连接AE ,将线段BC 与AD ,BD 之间的数量关系转化为AD 与CE 之间的数量关系.②如图3,小亮同学从2D C ∠=∠这个条件出发给出另一种解题思路:作AC 的垂直平分线,分别与AC ,CD 交于F ,E 两点,连接AE ,将2D C ∠=∠转化为D ∠与BEA ∠之间的数量关系.请你选择一名同学的解题思路,写出证明过程.【类此分析】(2)李老师发现之前两名同学都运用了转化思想,将证明三条线段的关系转化为证明【学以致用】(3)如图5,在四边形ABCD 100121,,sin 33AD CD D ==积.。

2021年陕西省初中学业水平统一考试(中考)数学试卷及解析

2021年陕西省初中学业水平统一考试(中考)数学试卷及解析

2021年陕西省初中学业水平统一考试(中考)数学试卷一、选择题(共8小题,每小题3分,计24分。

每小题只有一个选项是符合题意的) 1.(3分)计算:3(2)(⨯-= ) A .1B .1-C .6D .6-2.(3分)下列图形中,是轴对称图形的是( )A .B .C .D .3.(3分)计算:32()(a b -= ) A .621a bB .62a bC .521a bD .32a b -4.(3分)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60︒B .70︒C .75︒D .85︒ 5.(3分)在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则ACBD的值为( )A .12B 2C 3D 3 6.(3分)在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到一个正比例函数的图象,则m 的值为( ) A .5-B .5C .6-D .67.(3分)如图,AB 、BC 、CD 、DE 是四根长度均为5cm 的火柴棒,点A 、C 、E 共线.若6AC cm =,CD BC ⊥,则线段CE 的长度是( )A .6cmB .7cmC .62cmD .8cm8.(3分)下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x⋯ 2-0 1 3⋯ y⋯64- 6-4-⋯下列各选项中,正确的是( ) A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于6-D .当1x >时,y 的值随x 值的增大而增大 二、填空题(共5小题,每小题3分,计15分) 9.(3分)分解因式3269x x x ++= . 10.(3分)正九边形一个内角的度数为 .11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为 .12.(3分)若1(1,)A y ,2(3,)B y 是反比例函数211()2m y m x -=<图象上的两点,则1y 、2y 的大小关系是1y 2.y (填“>”、“ =”或“<” ) 13.(3分)如图,正方形ABCD 的边长为4,O 的半径为1.若O 在正方形ABCD 内平移(O 可以与该正方形的边相切),则点A 到O 上的点的距离的最大值为 .三、解答题(共13小题,计18分。

2024年陕西省初中学业水平考试数学真题试卷(含答案)

2024年陕西省初中学业水平考试数学真题试卷(含答案)

2024年陕西省初中学业水平考试数学真题试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1. 的倒数是( )3-A. B. C. D. 31313-3-2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A. B.C. D.3. 如图,,,,则的度数为()AB DC ∥BC DE ∥145B ∠=︒D ∠A. B. C. D. 25︒35︒45︒55︒4. 不等式的解集是()()216x -≥A. B. C. D. 2x ≤2x ≥4x ≤4x ≥5. 如图,在中,,是边上的高,E 是的中点,连接,ABC 90BAC ∠=︒AD BC DC AE 则图中的直角三角形有()A. 2个B. 3个C. 4个D. 5个6. 一个正比例函数的图象经过点和点,若点A 与点B 关于原点对称,则()2,A m (),6B n -这个正比例函数的表达式为 ()A. B. C.D.3y x =3y x=-13y x =13y x=-7.如图,正方形的顶点G 在正方形的边上,与交于点H ,若CEFG ABCD CD AFDC ,,则的长为( )6AB =2CE =DH A. 2 B. 3C. D. 52838. 已知一个二次函数的自变量x 与函数y 的几组对应值如下表,2y ax bx c =++x (4)-2-035…y…24-8-03-15-…则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当时,y 的值随x 的值增大而0x >增大C. 图象经过第二、三、四象限D. 图象的对称轴是直线1x =第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:=_______________.2a ab -10. 小华探究“幻方”时,提出了一个问题:如图,将0,,,1,2这五个数分别填在五2-1-个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)11.如图,是的弦,连接,,是所对的圆周角,则与BC O OB OC A ∠BC A ∠的和的度数是________.OBC ∠12. 已知点和点均在反比例函数的图象上,若,则()12,A y -()2,B m y 5y x =-01m <<________0.12y y +13.如图,在中,,E 是边上一点,连接,在右侧作ABC AB AC =AB CE BC ,且,连接.若,,则四边形的面积为BF AC ∥BF AE =CF 13AC =10BC =EBFC ________.三、解答题(共13小题,计81分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中学业统一考试试卷
数 学
(本试卷总分150分,考试时间120分钟)
一、填空题(本大题共10小题,每小题3分。

共30分)
1.21的倒数是 2.遵崇高速公路工程总投资约为6 760 000 000元,用科学记数法表示这个数为 元.
3.因式分解:2293ab b a + =
4.—个袋子里装有除颜色外完全相同的若干个乒乓球,从中任意摸出—个球,摸到黄色乒
乓球的概率是
3
1,如果知道袋子里有黄色乒乓球5个,那么袋子里共有乒乓球 个。

5.如图,将一副三角板按图示的方法叠在一起,则图中α∠等于 度. 6.分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出相应的阴影部分.
7.如图,在⊙O 中,∠ACB=∠CDB=60°,则∠ABC= 度
8.请你任写一个图象经过一、三象限的反比例函数的解析式
9.如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a ﹥b ),把剩下的部分剪拼成一个长方形,分别计算这两个图形中阴影部分的面积,验证了—个公式,这个公式是
(第7题图) (第9题图) (第10题图)
10.抛物线()c x a y +-=2
1的图象如图所示,该抛物线与x 轴交于A 、B 两点,B 点的坐标为B ()
0,2,则A 点的坐标为
二、选择题(本大题共6个小题,每小题4分。

共24分)
在每小题给出的四个选项中。

只有一项是符合题目要求的.
11.如果012=-+x x ,那么代数式6222-+x x 的值为 ( )
A .4
B .5
C .一4
D .一5
12.张老师对李涛同学中考前的5次模拟考试数学成绩进行统计分析,判断李涛同学的数学成绩是否稳定,张老师需要知道李涛这5次数学成绩的 ( )
A .平均数
B .方差 c .中位数 D .众数
13.如图所示,有一块直角三角形纸片,∠C=90°,AC=4cm ,BC=3cm ,将边AB 翻折,使点B 落在直角边.AC 的延长线上的点E 处,折痕为AD ,CE 的长为 ( )
A .1cm
B .1.5cm
C .2cm
D .3cm
(第13题图 )
14.小王利用计算机设计了计算程序,输入和输出的数据如下:
那么,当输人数据8时,输出的数据是 ( )
A .618
B .638
C .65
8 D .678 15.有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且如图所示的连心线分别构成正六边形、平行四边形和正三角形,将圆心连线外侧的6个扇形(阴影部分)的面积之和依次记为S 、P 、Q ,则 ( )
A .S>P>Q
B .S>Q>P
C .S>P 且S=Q
D .S=P=Q
16.某商店将一件商品的进价提价20%后,又降价20%以96元出售,则该商店卖出这件商品的盈亏情况是 ( )
A .不亏不赚
B .亏4元 c .赚6元 D .亏24元
三、解答题(本大题共10个小题,共96分)解答时应写出文宇说明,证明过程或演算步骤.
17.(6分)计算:
()01
060tan 31200613-⎪⎭⎫ ⎝⎛+++--π
18.(8分)先将2444222-÷⎪⎭
⎫ ⎝⎛+-+-+x x x x x x 化简,然后请你选取一个你喜欢且又合理的x 的值,求原式的值.
19.(8分)如图,平行四边形ABCD 中,BAD 的平分线AE 交BC 的延长线于点E ,交CD 于点F ,AB=5,BC=2,求CF 的长.
20.(8分)如图,某工程自卸车车厢的一个侧面是矩形ABCD ,AB=3米,车厢底部距地面
1.2米,卸车时,车厢倾斜的角度∠DCE=60°,问此时车厢的点D 处距离地面多少米(精确到0.1米)?(参考数据3=1.732).
21.(10分)请根据下面统计图提供的信息,回答下列问题:
(1)2005年大学在校生人数比2004年大学在校生人数多人,其增长率为
(2)2000年~2005年大学在校生人数的平均数为人;
(3)2001年高中在校生人数大约是大学生在校生人数倍;
(4)请你再写出2条从统计图中获得的信息:


22.(10分)一商场有A 、B 、C 三种型号的甲品牌DVD 和D 、E 两种型号的乙品牌DVD ,某中学准备从甲、乙两种品牌的DVD 中各选购一种型号的DVD 安装到各班教室.
(1)写出所有的选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号DVD 被选中的概率是多少?
(3)已知该中学用l 万元人民币购买了甲、乙两种品牌的DVD 共32台(价格如下表格所示),其中甲品牌DVD 选为A 型号的,请你算算该中学购买到A 型号DVD 多少台?
23.(10分)如图,在平面直角坐标系中,矩形.ABCO 的顶点A 、C 、O 的坐标分别为A(4,0)、C(0,2)、O(0,0).
(1)填空:把矩形ABCO 分成面积相等的两部份的直线有 条;这些直线都经过矩形ABCO 的 ;
(2)若直线()04≠+=k kx y 把矩形ABCO 分成面积相等的两部份.请你在图中画出这条直线,并求出该直线的解析式.
24.(12分)如图,CE、CB是半圆O的切线,切点分别为D、B,AB为半圆O的直径.CE 与BA的延长线交于点E,连接OC、OD.
(1)求证:△OBC≌△ODC;
(2)若已知DE=a,AE=b,BC=c,请你思考后,从a,b,c三个已知数中选用适当的数,设计出计算半圆O的半径r的一种方案:
①方案中你选用的已知数是
②写出求解过程(结果用字母表示).
25.我市某停车场在“五一”节这天停放大小车辆共300辆次,该停车场的收费标准为:大车每辆次5元,小车每辆次3元。

解答下面的问题:
(1)写出“五一”节这天停车场收费总金额y(元)与大车停放辆次x(辆)之间的函数关系式;
(2)如果“五一”节这天停放大车辆次占停车总辆次的15%~35%。

请你估计“五一”节这天停车场收费金额的范围。

26.(12分)如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,P为垂足,PE交DC于点E.
(1)△ABP与△DPE是否相似?请说明理由;
(2)设AP=x,DE=y,求y与x之间的函数关系式,并指出x的取值范围;
(3)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说明理由;
(4)请你探索在点P的运动过程中,△BPE能否构成等腰三角形?如果能,求出AP的长;如果不能,请说明理由.。

相关文档
最新文档