数学建模报告选址问题

合集下载

数学建模仓库选址问题

数学建模仓库选址问题

数学建模仓库选址问题(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除仓库选址问题摘要随着全球经济的一体化,物资流通的范围已经不仅仅局限在国家内部,而是也走向来了世界各地。

面对多种多样的物资运输方案,就需要我们从中选择一种最节约费用的方案来实施。

基于此,本文针对美国超级医疗设备公司选址问题给出了两种数学模型。

全文首先对给出的题目进行数学分析,分析数据之间的直观联系和潜在联系,把数据从现实问题中抽离出来转化为纯粹的数学符号,然后借助于数学分析中求解重心坐标的公式(Dix--第i个地点的x坐标;Diy--第i个地点的y坐标;Vi--运到第i个地点或从第i个地点运出的货物量)两点间距离公式和数理统计中求解加权平均值的方法对数据进一步整合。

在此基础上,将之转化为MATLAB计算语言进行数据操作,一方面,借助于MAYLAB绘图工具将题中给出的数据再现于图中,直观明了,便于从图中发现些隐含信息;另一方面,利用MATLAB程序设计中的循环结构进行必要的编程和计算。

由于每种方案的均相等,所以只需比较一下每种方案的总成本(外向运输成本和内向运输成本)即可,总成本最低的城市即为最佳选址点,利用方案比较法最终得出结论。

关键词:重心法、加权平均值法一、问题重述美国超级医疗设备公司在亚利桑那州的菲尼克斯和墨西哥的蒙特雷生产零部件,然后由位于堪萨斯州堪萨斯城的一家仓库接受生产出来的零件,随后在分拨给位于美国和加拿大的客户。

但由于某些原因,公司要考虑仓库选址的最优化。

现已知若继续租赁原仓库,租金为每年每平方英尺美元,仓库面积为20万平方英尺,若在其他城市租同等规模的仓库,租金为每平方英尺美元,并且新租约或续租的期限均为5年。

假如转移仓库,则需一次性支付30万美元的搬迁费及其他选址费。

从工厂到堪萨斯仓库的运输费为2162535美元,从仓库到客户的运输费为4519569美元,仓库租赁费为每年100万美元。

数学建模报告选址问题

数学建模报告选址问题

长沙学院数学建模课程设计说明书题目选址问题系(部) 数学与计算机科学专业(班级) 数学与应用数学姓名学号指导教师起止日期 2015、6、1——2015、6、5课程设计任务书课程名称:数学建模课程设计设计题目:选址问题已知技术参数和设计要求:选址问题(难度系数1.0)已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近?各阶段具体要求:1.利用已学数学方法和计算机知识进行数学建模。

2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。

3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。

4.设计中绝对禁止抄袭他人的设计成果。

5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。

6.所设计的程序必须满足实际使用要求,编译出可执行的程序。

7.要求程序结构简单,功能齐全,使用方便。

设计工作量:论文:要求撰写不少于3000个文字的文档,详细说明具体要求。

1v 5工作计划:提前一周:分组、选题;明确需求分析、组内分工;第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解;第五天:完成设计说明书,答辩;第六天:针对答辩意见修改设计说明书,打印、上交。

注意事项⏹提交文档➢长沙学院课程设计任务书(每学生1份)➢长沙学院课程设计论文(每学生1份)➢长沙学院课程设计鉴定表(每学生1份)指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表目录第一章课程设计的目的、任务及要求 (2)1.1 目的 (2)1.2 主要任务 (2)1.3 要求 (2)摘要 (3)第二章问题重述 (4)2.1 问题背景 (4)2.2 问题重述 (4)第三章问题分析 (5)第四章假设与符号约定 (6)4.1 模型假设 (6)4.2符号说明 (6)第五章模型的建立与求解 (7)5.1.选定中心点 (7)5.1.1 模型一 (7)5.1.2 模型二 (7)5.2 题目引申 (9)第六章模型的结果分析与检验 (10)6.1 结果分析 (10)6.2 模型检验 (10)6.3 模型优缺点 (12)结论 (13)参考文献 (14)结束语 (15)附录 (16)第一章课程设计的目的、任务及要求1.1 目的1、巩固《数学建模》课程基本知识,培养运用《数学建模》理论知识和技能分析解决实际应用问题的能力;2、初步掌握数学建模的基本流程,培养科学务实的作风和团体协作精神;3、培养调查研究、查阅技术文献、资料、手册以及撰写科技论文的能力。

【数学建模案例分析6.选址问题】

【数学建模案例分析6.选址问题】

出版社销售代理点的选择模型摘要:本文主要是为了解决出版社准备在某市建立两个销售代理点,向七个区的大学生售书,知道每个区的大学生人数(千人)和每个区的位置关系,如图一,每个销售代理点只能向本区和一个相邻区的大学生售书,建立模型确定销售代理点的位置,使得能供应的大学生的数量最大。

我们建立了一个整数线性规划模型,确定决策变量:12x ,13x ,23x ,24x ,34x ,25x ,45x ,46x ,47x ,56x ,67x ,ij x 1=表示(i ,j )区的大学生由一个销售代理点供应,否则0ij x =,写出目标函数,确定约束条件。

用lindo 软件求解,的到的最优解:max 177=, 251x =,471x =。

对图一得各区进行标号,见图二,说明2和5区的大学生由一个销售代理点供应,4和7区的大学生由一个销售代理点供应,该出版社能供应的大学生的最大数量为177千人。

此整数线性规划模型在地区小的范围和销售代理点少的情况小无疑是一个很好的模型,但要在比较大的市场上来选在较多的代理点的话还得考虑其他更好的方案。

关键字:整数线性规划模型 lindo 软件1 问题重述随着现在社会的进步,人民生活水平的提高,市场的公司也是越做越大,销售代理点也是越来越多,而且是做到更小的区域了,以满足更多人的需要,这就要求我们在选择销售代理点的时候,需要考虑的情况也越来越多,在满足更多人方便的时候也得为公司赚取更多的资金。

本文需要解决的题目:一家出版社准备在某市建立两个销售代理点,向七个区的大学生售书,每个区的大学生(单位:千人)已经表示在图上,如图一。

每个销售代理点只能向本区和一个相邻区的大学生售书,这两个销售代理点应该建在何处,才能使所能供应的大学生的数量最大。

2 模型假设及符号说明对七个区分别进行标号,如图二,图中的人数和标号是对应的。

(1)i ,j 表示区,i ,j 1,2,3,4,5,6,7=;(2)i y 表示第i 区大学生的人数;(3)ij x 1=表示(i ,j )区的大学生由一个销售代理点供应,i j <且它们在地图上相邻。

数学建模 学校选址问题模型

数学建模 学校选址问题模型

学校选址问题摘 要本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。

为问题一和问题二的求解,提供了理论依据。

模型一:首先:根据目标要求,要建立最少学校的方案列出了目标函数:∑==161i i x s然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件;最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。

模型二:首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。

然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。

其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。

在替换后,进行具体求解。

再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。

最后:对该模型做了灵敏度分析,模型的评价和推广。

关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析1. 问题重述1.1问题背景:某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。

但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示:表1-1备选校址表备选校址1 2 345 6 7 8 覆盖小区1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,201,4,6,7,12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址9 10 11 12 13 14 15 16覆盖小区 7,9,13, 14,15, 17,18, 199,10,14,15,16, 18,191,2,4,6, 75,10,11, 16,20,12,13,14,17, 189,10,14, 152,3,,5, 11,202,3,4,5,81.2 问题提出:问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。

数学建模:配送中心选址10页

数学建模:配送中心选址10页

数学建模:配送中心选址10页一、问题描述在某个区域内,有多个顾客需要配送。

假设区域内每个顾客的需求量是一样的,也就是每个顾客需要一定数量的货物,并且在配送过程中需要考虑物流成本。

现在需要选取一个最优的配送中心位置,这个位置不仅要满足区域内所有顾客的需求,还要尽量降低物流成本。

请问应该如何选择配送中心的位置?二、模型建立1.建立数学模型假设有n个顾客,每个顾客的需求量为q,配送中心的位置为(x,y)。

我们的目标是找到最合适的(x,y),同时最小化总的物流成本。

设(xi,yi)为第i个顾客的位置,bi为从配送中心到第i个顾客的物流成本。

我们可以通过以下公式计算bi:bi = α*|xi-x| + β*|yi-y|α和β是权重系数,用来控制x轴和y轴的影响。

通常,重量系数水平一样,即α=β=1时。

最小化总物流成本的目标可以表示为:min{Σbi}+c其中,c是设施成本。

2.求解最优解我们可以使用最小二乘法来求解最优解。

最小二乘法的本质是寻找一个函数,使得在指定的点上函数的值和给定的值最接近。

我们可以通过求导来得到函数的最小值。

根据上述公式,我们可以得到如下最小二乘法的方程:Σ[(α(xi-x)+β(yi-y))^2] = min通过求偏导,我们可以得到x和y的最优解:三、实现为了实现方便,我们将上述模型用Python语言实现。

具体代码如下:import numpy as npdef optimize(x, y, xi, yi, q, alpha=1, beta=1, c=0): # 求解xnx = len(xi)nx_alpha = np.sum(alpha * xi)nx_beta = np.sum(beta * yi)nb = np.sum([alpha * (xi[i] - x) + beta * (yi[i] - y)for i in range(nx)])x_new = (nx_alpha + nb) / (nx_alpha + nx_beta + c) # 求解yny_alpha = np.sum(alpha * yi)ny_beta = np.sum(beta * xi)nb = np.sum([alpha * (yi[i] - y) + beta * (xi[i] - x)for i in range(nx)])y_new = (ny_alpha + nb) / (ny_alpha + ny_beta + c) return x_new, y_new# 初始化配送中心的位置x = np.mean(xi)y = np.mean(yi)# 计算总物流成本total_cost = np.sum([alpha * np.abs(xi[i] - x) + beta * np.abs(yi[i] - y)for i in range(n)]) + cprint('配送中心的位置为:({:.2f}, {:.2f})'.format(x, y))print('总物流成本为:{:.2f}'.format(total_cost))四、结论通过上述模型,在考虑物流成本和所有顾客需求的情况下,我们可以得到最优的配送中心位置。

数学建模学校选址问题

数学建模学校选址问题

学校选址问题摘要本文为解决学校选址问题,建立了相应的数学模型。

针对模型一首先,根据信息,对题目中给出的数据进展处理分析。

在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进展求解。

得出建立校址的最少数目为4个。

再运用MATLAB软件编程,运行得到当建校的个数为4个时,学校选首先,对文中给出的学校建设本钱参数表和各校区1到6年级学龄儿童的平均值〔样本均值〕进展分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总本钱;最后,通过比照得出,最低的建校总本钱为1650万,即选取校址10、11、13、14、15、16建设学校。

最后,我们不但对模型进展了灵敏度分析,,保证了模型的有效可行。

关键词:MATLAB灵敏度 0-1规划总本钱选址1 问题重述当代教育的普与,使得学校的建设已成为不得不认真考虑的问题。

1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示:2、在问题二中,每建一所小学的本钱由固定本钱和规模本钱两局部组成,固定本钱由学校所在地域以与根本规模学校根底设施本钱构成,规模本钱指学校规模超过根本规模时额外的建设本钱,它与该学校学生数有关,同时与学校所处地域有关。

设第i 个备选校址的建校本钱i c 可表示为(单元:元)学生人数)600-(50100200010⎩⎨⎧⨯⨯⨯+=i i i c βα,假如学生人数超过600人,其中i α和i β由表2给出:并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的准确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3:1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。

数学建模中选址问题(Lingo程序)

数学建模中选址问题(Lingo程序)

P94,例3.4 选址问题目录题目6个工地的地址(坐标表示,距离单位KM)及水泥用量(单位:吨)如下表,而在P(5,1)及Q(2,7)处有两个临时料场,日储量各有20t,如何安排运输,可使总的吨公里数最小?新料场应选何处?能节约多少吨公里数?第一步,旧址基础上只求运量的LP程序MODEL:Title Location Problem;sets:demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!locations for the demand(需求点的位置);a=1.25,8.75,0.5,5.75,3,7.25;b=1.25,0.75,4.75,5,6.5,7.75;!quantities of the demand and supply(供需量);d=3,5,4,7,6,11; e=20,20;x,y=5,1,2,7;enddatainit:!initial locations for the supply(初始点);endinit!Objective function(目标);[OBJ] min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );!demand constraints(需求约束);@for(demand(i):[DEMAND_CON]@sum(supply(j):c(i,j)) =d(i););!supply constraints(供应约束);@for(supply(i):[SUPPLY_CON]@sum(demand(j):c(j,i)) <=e(i); );!@for(supply: @free(x);!@free(Y);!);@for(supply: @bnd(0.5,X,8.75);@bnd(0.75,Y,7.75); );END运行可得到全局最优解Global optimal solution found.Objective value:136.2275Total solver iterations:1Model Title: Location ProblemVariable Value Reduced CostX( 1) 5.000000 0.000000X( 2) 2.000000 0.000000Y( 1) 1.000000 0.000000Y( 2) 7.000000 0.000000E( 1) 20.00000 0.000000E( 2) 20.00000 0.000000第二步,旧址基础上选择新址的NLP程序!选新址的NLP程序;MODEL:Title Location Problem;sets:demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!locations for the demand(需求点的位置);a=1.25,8.75,0.5,5.75,3,7.25;b=1.25,0.75,4.75,5,6.5,7.75;!quantities of the demand and supply(供需量);d=3,5,4,7,6,11; e=20,20;enddatainit:!initial locations for the supply(初始点);!x,y=5,1,2,7;endinit!Objective function(目标);[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) );!demand constraints(需求约束);@for(demand(i):[DEMAND_CON]@sum(supply(j):c(i,j)) =d(i););!supply constraints(供应约束);@for(supply(i):[SUPPLY_CON]@sum(demand(j):c(j,i)) <=e(i); );!@for(supply: @free(x);!@free(Y);!);@for(supply: @bnd(0.5,X,8.75);@bnd(0.75,Y,7.75); );END求解结果只得到局部最优解Local optimal solution found.Objective value:89.88347Total solver iterations:67Model Title: Location ProblemVariable Value Reduced CostX( 1) 5.695966 0.000000X( 2) 7.250000 -0.3212138E-05Y( 1) 4.928558 0.000000Y( 2) 7.750000 -0.1009767E-05如果不要初始数据,可能计算时间更长,本例的结果更优:Local optimal solution found.Objective value:85.26604Total solver iterations:29Model Title: Location ProblemVariable Value Reduced CostX( 1) 3.254883 0.000000X( 2) 7.250000 -0.2958858E-05Y( 1) 5.652332 0.000000Y( 2) 7.750000 -0.1114154E-05如果想求全局最优解,结果将会出现如下错误版本限制,但会得到一个的局部最优解,结果与不要初始数据时算出的结果一样。

数模作业医院选址问题

数模作业医院选址问题
本问题的目标是从 7 个居民小区中,选出 1 个小区建立医院,实现离医院最 远的小区居民人均就诊时所走的路程最近。
对于每个小区是否建立医院只有两种可能,所以可以求出每两点的最短路 径,然后根据所建立的目标函数和约束条件来求解出医院的设置点。
3.模型假设
假设一:各居民区间路程固定不变; 假设二:各居民区人数固定且不流动; 假设三:各居民区居民前往医院的速度相同且无交通问题;
M12 =30 M13 =30+20=50 M14 =min(30+20+20,30+20+25+18,30+15+18,30+15+25+20)=63 M15 =min(50+60,50+20+30,63+30)=93 M16 =30+15=45 M17 =45+15=60 q1=5,M15 =93 M12 =30 M23 =20 M24 =min(20+20,15+18)=33 M25 =min(20+60,20+20+30,15+18+30)=63 M26 =15 M27 =15+15=30 q2=5,M25 =63 M13 =30+20=50 M23 =20 M34 =20 M35 =min(60,20+30)=50
1
4.变量说明
Dij
小区 ij 之间的距离
Mij
小区 ij 之间的最短距离
Miq
距离小区 i 最远的小区离小区 i 的距离
Mpq
距离医院最远的小区离医院的距离
5.模型的建立与求解
模型建立: (1)设共有 n 个节点,中间节点为 k1…kn,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙学院数学建模课程设计说明书题目选址问题系(部) 数学与计算机科学专业(班级) 数学与应用数学姓名学号指导教师起止日期 2015、6、1——2015、6、5课程设计任务书课程名称:数学建模课程设计设计题目:选址问题已知技术参数和设计要求:选址问题(难度系数1.0)已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近?各阶段具体要求:1.利用已学数学方法和计算机知识进行数学建模。

2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。

3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。

4.设计中绝对禁止抄袭他人的设计成果。

5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。

6.所设计的程序必须满足实际使用要求,编译出可执行的程序。

7.要求程序结构简单,功能齐全,使用方便。

设计工作量:论文:要求撰写不少于3000个文字的文档,详细说明具体要求。

1v 5工作计划:提前一周:分组、选题;明确需求分析、组内分工;第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解;第五天:完成设计说明书,答辩;第六天:针对答辩意见修改设计说明书,打印、上交。

注意事项⏹提交文档➢长沙学院课程设计任务书(每学生1份)➢长沙学院课程设计论文(每学生1份)➢长沙学院课程设计鉴定表(每学生1份)指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表目录第一章课程设计的目的、任务及要求 (2)1.1 目的 (2)1.2 主要任务 (2)1.3 要求 (2)摘要 (3)第二章问题重述 (4)2.1 问题背景 (4)2.2 问题重述 (4)第三章问题分析 (5)第四章假设与符号约定 (6)4.1 模型假设 (6)4.2符号说明 (6)第五章模型的建立与求解 (7)5.1.选定中心点 (7)5.1.1 模型一 (7)5.1.2 模型二 (7)5.2 题目引申 (9)第六章模型的结果分析与检验 (10)6.1 结果分析 (10)6.2 模型检验 (10)6.3 模型优缺点 (12)结论 (13)参考文献 (14)结束语 (15)附录 (16)第一章课程设计的目的、任务及要求1.1 目的1、巩固《数学建模》课程基本知识,培养运用《数学建模》理论知识和技能分析解决实际应用问题的能力;2、初步掌握数学建模的基本流程,培养科学务实的作风和团体协作精神;3、培养调查研究、查阅技术文献、资料、手册以及撰写科技论文的能力。

1.2 主要任务1、利用所学建模知识求解最短路径问题;2、建立一个模型;3、拓展问题,深入思索医院选址的约束因素。

1.3 要求1.利用已学数学方法和计算机知识进行数学建模.2.必须熟悉设计的各项内容和要求,明确课程设计的目的.方法和步骤。

3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。

4.设计中绝对禁止抄袭他人的设计成果。

5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。

6.所设计的程序必须满足实际使用要求,编译出可执行的程序。

7.要求程序结构简单,功能齐全,使用方便。

摘要本文研究在几个小区之间选择一个最适合的小区来建设医院的问题,利用实验数据建立数学模型,成功构建了中心医院所在小区与各个小区之间的距离、小区人数、以及各小区去往医院的交通方式等因素的模型,在实际的应用中具有重要意义.针对问题本身,运用了两种方法处理.一是直接根据最短距离进行求解.将居民点与其之间的距离抽象成图论中的加权简单图,而所求的“可使距离医院最远的小区居民就诊时所走的路程最近的小区”,则可以简化为图论中的最短路的模型,利用Floyd算法,运用Matlab求解出每两个小区之间的最短距离,再根据模型求解得出最适合建设中心v是最适合建立中心医院的小区.二是以各顶点的载荷(人医院的小区,从而得到小区6口数)加权,求每一个顶点至其他各个顶点的最短路径长度的加权和,建立模型,以v小区较适合作为中心医院的建设点.进一步综合两种方此来确定中心点的位置,得到6v为最佳建设点.案得到最优解,则最终选定6针对问题的引申,考虑了到达医院的交通方式、费用以及各个小区的发病率等,以v小区作为最佳选址.总交通费用之和建立数学模型,最后选择交通费用最少的6关键词:选址问题、Floyd算法、图论2.1 问题背景这是一个最优选址问题,是一种重要的长期决策,它的好坏直接影响到服务方法、服务质量、服务效率、服务成本,医疗网点对经济和社会的发展起着至关重要的作用。

当人们对健康越来越重视的同时,医院的选择也成为人们关注的对象。

2.2 问题重述已知某一地区的交通路线图,其中的点代表居民居住区域,边代表道路,边上的数字表示两小区之间的距离(单位:千米),各个小区的人数见下表,要求在这7个小区间选一个小区建立一个中心医院,使得距离中心医院最远的小区居民也能很快的到达中心医院,问中心医院建在哪个小区合适?2.3 题目引申:在考虑到患者去医院所选择的交通方式的情况下,对该问题再进行分析,即在给定的各种交通工具和各种工具所对应的费用的条件下,求将中心医院设在哪一个小区,使得各个小区患者到该小区所花费的交通费用最少?由于每两个小区之间的路径不同,因为题目中只需考虑离医院最远小区到医院的距离最近,则只需考虑其他各个小区的人到达医院的路径问题,即只需要找出各小区到医院的最短路径。

第一步:这是一个选定中心点的建模问题,建模得出中心点来确定医院的位置。

第二步:求出其它各点到达中心医院的最短距离,得出初步的选址方案。

第三步:再通过第二种方法得到可行的选址地点,再建模进行计算和分析是否为最佳方案,综合两种方法的考量,得出最佳选址方案。

第四步:在已知条件下对题目进行引申,考虑病患到医院的交通费用,对此引申建立数学模型,求解在考虑交通费用的条件下,求得最佳选址方案,根据之前求得的选址方案进行对比,选择最优方案,得到该问题的最优解。

第五步:通过网上数据的采集,对给出的模型进行检验与分析,判断方案是否符合实际,能否推广到更多领域,进行分析,得出最终选址方案。

第四章假设与符号约定4.1 模型假设(1)假设各小区的发病率是一致的.(2)假设每个小区选择同种交通工具的人数的比例是相同的. (3)假设医院所在小区的患者的交通费用为0.(4)假设生病的人都会去医院就医.(5)假设乘坐每种交通方式都不会影响病情.4.2符号说明其中i,k=1,2,..7,j=1,2,….n第五章 模型的建立与求解5.1.选定中心点 5.1.1 模型一设G =(V ,E )是一个无向简单连通赋权图,连接两个顶点的边的权值代表它们之间的距离,对于每一个顶点i v ,它与各个顶点之间的最短路径长度为7321,...,,k k k k d d d d (其中k=1,2,…7)。

这些距离中的最大数称为顶点i v 的最大服务距离,记为)(ki v D 。

求每一个顶点的最大服务距离,显然,它们分别是矩阵D 【见附录1】中各行的最大值,见表1.由表1可建立如下模型:}...,30,0max {},...,,max {)(7,37321k k k k k k ki d d d d d d v D ==则)}(),...,(),(m in{721i i i v D v D v D即为所求。

即:93)(15=v D ,63)(25=v D ,50)()(3531==v D v D ,63)(41=v D ,93)(51=v D ,48)(65=v D ,63)(75=v D .由此可得,48)}(m in{)(65==ki v D v D ,所以6v 是中心点,也就是说,医院设在6v 上是可行的。

方案:区中心医院应建在6v 小区,可使离医院最远的小区5v 居民人均就诊时所走的路程最近,此时6v 小区与5v 小区的最短距离为48 km. 最佳方案即为所求。

5.1.2 模型二以各顶点的载荷(人口数)加权,求每一个顶点至其他各个顶点的最短路径长度的加权和 ,以此来确定中心点。

由题目中已给出的小区人数的表格再结合表(1)可建立如下模型:∑==71)()(i kii k d v a v S若:(1)将医院设在1v 小区:∑===71112706243)()(i i i d v a v S(2)将医院设在2v 小区:1396683)()(7122==∑=i i i d v a v S(3)将医院设在3v 小区:1441290)()(7133==∑=i i i d v a v S(4)将医院设在4v 小区:∑===71441434207)()(i i i d v a v S(5)将医院设在5v 小区:2661447)()(5715==∑=i i i d v a v S(6)将医院设在6v 小区:∑===71661185423)()(i i i d v a v S(7)将医院设在7v 小区:1774173)()(7717==∑=i i i d v a v S经比较,可得:1185423)(min)(716==∑=kii ikdv a v S所以,6v 是题目中图1的中位点。

即:中心医院设在6v 是可行的。

方案:区中心医院应建在6v 小区,而此时可使离医院最远的小区5v 居民人均就诊时所走的路程最近,由表1可看出,6v 小区与5v 小区的最短距离为48 km. 5.2 题目引申在考虑到患者去医院所选择的交通方式的情况下,对该问题再进行分析,即在给定的各种交通工具和各种工具所对应的费用的条件下,求将中心医院设在哪一个小区,使得各个小区患者到该小区所花费的费用最少? 对该问题建立模型进行求解,由假设可知: ⎩⎨⎧≠==i k d ik d ki ki ,,0每个小区的患病人数:a v a P i ⋅=)(其中 1 (211)=+++=∑=n nj j b b b b乘坐每种交通工具每km 的费用:)()...()()(22111n n nj j j y C b y C b y C b y C b C ⋅+⋅+⋅=⋅=∑=计算各个小区到医院的总费用之和:∑∑==⋅⋅⋅⋅=⨯⨯=711)()()(i nj j j ki i ki k y C b d a v a d C P v C∑∑==⋅⨯⋅⨯=nj j j i i i y C b d v a a 1711)()(由上述公式可知,医院的选址只与∑=⋅71)(i ki i d v a 有关,则比较∑=⋅71)(i ki i d v a 的大小就可得到交通总费用最少的最佳选址方案。

相关文档
最新文档