变压器绕线基本知识

合集下载

知识讲解 变压器 基础

知识讲解 变压器 基础

变压器 编稿:小志【学习目标】1.知道原线圈(初级线圈)、副线圈(次级线圈)的概念。

2.知道理想变压器的概念,记住电压与匝数的关系。

3.知道升压变压器、降压变压器概念。

4.会用1122U n U n =及1122I U I U =(理想变压器无能量损失)解题。

5.知道电能输送的基本要求及电网供电的优点。

6.分析论证:为什么在电能的输送过程中要采用高压输电。

7.会计算电能输送的有关问题。

8.了解科学技术与社会的关系。

【要点梳理】要点一、 变压器的原理1.构造:变压器由一个闭合的铁芯、原线圈和副线圈组成,两个线圈都是由绝缘导线绕制而成的,铁芯由涂有绝缘漆的硅钢片叠合而成。

是用来改变交流电压的装置(单相变压器的构造示意图及电路图中的符号分别如图甲、乙所示)。

2.工作原理变压器的变压原理是电磁感应。

如图所示,当原线圈上加交流电压U 时,原线圈中就有交变电流,它在铁芯中产生交变的磁通量,在原、副线圈中都要产生感应电动势。

如果副线圈是闭合的,则副线圈中将产生交变的感应电流,它也在铁芯中产生交变磁通量,在原、副线圈中同样要引起感应电动势。

由于这种互相感应的互感现象,原、副线圈间虽然不相连,电能却可以通过磁场从原线圈传递到副线圈。

其能量转换方式为:原线圈电能→磁场能→副线圈电能。

要点诠释:(1)在变压器原副线圈中由于有交变电流而发生互相感应的现象,叫做互感现象。

(2)互感现象是变压器工作的基础:变压器通过闭合铁芯,利用互感现象实现了电能向磁场能再到电能的转化。

(3)变压器是依据电磁感应工作的,因此只能工作在交流电路中,如果变压器接入直流电路,原线圈中的电流不变,在铁芯中不引起磁通量的变化,没有互感现象出现,变压器起不到变压作用。

要点二、 理想变压器的规律 1.理想变压器没有漏磁(磁通量全部集中在铁芯内)和发热损失(原、副线圈及铁芯上的电流的热效应不计)的变压器,即没有能量损失的变压器叫做理想变压器。

变压器绕线和制作方法

变压器绕线和制作方法

变压器绕线和制作⽅法变压器的绕制⽅法计算及注意事项⽣活中各种电器的⼯频变压器⽆论是⾃⾏设计绕制,还是修复烧坏的变压器,都会涉及到部分简单的计算,教科书上的计算公式虽然严谨,但实际运⽤时显得复杂,不甚⽅便。

本⽂介绍实⽤的变压器计算的经验公式。

先看⼀实例:实例:现要制作⼀个80W的降压变压器,输⼊220V 输出45V,请问⽤多⼤胶⼼,初次级各⽤什么线径,绕多少匝?(以下U1为初级电压,U2为次级电压,I1为初级电流,I2为次级电流)1、根据需要的功率确定铁芯截⾯积的⼤⼩S=1.25=1.25√80 ≈11.2cm22、求每伏匝数ωo=45/11.2=4.02匝3、求线圈匝数初级ω1=U1ωo=220X4.02=884.4匝次级ω2=1.05 U2ωo =1.05X45X4.02≈189.9匝4、求⼀、⼆次电流初级I1=P/U1=80/220≈0.36A次级I2=P/U2=80/45≈1.78A5、求导线直径初级d1=0.72 (根号I1)=0.72√0.36≈0.43mm次级d2=0.72 (根号I2)=0.72√1.78≈1.28mm注:此为理论计算值,实际绕制可根据结果改变各值。

本⼈绕制线径均⼤于理论值,扎数⽐变为88:20使⽤时并⽆异常。

单相⼩型变压器简易计算⽅法1、根据容量确定⼀次线圈和⼆次线圈的电流I=P/UI单位A、P单位vA、U单位v.2、根据需要的功率确定铁芯截⾯积的⼤⼩S=1.25√P(注:根号P)S单位cm23、知道铁芯截⾯积(cm2)求变压器容量P=(S/1.25)2(VA)4、每伏匝数ωo=45/S (注:45为系数,下⽂提到)5、导线直径d=0.72√I (根号I)6、⼀、⼆次线圈匝数ω1=U1ωoω2=1.05U2ω(注:考虑损耗,次级扎数要稍⼤些,1.05亦可改变)铁芯的选择根据⾃⼰需要的功率选择合适的铁芯是绕制变压器的第⼀步。

如果铁芯(硅钢⽚)选⽤过⼤,将导致变压器体积增⼤,成本升⾼,但铁芯过⼩,会增⼤变压器的损耗,同时带负载能⼒变差。

图文并茂解析变压器各种绕线工艺!(包含各种拓扑)

图文并茂解析变压器各种绕线工艺!(包含各种拓扑)

图⽂并茂解析变压器各种绕线⼯艺!(包含各种拓扑)⼀、传统变压器篇单路输出 Flyback 及常见的变压器绕组结构红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位夹在初级、次级中间缺点:1, 临近效应很强,绕组交流损耗⼤2, 初、次级间的漏感较⼤,吸收回路损耗较⼤,效率较低优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y改进的 Flyback 变压器绕组结构(简易型)红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,初级在中间、次级在最外边缺点:临近效应很强,绕组交流损耗⼤优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y3,初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼改进的 Flyback 变压器绕组结构(三明治型)红⾊:初级绕组红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,然后分别是初级的⼀半,次级全部,初级的另⼀半;缺点:1, 次级临近效应很强,绕组交流损耗⼤2,初级的⼀半绕组没有任何的静电位层供屏蔽⽤,⽆法实现⽆Y优点:1, ⼯艺结构复杂,不利于制造;2, 初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼3, 初级临近效应较⼩,绕组交流损耗⼩Flyback 多路输出L3 与L4 之间的漏感,引起交叉调整。

实⽤的多路输出型⾼压输出绕组叠在低压绕组之上,双线并绕降低交叉调整功率传输变压器(含正激、推挽、半桥、全桥)合理的绕组结构, 层厚⼩于2Δ红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组实际变压器的模型虚线内为理想变压器脉冲变压器信号传输失真由于原边及幅边漏感,电阻分量的存在,脉冲在经过变压器后,产⽣延迟、斜率变缓、振铃、顶降脉冲电流的分解脉冲电流的分解脉冲电流由基波电流及各⾼次谐波电流组成占空⽐越⼩,基波分量越⼩,⾼次谐波分量越⼤,因此线径的选择(穿透深度*2)不能只考虑基波电流的频率输出功率与频率的关系(EE25 单端变换器为例)理论上,对于指定的磁芯,在相同的磁密下,输出功率与频率呈正⽐,但实际上并⾮如此,原因有:1,频率升⾼,穿透深度下降,需要⽤较⼩的线径,窗⼝利⽤率下降,且绕组层厚与穿透深度的⽐值增⼤,交流电阻⼤增,有效输出功率下降;2,频率增加,绝缘材料的耐压下降,为保证同样的绝缘强度,需要加⼤绝缘层厚度,进⼀步降低窗⼝利⽤率;3,频率到达某⼀程度后,磁芯损耗⼤增,需要适当降底磁通密度(具体请参考磁损表)LLC 变压器LLC 电路结构LLC 集成磁件漏感由原边与副边之间的档墙宽度、磁芯的磁导率、以及中柱长度与窗⼝⾼度的⽐值决定红⾊:初级绕组黄⾊:次级绕组⼩漏感的 LLC 集成磁件个别应⽤中,需要⽤到较⼩的漏感,挡墙的宽度较⼩,安全间距可利⽤下⾯的结构来满⾜。

变压器基本工作基础学习知识原理

变压器基本工作基础学习知识原理

第1章 变压器的基本知识和结构1.1变压器的基本原理和分类一、变压器的基本工作原理变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。

变压器工作原理图当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。

原、副绕组的感应分别表示为dt d N e Φ-=11 dtd Ne Φ-=22 则k N N e e u u ==≈212121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。

改变变压器的变比,就能改变输出电压。

但应注意,变压器不能改变电能的频率。

二、电力变压器的分类变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。

按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器;按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等;按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。

三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构一、铁心1.铁心的材料采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。

为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。

变压器用的硅钢片其含硅量比较高。

硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

2.铁心形式铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构。

二、绕组1.绕组的材料铜或铝导线包绕绝缘纸以后绕制而成。

2.形式圆筒式、螺旋式、连续式、纠结式等结构。

为了便于绝缘,低压绕组靠近铁心柱,高压绕组套在低压绕组外面,两个绕组之间留有油道。

关于输出变压器的绕制

关于输出变压器的绕制

关于输出变压器的绕制(单端)一、输出牛电感量的计算:——一般设计变压器时都取其胆内阻的3-5倍——是频响的下限M= 是下限频率相对应于中频的滚降,一般取2~3db时,M约为二、初级匝数L1B= 取决于磁通量是变压器的磁路长,是变压器的铁芯截面积三、次级阻抗与匝数L2输出变压器的简易设计胆机输出牛的快速设计设计胆机的输出变压器的资料已经不少,本文结合自己近期要制作的4P1S牛输出耳放,对如何抓住要点进行快速设计作一探讨,以供大家参考并期望抛砖引玉:输出变压器的设计要点:负载阻抗初级电感铁芯截面绕组参数绕制工艺具备了这五个要点,就可以刻画出一头输出牛的基本“脾气”了。

一、负载阻抗很多常用的电子管都可以从厂家的技术参数中查到推荐的典型应用阻抗值,但是往往DIYER 要做的电路不一定都是所谓的“典型应用”,用胆管做耳放就是一个明显的例子。

所以从电子管的特性曲线上去寻求一个符合自己特定应用条件负载阻抗,才是正途。

图一是4P1S的特性曲线图,为了求得最佳的负载阻抗,我们选择了图上过ABC三点的负载线,负载线确定的原则是:尽可能地利用最大屏耗允许线(图中往下弯的那条曲线)下的有效面积,这样才能发挥管子的最大潜力。

图中A点是栅偏压为0的点,在这里达到了屏流的上限(横坐标:Imax=73mA),同时也是屏压的下限(纵坐标:Umin=75V);B点是我们的静态工作点,无信号时管子的屏流I0=40mA,屏压为170V;C点是屏压的上限:265V同时也是屏流的下限:3mA.通过这些数据,我们就可以计算出对应于这条负载线的输出阻抗:Rp=(Umax-Umin)/(Imax-Imin)=(265-75)/(0.073-0.003)=2714取:2700(欧姆)二、初级电感Lp=Rp/6.28*f0*根号M2-1其中,f0是我们设计的下限频率,这里取20Hz;M2(2表示是M的平方,下同,在这里写公式真费劲!),M是该下限频率相对应于中频的滚降,通常取2-3(db);我们取3(实践证明:输出变压器的低端滚降并非越小越好,电感过大将会使得分布电容难以控制,从而成为高频响应的“瓶颈”)。

(完整版)高中物理之变压器知识点

(完整版)高中物理之变压器知识点

高中物理之变压器知识点理想变压器是高中物理中的一个理想模型,它指的是忽略原副线圈的电阻和各种电磁能量损失的变压器。

实际生活中,利用各种各样的变压器,可以方便的把电能输送到较远的地区,实现能量的优化配置。

在电能输送过程中,为了达到可靠、保质、经济的目的,变压器起到了重要的作用。

变压器理想变压器的构造、作用、原理及特征构造:两组线圈(原、副线圈)绕在同一个闭合铁芯上构成变压器。

作用:在输送电能的过程中改变电压。

原理:其工作原理是利用了电磁感应现象。

特征:正因为是利用电磁感应现象来工作的,所以变压器只能在输送交变电流的电能过程中改变交变电压。

理想变压器的理想化条件及其规律在理想变压器的原线圈两端加交变电压U1后,由于电磁感应的原因,原、副线圈中都将产生感应电动势,根据法拉第电磁感应定律有:忽略原、副线圈内阻,有U1=E1,U2=E2另外,考虑到铁心的导磁作用而且忽略漏磁,即认为在任意时刻穿过原、副线圈的磁感线条数都相等,于是又有,由此便可得理想变压器的电压变化规律为。

在此基础上再忽略变压器自身的能量损失(一般包括线圈内能量损失和铁芯内能量损失这两部分,分别俗称为“铜损”和“铁损”),有P1=P2 而P1=I1U1,P2=I2U2,于是又得理想变压器的电流变化规律为由此可见:(1)理想变压器的理想化条件一般指的是:忽略原、副线圈内阻上的分压,忽略原、副线圈磁通量的差别,忽略变压器自身的能量损耗(实际上还忽略了变压器原、副线圈电路的功率因数的差别。

)(2)理想变压器的规律实质上就是法拉第电磁感应定律和能的转化与守恒定律在上述理想条件下的新的表现形式。

规律小结(1)熟记两个基本公式即对同一变压器的任意两个线圈,都有电压和匝数成正比。

②P入=P出,即无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率之和。

(2)原副线圈中过每匝线圈通量的变化率相等(3)原副线圈中电流变化规律一样,电流的周期频率一样(4)公式中,原线圈中U1、I1代入有效值时,副线圈对应的U2、I2也是有效值,当原线圈中U1、I1为最大值或瞬时值时,副线圈中的U2、I2也对应最大值或瞬时值(5)需要特别引起注意的是:①只有当变压器只有一个副线圈工作时,才有:②变压器的输入功率由输出功率决定,往往用到:即在输入电压确定以后,输入功率和原线圈电压与副线圈匝数的平方成正比,与原线圈匝数的平方成反比,与副线圈电路的电阻值成反比。

变压器基本知识

变压器基本知识

高压字母大写,中低压字母小写,Y(y)星接;D(d)角接;Z(z)曲折连接;N(n)中性点;a自偶连接;0-11组别数(相量)高压为12不标;单相I。

Y N, d 11;双绕组∣∣∣高压星接高压中性点引出低压角接Y N,y no,d11;三绕组∣∣∣∣∣高压星接高压中性点引出中压星界中压中性点引出低压角接Y N,a0,d11 三绕组自偶∣∣∣∣高压星接高压中性点引出中压自偶连接低压角接YN,yn0-yn0 +d 分裂备变∣∣∣高压星接中性点引出分裂低压星接中性点引出平衡绕组(消除三次截波)D,yn1-yn1 分裂厂变∣∣高压角接分裂低压星接中性点引出效率η=[1-(Po+Pk/额定容量kVA)]×100% 附机损耗:风扇1.5KW/个油泵2KW/个杂散损耗=Pk×15%套管电流互感器LRB(L-互感器,R-套管,B-保护,测量不标B)级次:0.2/5P20/5P20(一只测量两只保护);TPY Kssc=25(500KV低压、中性点暂态保护CT)保安系数<5(升压变测量用5,10保安系数越小越安全)0.2S(特殊用途测量电流互感器准确级0.2,0.5)0.2 /5P20 /5P20| | |测量用电流互感器保护用CT复合误差保护用电流互感器准确级0.1,0.2,0.5,1,3,5 准确级5,10;P保护准确系数5,10,15,20,30(%误差,越小越精确) (%误差,越小越精确) 短路电流倍数(越大越精确)TPY Kssc=25| |暂态保护用电流互感器级短路电流倍数(TPS,TPX,TPY,TPZ)容量: 50V A (容量越大体积越大)变比: 1250~2500 /1A| |一次侧电流(2个抽头)二次侧电流套管BRLW -500 /1250 -4| | | |BR油纸电容电压电流污秽等级D短尾L电流互感器套管60kV以上为油纸电容,60kV以下为纯瓷。

导杆式套管电流均大于或等于1600A。

图文详解变压器各种绕线工艺

图文详解变压器各种绕线工艺

一、传统变压器篇单路输出 Flyback 及常见的变压器绕组结构红色:初级绕组紫色:辅助绕组黄色:次级绕组特点:辅助绕组位夹在初级、次级中间缺点:1, 临近效应很强,绕组交流损耗大2, 初、次级间的漏感较大,吸收回路损耗较大,效率较低优点:1,工艺结构十分简单,易于制造2,初级外层接电位静止的V+端,易于实现无Y改进的 Flyback 变压器绕组结构(简易型)红色:初级绕组紫色:辅助绕组黄色:次级绕组特点:辅助绕组位于线包最里层,初级在中间、次级在最外边缺点:临近效应很强,绕组交流损耗大优点:1,工艺结构十分简单,易于制造2,初级外层接电位静止的V+端,易于实现无Y3,初次级间漏感较小,吸收回路损耗较小,效率较高改进的 Flyback 变压器绕组结构红色:初级绕组紫色:辅助绕组黄色:次级绕组特点:辅助绕组位于线包最里层,然后分别是初级的一半,次级全部,初级的另一半;缺点:1,次级临近效应很强,绕组交流损耗大2,初级的一半绕组没有任何的静电位层供屏蔽用,无法实现无Y优点:1, 工艺结构复杂,不利于制造;2, 初次级间漏感较小,吸收回路损耗较小,效率较高3, 初级临近效应较小,绕组交流损耗小Flyback 多路输出L3 与L4 之间的漏感,引起交叉调整。

实用的多路输出型高压输出绕组叠在低压绕组之上,双线并绕降低交叉调整功率传输变压器(含正激、推挽、半桥、全桥)合理的绕组结构, 层厚小于2Δ红色:初级绕组紫色:辅助绕组黄色:次级绕组实际变压器的模型虚线内为理想变压器脉冲变压器信号传输失真由于原边及幅边漏感,电阻分量的存在,脉冲在经过变压器后,产生延迟、斜率变缓、振铃、顶降脉冲电流的分解脉冲电流由基波电流及各高次谐波电流组成占空比越小,基波分量越小,高次谐波分量越大,因此线径的选择(穿透深度*2)不能只考虑基波电流的频率输出功率与频率的关系(EE25 单端变换器为例)理论上,对于指定的磁芯,在相同的磁密下,输出功率与频率呈正比,但实际上并非如此,原因有:1,频率升高,穿透深度下降,需要用较小的线径,窗口利用率下降,且绕组层厚与穿透深度的比值增大,交流电阻大增,有效输出功率下降;2,频率增加,绝缘材料的耐压下降,为保证同样的绝缘强度,需要加大绝缘层厚度,进一步降低窗口利用率;3,频率到达某一程度后,磁芯损耗大增,需要适当降底磁通密度(具体请参考磁损表)LLC 变压器LLC 电路结构LLC 集成磁件漏感由原边与副边之间的档墙宽度、磁芯的磁导率、以及中柱长度与窗口高度的比值决定红色:初级绕组黄色:次级绕组小漏感的 LLC 集成磁件个别应用中,需要用到较小的漏感,挡墙的宽度较小,安全间距可利用下面的结构来满足。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档